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Phonon-Josephson resonances in atomtronic circuits
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We study the resonant excitation of sound modes from Josephson oscillations in Bose-Einstein condensates.
From the simulations for various setups using the Gross-Pitaevskii mean-field equations and Josephson equations
we observe additional tunneling currents induced by resonant phonons. The proposed experiment may be used
for spectroscopy of phonons as well as other low-energy collective excitations in Bose-Einstein condensates. We
also argue that the observed effect may mask the observation of Shapiro resonances if not carefully controlled.
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I. INTRODUCTION

Superconducting Josephson junctions provide high-
precision frequency-to-voltage conversion known as the
Shapiro effect [1,2]. In fact, the modern standard of the
volt is based on arrays of Josephson junctions connected
to a microwave field with frequency controlled by an
atomic frequency standard [3–5]. Moreover, as an essential
building block of superconducting quantum interference de-
vices (SQUIDs) Josephson junctions provide magnetic-flux-
to-voltage conversion enabling high-precision magnetic-flux
measurements [6].

Recently, advanced techniques in optical trapping and
control initiated studies of Josephson effects in atomic Bose-
Einstein condensates (BECs). Narrow barriers created by
blue-detuned laser beams operate as Josephson junctions with
highly adjustable properties. In this way one can produce
simple two-well traps [7,8], atomic SQUIDs with one or two
junctions [9–12], or even arrays of Josephson junctions in
optical lattices [13,14]. Extensive theoretical and numerical
studies investigate various dynamics of BECs with such bar-
riers and determine the requirements for barriers to operate in
the Josephson regime [15,16]. Moreover, simple mathematical
models based on the two-mode approximation were developed
and supplemented with corrections for nonlinear interactions
and asymmetric trap configurations in order to understand
atomtronic Josephson physics [17]. Various experimental and
theoretical results demonstrate how the quantum nature of
the Josephson effect and the existence of critical tunnel-
ing currents lead to the creation of a chemical potential
difference in two-well systems [7–10]. On the microscopic
level vortex-mediated phase slips were observed and used to
study such phenomena as persistent currents and quantum
hysteresis [11,18–22]. The existence of critical currents and
phase slips in the overcritical region are cornerstones of
Josephson physics in BECs.

Nevertheless, some aspects of Josephson physics in atomic
BECs still remain little explored. One of them is the Shapiro
effect, i.e., the use of atomtronic Josephson devices as precise
frequency-to-chemical potential converters. There are several
theoretical investigations of the Shapiro effect in a trapped
BEC with a single Josephson barrier [23–25]. While such an
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effect has been observed in optical lattices [14], experimental
observations of Shapiro effects in single- or double-junction
setups are lacking. This may be due to the fact that coupling
of Josephson oscillations to other excitations with similar
frequencies masks the observation of Shapiro resonances.
The existence of such coupling effects is well known from
superconducting Josephson systems [26–28] as well as from
superfluid 3He [29].

In the present work we study resonant coupling between
Josephson oscillations and phonon modes in atomic BECs.
To this end we propose to investigate an experiment on the
basis of a toroidal trap used to realize Josephson junctions
for atomtronic SQUIDs [9]. The trap is divided into two
parts by two optical Josephson barriers and these two parts
are initially populated with condensates of different number
density. If this imbalance is small one expects imbalance
oscillations around zero mean (often called plasma oscillations
in analogy to superconductors). For larger imbalances one ex-
pects Josephson oscillations of the number density imbalance
around a nonzero mean, which is also known as macroscopic
quantum self-trapping (MQST). However, if phonon modes
can be resonantly exited by the Josephson alternating current,
then this coupling will provide a dissipation channel. This
should happen if the phonon frequencies of the trap match the
Josephson current frequency. We therefore expect to observe
some characteristic resonant response from the system in
this region, which can be observed in the evolution of the
population imbalance or the chemical potential difference
between two wells. In this paper we propose an experimentally
feasible protocol to observe the dynamical picture outlined
above. The simulations of such an experiment are made
using the three-dimensional time-dependent Gross-Pitaevskii
equation (GPE). The results are supported by a simplified
model based on the Josephson equations.

II. THEORETICAL SETUP

We consider the toroidal harmonic trap used in Ref. [9]
for the experimental realization of atomtronic Josephson
junctions. It is described by the potential

Vtrap(r) = 1
2Mω2

zz
2 + 1

2Mω2
0(r⊥ − r0)2, (1)

with r⊥ =
√

x2 + y2, ring radius r0 = 4 μm, and frequencies
ωz/2π = 300 Hz and ω0/2π = 570 Hz. In comparison to
other toroidal traps [10–12,18,30], this trap is considerably
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elongated in the z direction. The advantage of this trap for
our purposes is that the nucleation of vortices is suppressed
(see also Ref. [31]). The formation of annular vortices may
significantly distort the dynamics we intend to observe. Such
a trap configuration requires three-dimensional simulations of
the condensate dynamics.

The trap is subdivided by static barriers into two parts
created by scanning blue-detuned laser beams across the trap
annulus. They can be represented by repulsive potentials V1

and V2, which are homogeneous in the radial direction and
have a Gaussian shape in the tangential direction [20],

Vi(r⊥) = Ui�(r⊥ · ni)e
−[r⊥×ni ]2/d2

. (2)

The unit vectors ni (i = 1,2) point radially into the directions
of the barriers, r⊥ = (x,y) is a vector in the xy plane, �

is the Heaviside Theta function, and d = 1.2 μm is the 1/e

half-width of the barrier (corresponding to the 2-μm full width
at half maximum in the experiment). The experimental barrier
height is reported to be 44 nK, which corresponds to U1/h =
U2/h = 917.3 Hz. As reported in [9] and supported by the
results discussed below, such barriers operate in the Josephson
regime.

The initial population imbalance between the two parts
of the trap is produced by an additional tilt potential (not
present in the experimental setup of Ref. [9]). The total external
potential V in which the BEC moves therefore consists of the
trapping potential, the barrier potential Vb = V1 + V2, and the
time-dependent tilt potential,

V (r,t) = Vtrap(r) + Vb(r) + Vtilt(r,t). (3)

The initial tilt is linearly switched off within τ = 0.01 s after
starting the simulation of the BEC dynamics,

Vtilt(r,t) =
{
U0x(1 − t/τ ), t � τ

0, t > τ.
(4)

Then the evolution of the trapped condensate is observed for
an additional 0.5 s.

The proposed trap configuration is shown in Fig. 1, which
illustrates how the tilt potential produces the initial population
imbalance between the two parts of the ring. When the tilt
potential is switched off, this initial population imbalance leads
to a chemical potential difference �μ.

The BEC is described by a macroscopic wave function
�(r,t), which obeys the time-dependent GPE

i�
∂�

∂t
= − �

2

2M
∇2� + (V + g|�|2)�. (5)

The wave function is normalized to the total number of
atoms NT = ∫ |�|2dr, which is chosen to be NT = 5000
unless explicitly stated otherwise. The nonlinear coupling
g = 4π�

2as/M is given in terms of the mass M of the 87Rb
atom and its s-wave scattering length as .

The populations in each part of the trap can be obtained
by integration over each nonoverlapping part Wi separately,
Ni(t) = ∫

Wi
|�(r,t)|2dr, with i = L (left) or i = R (right)

and NT = NL(t) + NR(t). The total particle number NT is an
integral of motion of the GP equation (5) and therefore time
independent. The relative population imbalance is then given
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FIG. 1. Shown on the left is the density distribution of the
simulated BEC cloud in the xy plane in the tilted toroidal trap with
two barriers. On the right is the creation of the chemical potential
difference in the proposed experimental protocol. The figures show
the trapping potential along the x axis (blue lines), tilt potential
(straight red lines), and Thomas-Fermi populations in each part (blue
shaded regions) at two different times.

by

Z(t) = NL(t) − NR(t)

NT

.

Analogously, we obtain the local chemical potentials μL(t)
and μR(t) of each part of the trapped condensate as well as the
chemical potential difference �μ(t) = μL(t) − μR(t) from

μi = 1

Ni

∫
Wi

[
− �

2

2M
|∇�|2 + V |�|2 + g|�|4

]
dr. (6)

In terms of these quantities one may describe the dynamics
of the BEC by a two-mode approximation to the GP equa-
tion [16,17] often termed Josephson equations,

Ż(t) = −ωJ

√
1 − Z(t)2 sin[φ(t)],

φ̇(t) = �μ(t)/�, (7)

where φ is the phase difference between the two parts of the
condensate. This set of equations is closed by the relation
�μ(t) = �ωCZ(t).

The evolution of the condensate is uniquely determined
by the initial population imbalance Z(0) = Z0, the capacitive
energy EC = 2�ωC/NT , and the Josephson critical current
ωJ , which is related to the Josephson coupling energy EJ =
NT �ωJ /2. Values for these quantities can be estimated from
stationary solutions [17], which we calculate using imaginary-
time evolution of Eq. (5) with a static tilt potential. We find
ωJ /2π = 0.68 Hz and ωC/2π = 851 Hz as well as the initial
population imbalance Z0 for each value of U0. The ratio ωC/ωJ

is well inside the region 1 � ωC/ωJ � (NT /2)2, supporting
that the barriers operate in the Josephson regime [15]. Since
the ratio between the barrier height and the total chemical
potential is about U1,2/μ ≈ 0.8, the barriers can be considered
to be Josephson weak links. Our GPE simulations clearly
support the expected linear relation between Z and �μ, which
allows us to use the relative population imbalance as a measure
of the chemical potential difference. In the presentation of
our results below we will use either of these two quantities
interchangeably, whichever is more illustrative. From the
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simulations we also confirm the linear relation between Ż

and sin(φ), another indication that the barriers operate in the
Josephson regime.

Excitations in a trapped condensate

In order to identify the elementary excitations in the trapped
BEC system under consideration we employ the Bogolyubov–
de Gennes (BdG) formalism (see, e.g., [12,32,33]). We first
consider a condensate without tilt and barrier potentials and
write the cylindrically symmetric BEC wave function in the
form

�(r,t) = e−iμt [�0(r⊥,z) + δ�(r⊥,z,t)], (8)

where �0 is the stationary solution of (5) with chemical
potential μ. The perturbation

δ�(r⊥,z,t) = um(r⊥,z)e−i(ωt−mθ) + v∗
m(r⊥,z)ei(ωt−mθ) (9)

is characterized by a well-defined azimuthal quantum number
m due to the cylindrical symmetry. We insert this ansatz into
Eq. (5) and linearize it with respect to um and vm. From
the resulting BdG equations one finds for each m a set of
eigenvalues ω. The smallest eigenvalue for each m determines
the lowest branch ωm of the excitation spectrum, which is
shown in Fig. 2.

For small quantum numbers m the dispersion law is linear,
which suggests that the excitations are soundlike modes
(phonons). This part of the excitation spectrum may be
expressed in terms of the speed of sound c and the ring
radius r0, ωm = mc/r0. Alternatively, the speed of sound
can be related to the average density ñ of the condensate,
c = √

gñ/M [34]. Estimating the average density as one-half
of the peak density of the stationary state, we obtain values for
c in very good agreement with those obtained from the BdG
spectrum as illustrated by the dashed red line in Fig. 2.

In the presence of barriers phonon excitations become
standing waves localized in either of two parts of the
condensate with nodes at the barrier’s positions. Both the
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FIG. 2. Lowest branch of the BdG spectrum for elementary
excitations of the condensate in a symmetric ring trap. The dashed line
represents the sound frequencies estimated from the average density.
The inset shows the particle density |�|2 in the xy plane with 25%
of the population in the m = 6 mode (marked with a red circle).

average density and the angular extent of the two condensate
parts L or R can be different; therefore, in principle, one needs
to consider two different phonon frequencies �i = 2πci/αir0,
with i = {L,R} denoting the left and right parts, respectively,
αi the angular size of each part, and ci the speed of sound in
each part.

III. PHONON-JOSEPHSON RESONANCES

The frequency of Josephson oscillations is related to the
chemical potential difference [see Eq. (7) and Ref. [7]]. For a
system operating in the Josephson regime we therefore expect
to observe resonant coupling between Josephson oscillations
and phonon modes under the conditions

�μ/� = m�L,R, m = 1,2, . . . . (10)

To verify this expectation we perform a number of simulations
based on the GPE (5).

We begin with a symmetric barrier configuration, i.e., both
barriers are located along the y axis as shown in Fig. 1. The
angular extent of both parts is αL = αR = π . We simulate the
dynamics of the GPE (5) using a split-step Fourier transform
method. Each simulation starts with a different initial tilt U0

providing us with different values of initial chemical potential
difference �μ(t = τ ). We then measure the final chemical
potential difference as the average value over the last 0.2 s of
the evolution in order to eliminate the effects of high-frequency
Josephson or plasma oscillations. Such a series of simulations
allows us to study the final �μ as a function of the initial �μ

and identify those regions where they are different. The results
of such a series of simulations are presented in Fig. 3.

There are three different regimes observed in the system’s
evolution depending on the initial imbalance. These regimes

initial Δμ/h (Hz)
0 50 100 150 200 250 300

fin
al

Δ
μ
/
h

(H
z)

0

50

100

150

200

250

300

350

2
3

1

2ΩL

2ΩR

ΩL

ΩR

FIG. 3. Demonstration of phonon-Josephson resonances. The
solid blue line shows the final chemical potential difference as
a function of initial chemical potential difference. Dashed lines
represent estimated resonance positions for phonon modes. The
straight green line is a guide to the eye marking equal initial and
final values of �μ.

033603-3



Y. M. BIDASYUK, O. O. PRIKHODKO, AND M. WEYRAUCH PHYSICAL REVIEW A 94, 033603 (2016)

time (s)
0 0.1 0.2 0.3 0.4 0.5

Z

-0.05

0

0.05

0.1

0.15

0.2

3

1

2

FIG. 4. Time evolution of the relative population imbalance for
the system in the regimes of plasma oscillations (1), MQST (2), and
phonon-Josephson resonance (3).

are marked as 1, 2, and 3 in Fig. 3. Corresponding curves
in Fig. 4 show the actual time evolution of the population
imbalance. For small values of the initial population imbalance
the system is in the plasma oscillation regime, and the time
average of the population imbalance and the chemical potential
difference are zero. With larger initial population imbalance
the system switches into the self-trapped regime (MQST), and
according to the Josephson dynamics the average population
imbalance should remain close to its initial value. This is
indeed the case everywhere except for two distinct regions,
where the final population imbalance is reduced due to the
resonant dissipation into phonon excitations. As expected, the
resonance occurs in regions where the Josephson frequency
is close to the frequency of a phonon mode. The frequencies
�L and �R of the phonon modes in Fig. 3 are estimated using
the density distributions of each initial stationary state. These
frequencies are equal for zero initial tilt and differ for growing
population imbalance. We notice that the resonance peak is
observed at slightly larger �μ than expected from Eq. (10).

In the resonance region the excitation of phonon modes can
be clearly seen in the density distribution of the condensate (see
Fig. 5). From the time dependence of the relative population
imbalance Z(t) one can see that the generation of phonon
modes leads to a decrease of the population imbalance. This
can be understood as a transfer of energy stored in the chemical
potential difference to the phonon mode through resonant
coupling. Such phonon-assisted dissipation quickly drives the
system out of resonance (within the first ∼0.04 s), lowering
the Josephson oscillation frequency. This breaks the coupling
and the population imbalance oscillates around its new average
value. When the system is out of resonance, phonon modes are
not excited and the system again shows MQST dynamics.

The latter statement is supported by the trace of the phase
difference shown in Fig. 5. Between the phase slips the phase
difference grows linearly, which is typical for the MQST
regime. Its slope and consequently the frequency of phase
slips change after the population imbalance is reduced by the
resonant coupling to phonons, but otherwise the Josephson
dynamics is not affected.

We now study the Josephson dynamics in the proposed
trap with a significantly reduced amplitude of the Josephson
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FIG. 5. Generation of a phonon mode by Josephson oscillations.
The top panel shows the azimuthal distribution of the condensate
density n = |�|2 as it changes with time (dark blue regions corre-
spond to the barriers positioned at π/2 and −π/2). The middle and
bottom panels show the evolution of population imbalance Z and
phase difference φ within the same time period.

oscillations. This can be achieved in various ways, e.g., by
a modification of the barrier parameters or a reduction of
the total number of particles. By lowering this amplitude we
eventually observe a situation when the system is not driven
out of resonance. Instead, the energy, which was resonantly
transferred to the phonon mode, is transferred back into the
chemical potential difference, i.e., Josephson oscillations. As
an example we consider a BEC in the same trap as before with
only NT = 2000 atoms. Then one finds ωJ /2π = 0.05 Hz
and ωC/2π = 627 Hz and the system is still in the Josephson
regime. The amplitude of the Josephson oscillations is reduced
by about one order of magnitude. In this case one does
not observe any noticeable drop of final chemical potential
difference in the resonance regions. The system is not driven
out of the resonance conditions and the energy transferred
from the Josephson oscillations to the phonon mode can
be resonantly transferred back into Josephson oscillations,
reducing the energy of the phonon mode and increasing
the chemical potential difference. The system behaves like
coupled oscillators showing characteristic beats as shown in
Fig. 6.

Equivalent description using Josephson equations

In this section we describe the dynamics observed in
our Gross-Pitaevskii simulations by equivalent Josephson
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FIG. 6. Beats of the population imbalance for the system with
NT = 2000 particles in near-resonance conditions. Slow oscillations
result from the interference of the phonon mode and Josephson
oscillations (fast oscillations of Z) with similar frequencies.

equations (7). The system described by the Josephson equa-
tions can be considered as an electric circuit consisting of
a capacitor with capacitance 1/�ωC initially charged to Z0

and connected to an ideal Josephson junction. The second
Josephson equation represents a second Kirchoff law for such
a circuit.

Let us now consider a more complicated circuit (Fig. 7) that
contains in addition two parallel RLC circuits connected in
series to the capacitor and Josephson junction. For this case the
second Kirchoff law must additionally include voltage drops
on these two RLC circuits. This setup results in the set of
equations

Ż(t) = −ωJ

√
1 − Z(t)2 sin[φ(t)],

φ̇(t) = ωCZ + uL

�
+ uR

�
, (11)

with additional equations for uL and uR:

1

Ri

ui + Ciu̇i + 1

Li

∫ t

0
ui(τ )dτ = Ż(t), i = {L,R}, (12)

where Ż(t) represents the total current through the RLC

circuit and three terms on the left-hand side are partial
currents through each branch of the circuit. The inductance and
capacitance in each circuit are chosen to match the calculated
phonon frequencies 1/

√
LiCi = �i . We also consider equal

1/h̄ωC

CRLL RL CL RRLR

“Left” phonon mode “Right” phonon mode

ωJ

FIG. 7. Equivalent electric circuit for the toroidal condensate
with two weak links. It consists of the Josephson junction, the
initially charged capacitor with charge Z, which represents the total
population imbalance, and two RLC circuits, which represent phonon
modes in two parts of the condensate.
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FIG. 8. Final chemical potential difference as a function of initial
chemical potential difference obtained from the GPE calculation
(black line) and Josephson equations with (green line) and without
(red dashed line) additional RLC circuits representing phonon
modes.

inductances LL = LR = L and resistances RL = RR = R
for simplicity, which means that we have only two free
parameters in the model, L and R. They are obtained by
fitting the GPE results. Such fitting gives R/� = 8000 and
L/� = 61 ms, which results in a damping factor of the RLC

circuit ζ = √
L/C/2R ≈ 4 × 10−3.

From the results in Fig. 8 one can see that such an equivalent
resonating circuit correctly captures the qualitative resonant
picture and even quantitative agreement can be achieved except
in the region of high population imbalance, where other
excitations become relevant for the condensate dynamics. It
is also worth noticing that a small subharmonic resonance at
�μ/� = �/2, which is barely visible in the results of GPE
dynamics, is much more pronounced in the equivalent circuit.

IV. NONSYMMETRIC TRAPS

In this section we describe simulations of phonon-
Josephson resonances in nonsymmetric traps either by choos-
ing the barriers that divide the trap into parts of unequal size
or by placing barriers with unequal properties into the trap.

A. Asymmetric positions of the barriers

In the symmetric trap discussed above the resonance fre-
quencies in the left and right parts are very similar. Therefore,
we do not observe separate “left” or “right” resonances with
phonon modes. In order to separate left and right modes we
change the angular positions of the barriers in such a way
that the angular extent of the left part is αL = 3/4π and that
of the right part is αR = 5/4π , or reversed. The right part
always has lower density than the left one. The results of
these calculations are presented in Fig. 9. In both cases the
resonance regions are clearly observed, however, the positions
of the minima of the chemical potential difference do not as
accurately match the phonon frequencies as for symmetric
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FIG. 9. Phonon-Josephson resonances in an asymmetric system.
The top panel corresponds to the barriers rotated by π/8 to the right
(αL = 5/4π and αR = 3/4π ). The bottom panel corresponds to the
barriers rotated by π/8 to the left (αL = 3/4π and αR = 5/4π ).
Notation and labeling are as in Fig. 3.

barriers. A possible reason for this discrepancy could be
the considerable azimuthal inhomogeneity of the condensate
parts in the case of the rotated barriers, while our estimates
of the azimuthal sound wave frequencies are based on the
assumption of azimuthal homogeneity of the condensate. This
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FIG. 10. Azimuthal distribution of the condensate density n =
|�|2 as a function of time. The initial conditions correspond to the
first observed resonance at �μ/h ≈ �R,L/2.
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FIG. 11. Phonon-Josephson resonances if one barrier is outside
the Josephson regime. Notation and labeling are as in Fig. 3.

inhomogeneity can distort the sound waves in the condensate
and also can produce additional excitations of different nature.
It can also be seen from Fig. 9 that right resonances are
considerably more pronounced than the left ones.

B. Asymmetric height of the barriers

We now analyze a setup with one of the barriers operating
in the Josephson regime and the other one close to the
Fock regime [ωC/ωJ ∼ (N/2)2], i.e., tunneling is completely
suppressed. To this end we make a series of simulations with
increased height of one of the barriers U1 = 4U2. In this case
we effectively have a system with only one Josephson junction
as a source of resonant oscillations. If the interaction between
Josephson oscillations and sound modes only happens at one
of the junctions, then the period of the lowest resonant phonon
mode will not be the time that sound needs to travel from one
Josephson barrier the other (as shown in Fig. 5), but the time
that it takes to travel from the only Josephson barrier back and
forth. The phonon is reflected from the non-Josephson barrier
(see Fig. 10). Therefore, we expect to observe an additional
series of resonances at half-integer phonon frequencies.

The result of this series of simulations is presented in
Fig. 11. We observe additional resonances at half-integer
phonon frequencies which are as strong as the resonances
at integer phonon frequencies.

The high barrier that we introduced changes the topology
of the system. Such disconnected rings can be considered
to be topologically equivalent to singly connected traps. We
therefore expect that a similar resonance picture is observed for
a cigar-shaped condensate with just one Josephson junction.

V. CONCLUSION

In the present work we demonstrated that a coupling
between phonon modes and Josephson oscillations in BEC
can be observed in various traps with one or two Josephson
barriers. The resonant coupling manifests itself as a reduction
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of the average population imbalance or chemical potential
difference during the condensate evolution. Alternatively, one
may think of this effect as a phonon-induced additional
tunneling current within the self-trapped Josephson regime. It
provides a dissipation channel even when thermal dissipation
is suppressed.

The observed population imbalance shows a ladderlike
structure with higher-order resonances pronounced as strong
as the first one. This indicates that the observation of Shapiro
resonances in such systems may be strongly affected for
driving frequencies higher than the lowest characteristic
phonon frequency.

Our study suggests that Josephson oscillations may couple
not only to sound modes but also to other low-energy collective

modes (see also Ref. [35]). Such resonant couplings should be
taken into account while engineering and interpreting BEC
experiments with Josephson barriers. The observed resonant
coupling effect may be used for spectroscopy of phonons as
well as for other low-energy collective excitations in Bose-
Einstein condensates. While the realization proposed here
only distinguishes modes with well-separated frequencies,
the resolution may be improved by fine-tuning the barrier
parameters.
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