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We investigate spin-incoherent Luttinger liquid of a one-dimensional spin-1 Bose gas in a harmonic trap. In
this regime highly degenerate spin configurations emerge since the energy splitting between different spin states
is much less than the thermal energy of the system, while the temperature is low enough that the lowest energetic
orbitals are occupied. As an example we numerically study the momentum distribution of a one-dimensional
spin-1 Bose gas in Tonks-Girardeau gas limit and in the sector of zero magnetization. We find that the momentum
distributions broaden as the number of atoms increase due to the averaging of spin function overlaps. Large
momentum (p) asymptotic is analytically derived, showing the universal 1/p4 dependence. We demonstrate that
the spin-incoherent Luttinger liquid has a momentum distribution also distinct from spinless bosons at finite
temperature.
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I. INTRODUCTION

The interacting one-dimensional (1D) quantum system [1]
can be described by a low-energy effective theory, so-called
Luttinger liquid theory [2]. For spinful systems, one has
spin-charge separation but both possess power-law decay of
correlation functions. An interesting regime is spin-incoherent
Luttinger liquid (SILL) [3] when the temperature is larger
than the spin excitation energy while smaller than the charge
excitation one. The exponential factor in the single-particle
Green’s function of SILL puts itself in a different universal
class from the Luttinger liquid, and rich physics appears due
to the highly degenerate spin Hamiltonian. The semiconductor
quantum wire can be a platform to reach SILL regime. In this
regime the spin Hamiltonian becomes irrelevant and negligible
in the correlation functions that the spin degrees of freedom
are nonpropagating [3]. The spin-charge separation still holds
simply because the charge velocity is much larger than the
spin velocity. In this paper we consider the interacting 1D
Bose gas [4] in the spin-incoherent regime. The dispersion
relation of the density mode in a spin-1 Bose gas is linear
[5], which is the same as the collective charge excitations in
the electronic spin-1/2 system. As we will explain later, the
spin velocity is much less than the sound velocity; therefore,
we also have the spin-incoherent regime if the temperature
is higher than the spin excitation energy. We expect that the
spin-incoherent 1D Bose gas is even better to demonstrate
SILL physics due to the controllability of spatial dimensions
and atom-atom interactions.

The strongly interacting and spinless bosonic particles have
been experimentally realized in 1D tightly confined systems
[6–8]. These hard-core bosons become fermionized in the
Tonks-Girardeau (TG) [9,10] gas limit that corresponds to
infinitely strong atom-atom interaction, and is one of the few
examples that have the exact solutions. In this limit their wave
functions can be written down from the constraints that bosons
are impenetrable and of bosonic symmetry. In the past two
decades many investigations along this line involve the ground-
state properties of 1D hard-core bosons [11] and strongly
interacting Bose-Fermi mixtures [12] in a harmonic trap, the
momentum distribution [13–15], quantum magnetism in 1D

spinor Bose gas [16–20], and using group-theoretical methods
in studying the ground states of spin-1/2 fermions [21] and
the permutation symmetry of spinor quantum gases [22]. The
experimental measurements of such quantum systems rely on
the matter wave interferences, for example, the time-of-flight
experiment using the focusing technique [23–26], and the
Bragg scattering spectroscopy [27–32]. In this paper we
investigate the ground-state properties of a 1D spin-1 Bose
gas in SILL regime that has not been studied before, and
we numerically calculate the momentum distributions that
can be observed in experiments. We note that the momentum
distributions of spin-1/2 bosons and fermions in SILL regime
have been investigated in a homogeneous system [33].

The rest of the paper is organized as follows. In Sec. II
we introduce the Hamiltonian of 1D spin-1 Bose gas and the
general wave function with spin degree of freedom. In Sec. III,
we consider 1D spin-1 Bose gas in TG limit. We derive the
general form of density matrix with spin function overlaps
assisted by the conjugacy classes of the permutation groups.
An analytical derivation of large momentum asymptotic is
demonstrated in Sec. IV, and we show the numerically
calculated momentum distributions in Sec. V. We conclude
in Sec. VI, and the Appendix has the technical details of the
traces of various group elements which are used in determining
the spin function overlaps.

II. HAMILTONIAN AND WAVE FUNCTION

Starting from the Hamiltonian of ultracold spin-1 Bose gas
in one dimension at zero magnetic field [5,16,34],

H =
N∑

i=1

[
− �

2

2m

∂2

∂x2
i

+ 1

2
mω2x2

i

]
Ispin

+
∑
i<j

δ(xi − xj )[U0Ispin + U2fi · fj ], (1)

where fi is the spin operator, Ispin is the identity operator
in spin space, m is the mass of the bosons, ω is the axial
trap frequency, and U0,2 are the coupling constants of spin-
independent and spin-dependent interactions, respectively. For
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a highlyelongated trap, the transverse trap frequency (ω⊥) is
much larger than ω that the coupling constants effectively are
Ui = 2�ω⊥ci with c0 = (ã0 + 2ã2)/3, and c2 = (ã2 − ã0)/3,
where ã0,2 = a0,2/[1 − 1.46a0,2/(

√
2l⊥)] [35,36] with s-wave

scattering lengths a0,2, and l⊥ = √
�/(mω⊥) [5]. For 23Na, 41K,

and 87Rb, we have |ã2 − ã0| � (ã0 + 2ã2)/3. For example of
87Rb in the hyperfine state of F = 1, a0 = 101.8 and a2 =
100.4 aB [37], where aB is Bohr radius. Therefore, the sound
velocity, which is proportional to

√
c0, is much larger than the

spin velocity, which vanishes if ã2 ≈ ã0.
In TG gas limit of scalar bosons, the system becomes

fermionized that bosons do not penetrate each other, and their
wave functions take the form of noninteracting fermions. For
a spin-1 Bose gas with an infinite atom-atom interaction U0

in a harmonic trap, we consider a SILL regime [3] where
the energy splitting between different spin states is much less
than kBT where kB is the Boltzmann constant and T is the
temperature of the system, while the temperature is low enough
that the system still occupies the orbitals in the lowest energy.
The regime in general can be reached since ã2 ≈ ã0 and the
difference between them is much less than (ã0 + 2ã2)/3.

The wave function in general can be expressed as

|�〉 =
∑

s1,s2,...,sN

ψs1,s2,...,sN
(�x)|s1,s2, . . . ,sN 〉, (2)

where �x = (x1,x2, . . . ,xN ) denotes the spatial distributions
along with the spin configurations of N bosons, that is
|s1,s2, . . . ,sN 〉 ≡ |�s〉. The total wave function must be
symmetric under interchange of any two particles. Therefore, it
is sufficient to first consider the region of x1 < x2 < · · · < xN ,
and all others can be obtained via symmetry. For the spin
part, we consider some degenerate and normalized spin
configuration state |χ〉. Later we will show that it does
not matter which |χ〉 we start with. Since TG gas limit
suggests null wave functions when xi approaches xj , we can
construct the symmetrized spatial part of the wave function
|� ′〉 = ψ

sym

�n (�x)|χ〉 in terms of the eigenfunctions φnj
(xj ) of

the noninteracting fermions in a harmonic trap as

ψ
sym

�n (�x) = 1√
N !

A
[
φn1 (x1),φn2 (x2), . . . ,φnN

(xN )
]

× sgn(x2 − x1)sgn(x3 − x2) . . .

× sgn(xN − xN−1), (3)

where A is antisymmetrizer (equivalent to a Slater determi-
nant), sgn is the sign function to satisfy the bosonic symmetry,
and the factor of

√
N ! guarantees the normalization of the

wave function. The eigenfunctions φn(x) [also dimensionless
form of φn(y)] in a harmonic trap are

φn(y) = 1√
2nn!

1

π1/4
Hn(y)e−y2/2, y ≡ x/xho, (4)

where Hn are Hermite polynomials with the trap frequency ω,
the atom mass m, and xho ≡ √

�/(mω).
The above can be considered as permutations of the orbitals

�n = (n1, n2, . . . ,nN ), and note that it should not be mistaken for
permutations of �x for here we have chosen the ordered region
x1 < x2 < · · · < xN . To access the regions other than x1 <

x2 < · · · < xN of the wave function, we can construct them
via permutations of the orderings of �x. There should be a total

of N ! regions related to the symmetric group SN . For N = 3 as
an example, we have |� ′〉 for the original ordered region, and
a permutation of first two particles P12|� ′〉 = ψ

sym

�n (�x)P12|χ〉
accesses the spatial region x2 < x1 < x3 giving the new spin
configuration P12|χ〉 for this region. The other four regions can
be constructed by permutations of P23, P12P23, P23P12, and
P12P23P12 on |χ〉. Similar treatments of constructing the wave
functions have been used in investigating quantum magnetism
[16,17] and magnetic correlations [18] in strongly interacting
1D spinor gases.

Note that the ground-state energy for such N bosons
occupying the lowest N orbitals �n = (0,1, . . . ,N − 1) is E =
N2

�ω/2. Below we proceed to calculate the density matrix
using the wave function we formulate here including the spin
degree of freedom.

III. DENSITY MATRIX

Here we provide the formalism to calculate the single-
particle density matrix of a spin-1 Bose gas, which
reads

ρ(x,x ′) = N
∑

�s

∫
dx̄ ψ∗

�s (x,x̄)ψ�s(x ′,x̄), (5)

where x̄ = (x2,x3, . . . ,xN ), and a factor of N shows up for
the other N possible choices of x and x ′. We consider only
the region of x < x ′ which should be symmetric to x > x ′,
and also the ordering of x2 < x3 · · · < xN . For N = 3 as an
example we have the spin function overlaps in ρ(x,x ′), for a
given choice of |χ〉,

x < x2 < x3, x ′ < x2 < x3, 〈χ |E|χ〉 = 1,

x2 < x ′ < x3, 〈χ |P12|χ〉,
x2 < x3 < x ′, 〈χ |P23P12|χ〉,

x2 < x < x3, x2 < x ′ < x3, 〈χ |E|χ〉 = 1,

x2 < x3 < x ′, 〈χ |P −1
12 P23P12|χ〉,

x2 < x3 < x, x2 < x3 < x ′, 〈χ |E|χ〉 = 1, (6)

where the first two columns represent the integral regions of x

and x ′, and the third column is the spin function overlap in this
region. E is the identical permutation operator, and we note
that P −1

12 P23P12 = P13 and P23P12 = P123. After averaging
over a set of spin states |χ〉 (to be specified below), we then
have the single-particle density matrix,

ρ(x < x ′) = 3 × 2 ×
{∫

x<x ′<x2<x3

1

+
∫

x<x2<x ′<x3

Trχ (P12)

Trχ (E)

+
∫

x<x2<x3<x ′

Trχ (P123)

Trχ (E)
+

∫
x2<x<x ′<x3

1

+
∫

x2<x<x3<x ′

Trχ (P13)

Trχ (E)
+

∫
x2<x3<x<x ′

1

}

×ψ
sym∗
�n (x,x2,x3)ψsym

�n (x ′,x2,x3)dx2dx3, (7)
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where the multiplication factor of 2 in the above is due to
the contribution of the integral region x2 > x3. This region
can be assessed by interchanging x2 and x3 using P23,
where the spin function overlaps are equivalent to those with
x2 < x3. The trace (Tr) of the permutation operator over |χ〉
is just the summation of the spin function overlaps over all
spin configurations, that is Trχ (Pij...k) = ∑

χ 〈χ |Pij...k|χ〉. To
account for all the spin configurations, we have made an
average over all the spin function overlaps in each integral with
the total number of states given by Trχ (E) since 〈χ |E|χ〉 = 1.

To proceed and from now on we shall limit ourselves to
the specific sector of total Sz ≡ ∑N

i=1〈Ŝi
z〉 = 0, where Ŝi

z is
z-component spin operator for ith particle. Then we have
two possible sets of spin configurations, {|χ1〉P } = |000〉,
and {|χ2〉P } = | + −0〉, | + 0−〉, | − +0〉, | − 0+〉, |0 + −〉,
|0 − +〉, composing of six permuted states, which make up of
seven states in total. We denote (−, 0, +) as three quantum
numbers (−1, 0, 1) for a spin-1 boson, and the superscript P

for a permuted set of spin configurations. Then the density
matrix becomes

ρ(x < x ′) = 3 × 2 ×
{∫

x<x ′<x2<x3

1 +
∫

x<x2<x ′<x3

1

7
+

∫
x<x2<x3<x ′

1

7
+

∫
x2<x<x ′<x3

1

+
∫

x2<x<x3<x ′

1

7
+

∫
x2<x3<x<x ′

1

}
,ψ

sym∗
�n (x,x2,x3)ψsym

�n (x ′,x2,x3)dx2dx3, (8)

where we note that Trχ (P12) = Trχ (P13). The permutations of P12, P13, and P23 are conjugate with each other to form a conjugacy
class [38]; therefore, they have the same trace. In the S3 permutation group, E, P12, and P123 belong to three different classes.
Their traces can be explicitly done and they are also listed in the Appendix.

In general for x < x ′, we have

ρ(x < x ′) = N !

{ ∫
x<x ′<x2···<xN

1 +
∫

x<x2<x ′ ···<xN

w2N

wN

+
∫

x<x2<x3<x ′ ···<xN

w3N

wN

+ · · ·

+
∫

x2<x<x ′ ···<xN

1 +
∫

x2<x<x3<x ′ ···<xN

w2N

wN

+ · · · +
∫

x2<x3···<xN <x<x ′
1

}
ψ

sym∗
�n (x,x̄)ψsym

�n (x ′,x̄)dx̄, (9)

where the averaged spin function overlaps are given by wjN

wN
,

with

wjN ≡ Trχ (P12...j ), (10)

the trace of P12...j , averaged by

wN ≡ Trχ (E), (11)

the total number of states |χ〉. The spin function overlaps can
be calculated using the conjugacy class G of symmetric group
SN where we demonstrate up to N = 6 in the Appendix.
In addition the identity relation of

∑
G TrχG = N !, the order

of SN , is useful to check on the calculation of various spin
function overlaps. Note that the integral regions of permuted
x̄ are identical; therefore, the density matrix ρ(x < x ′) has
N (N + 1)/2 distinguished ones.

Here we show how we calculate the general spin function
overlaps in the sector of Sz = 0. The spin configurations
{|χi〉P } in general involves |00...0〉 and n pairs of (+−), that
is | + + − −00 . . . 0〉 with n = 2 for example. For {|χi〉P } =
|00 . . . 0〉, the trace of any permutation operator is 1. For the
spin configuration of n pairs of (+−), the trace of P12...j has
three contributions. One contribution is that the first j entries
are (0)’s, where the spin configuration can be shown as

| 00 . . . 0︸ ︷︷ ︸
j

00 . . . 0︸ ︷︷ ︸
N−2n−j

+ · · · +︸ ︷︷ ︸
n

− · · · −︸ ︷︷ ︸
n

〉.

The trace is (N − j )!/[(n!)2(N − 2n − j )!] since this is the
number of states obtained by permuting the rest of (N − 2n −
j ) (0)’s and n (+)’s and (−)’s. The other two contributions are
for j (+)’s or (−)’s, which is (N − j )!/[(n − j )!n!(N − 2n)!],
the number of states obtained by permuting the rest of (n − j )

(+)’s or (−)’s, n (−)’s or (+)’s, and (N − 2n) (0)’s. In general,
we have the traces for the conjugacy classes of P12...j as

wjN ≡
N
2 or N−1

2∑
n=0

[
(N − j )!

(n!)2(N − 2n − j )!

+ 2(N − j )!

(n − j )!n!(N − 2n)!

]
, (12)

for even or odd N with the upper limit of summation as N/2
or (N − 1)/2, respectively. We note that all the arguments of
the factorials should be equal and larger than zero. The total
number of states is then calculated as

wN ≡
N
2 or N−1

2∑
n=0

N !

(n!)2(N − 2n)!
. (13)

The spin function overlaps are identical if the permutations are
in the same conjugacy class of SN . The values of wjN can be
found in the Appendix.

The momentum distributions of 1D Bose gas in TG limit
is then numerically integrated based on Eq. (9) which we
will demonstrate in Sec. V. The definition of the momentum
distribution is

ρ(p) = 1

2π

∫ ∞

−∞
dx

∫ ∞

−∞
dx ′eip(x−x ′)ρ(x,x ′), (14)

where we let � = 1. Next we are interested in deriving the
asymptotic forms in large momentum limit, which show 1/p4

decay and can be measured in experiments.
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IV. LARGE p EXPANSION IN ρ( p)

Here we show the analytical result of a large p asymptotic
in the one-body momentum distribution of 1D TG Bose
gas. It is well known that this large asymptotic shall
show the universal 1/p4 dependence for a Bose gas with
two-body contact interactions [13–15]. This universal
asymptotic has recently drawn a lot of attention in deriving
the energetics (so-called Tan’s relation) [39] and universal
properties of the two-component Fermi gas [40–43], and
in extending Tan’s relations in one dimension [44]. Before
we present the general expression of the large p asymptotic
for arbitrary N , we show the results of N = 2 and 3 for
demonstration.

A. N = 2

We first recall of ρ(x < x ′) for two bosons in Eq. (9) that

ρ(x < x ′) = 2!

[∫
x<x ′<x2

1 +
∫

x<x2<x ′

w22

w2

+
∫

x2<x<x ′
1

]
dx2ψ

sym∗
�n (x,x2)ψsym

�n (x ′,x2). (15)

If we replace the coefficient from the averaged spin function
overlap (w22/w2 = 1/3) by (−1), we end up with ρ(x,x ′)
equivalent to the results of the noninteracting fermions,
therefore ρ(p) ∝ e−(pxho)2

. Subtracting this vanishing part of
e−(pxho)2

in large p limit, we have

ρ(p) =
p→∞

2!

2π

∫ ∞

−∞
dx dx ′eip(x−x ′)

∫
x<x2<x ′

dx2

(
w22

w2
+ 1

)
ψ

sym∗
�n (x,x2)ψsym

�n (x ′,x2) + (x ′ < x),

=
p→∞

1

2π

∫ ∞

−∞
dx dx ′eip(x−x ′)

[
−4

3

∫
x<x2<x ′

dx2

]∣∣∣∣ φ0(x) φ1(x)

φ0(x2) φ1(x2)

∣∣∣∣
∣∣∣∣φ0(x ′) φ1(x ′)

φ0(x2) φ1(x2)

∣∣∣∣ + (x ′ < x), (16)

where we have used Eq. (3), and the second term represents the part of integrals for x ′ < x.
Letting ȳ = x − x2 and ȳ ′ = x ′ − x2 with dȳ = dx and dȳ ′ = dx ′, we have

ρ(p) =
p→∞

1

2π

−4

3

[∫ 0

−∞
dȳ

∫ ∞

0
dȳ ′ +

∫ 0

−∞
dȳ ′

∫ ∞

0
dȳ

]
eip(ȳ−ȳ ′)

∫ ∞

−∞
dx2

∣∣∣∣φ0(ȳ + x2) φ1(ȳ + x2)

φ0(x2) φ1(x2)

∣∣∣∣
∣∣∣∣φ0(ȳ ′ + x2) φ1(ȳ ′ + x2)

φ0(x2) φ1(x2)

∣∣∣∣.
(17)

Since p is large, ȳ and ȳ ′ are necessarily small so we can
expand the determinants by Taylor expansion. Also since
the zeroth-order expansion gives null results, we keep the
nonvanishing first-order expansion, which are the order of ȳ

and ȳ ′ in the integrals. We then have

ρ(p) =
p→∞

1

2π

−4

3

[∫ 0

−∞
dȳ

∫ ∞

0
dȳ ′ +

∫ 0

−∞
dȳ ′

∫ ∞

0
dȳ

]

× ȳȳ ′eip(ȳ−ȳ ′)
∫ ∞

−∞
dx2

∣∣∣∣∣
φ′

0(x2) φ′
1(x2)

φ0(x2) φ1(x2)

∣∣∣∣∣
2

, (18)

where the prime on the eigenfunctions means the derivative.
We then proceed to solve the above integrals by the

integration by parts. For brevity we just demonstrate the
integrals of ȳ and ȳ ′,

∫ 0

−∞
dȳ

∫ ∞

0
dȳ ′eip(ȳ−ȳ ′)ȳȳ ′ = −1

p4
, (19)

where we have imposed the conditions of negligible contri-
bution at the infinite boundary. Note that the part of (ȳ ↔ ȳ ′)
gives the same result and putting the above back to ρ(p), we
have

ρ(p) =
p→∞

4/3

2π

2

p4

∫ ∞

−∞
dx2

∣∣∣∣φ
′
0(x2) φ′

1(x2)

φ0(x2) φ1(x2)

∣∣∣∣
2

= 4/3

2π

2

p4

∫ ∞

−∞

e−2y2
dy

π (xho)3

∣∣∣∣−y
√

2(1 − y2)
1

√
2y

∣∣∣∣
2

, (20)

where we substitute x2 by y = x2/xho in φn. Further we use
the dimensionless �k̄ = p̄ replacing of p/

√
m�ω, and we

have

ρ(k̄)

xho

=
k̄→∞

4/3

2π

2

k̄4

∫ ∞

−∞

2e−2y2
dy

π
,

= 4/3

2π

2

k̄4

2

π

√
π

2
= 0.34

k̄4
. (21)

B. N = 3

Toward the general expression of large p asymptotic for
arbitrary N , we show one more example of three bosons.
Recalling again Eq. (9), we have six integral regions in
ρ(x < x ′),

3!

[ ∫
x<x ′<x2<x3

1 +
∫

x<x2<x ′<x3

w23

w3
+

∫
x<x2<x3<x ′

w33

w3

+
∫

x2<x<x ′<x3

1 +
∫

x2<x<x3<x ′

w23

w3
+

∫
x2<x3<x<x ′

1

]

× dx2dx3ψ
sym∗
�n (x,x2,x3)ψsym

�n (x ′,x2,x3), (22)

where w23/w3 = w33/w3 = 1/7. We can again subtract from
the above the corresponding expression of the Fermi gas,
which has only e−(pxho)2

contribution in the large p limit.
Further, noting again that ρ(p) has significant contributions
only from the regions of x < xj < x ′ and x ′ < xj < x for all
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xj ∈ x̄, we then have the remaining terms only from w23/w3 → w23/w3 + 1 in Eq. (22) for p → ∞,

ρ(p) =
p→∞

1

2π

∫ ∞

−∞
dx dx ′eip(x−x ′)

[
− 8

7

∫
x<x2<x ′<x3

−8

7

∫
x2<x<x3<x ′

]
dx2dx3

×

∣∣∣∣∣∣∣
φ0(x) φ1(x) φ2(x)

φ0(x2) φ1(x2) φ2(x2)

φ0(x3) φ1(x3) φ2(x3)

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
φ0(x ′) φ1(x ′) φ2(x ′)

φ0(x2) φ1(x2) φ2(x2)

φ0(x3) φ1(x3) φ2(x3)

∣∣∣∣∣∣∣ + (x ′ < x). (23)

Again we change variables by ȳ = x − x2, ȳ ′ = x ′ − x2, or x2 → x3. Similar to the derivation of N = 2, we expand the above
to the first order of ȳ and ȳ ′, apply Eq. (19), and we have

ρ(p) =
p→∞

1

2π

8

7

2

p4

∫ ∞

−∞
dx2dx3

∣∣∣
x2<x3

⎡
⎢⎢⎣

∣∣∣∣∣∣∣
φ′

0(x2) φ′
1(x2) φ′

2(x2)

φ0(x2) φ1(x2) φ2(x2)

φ0(x3) φ1(x3) φ2(x3)

∣∣∣∣∣∣∣

2

+

∣∣∣∣∣∣∣
φ′

0(x3) φ′
1(x3) φ′

2(x3)

φ0(x2) φ1(x2) φ2(x2)

φ0(x3) φ1(x3) φ2(x3)

∣∣∣∣∣∣∣

2⎤
⎥⎥⎦. (24)

The two terms inside the bracket are equivalent via x2 ↔ x3; therefore, we can combine these two terms, but now we can integrate
over all x2 and x3. We then expand the determinant into minors, and integrate out either x2 or x3, obtaining

ρ(p) =
p→∞

1

2π

8

7

2

p4

∫ ∞

−∞
dx

[∣∣∣∣φ
′
1(x) φ′

2(x)

φ1(x) φ2(x)

∣∣∣∣
2

+
∣∣∣∣φ

′
0(x) φ′

2(x)

φ0(x) φ2(x)

∣∣∣∣
2

+
∣∣∣∣φ

′
0(x) φ′

1(x)

φ0(x) φ1(x)

∣∣∣∣
2]

. (25)

From the above, it suggests that the integrals involve the determinants with a combination of every two eigenfunctions. To
proceed, we put in the Hermite polynomials, and use the dimensionless k̄,

ρ(k̄)

xho

=
k̄→∞

2×8/7

2πk̄4

1

π

∫ ∞

−∞
dy e−2y2

⎡
⎢⎣2 +

∣∣∣∣∣∣
−y

5y−2y3√
2

1 2y2−1√
2

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣
√

2(1 − y2) 5y−2y3√
2√

2y
2y2−1√

2

∣∣∣∣∣∣
2
⎤
⎥⎦

= 2×8/7

2πk̄4

27
√

π/2

4π
= 0.98

k̄4
. (26)

C. General large p asymptotic

In general for arbitrary N , we have

ρ(p)

N
=

p→∞
(N − 1)!

N !

2[1 + w2N/wN ]

2πp4

∑
j=2,3,...,N

∫
x2<x3···<xN

dx̄

∣∣∣∣∣∣∣∣∣

φ′
n1

(xj ) φ′
n2

(xj ) ...

φn1 (xj ) φn2 (xj ) ...
... ...

...
φn1 (xN ) ... φnN

(xN )

∣∣∣∣∣∣∣∣∣

2

, (27)

where the factor of (N − 1)! is from the permutation of the
ordering x2 < x3 · · · < xN . The above derivation of Eq. (27)
simply generalizes the previous case of N = 3. We have ex-
panded the determinants by Taylor expansion for x ≈ xj ≈ x ′,
and used Eq. (19) for the Fourier transform. We have also
rearranged the rows of the above determinant. Absorbing
the factor of (N − 1)! to form all space integrals in x̄, we
have

ρ(p) =
p→∞

1

(N − 1)!

2[1 + w2N/wN ]

2πp4

∑
j=2,3,...,N

∫ ∞

−∞
dx̄

×

∣∣∣∣∣∣∣∣∣

φ′
n1

(xj ) φ′
n2

(xj ) ...

φn1 (xj ) φn2 (xj ) ...
... ...

...
φn1 (xN ) ... φnN

(xN )

∣∣∣∣∣∣∣∣∣

2

. (28)

From the orthogonality of the eigenfunctions φn, finally we
can reduce the above as

ρ(p) =
p→∞

2
[
1 + w2N

wN

]
2πp4

∑
(ni ,nj )

∫ ∞

−∞
dx

∣∣∣∣φ
′
ni

(x) φ′
nj

(x)

φni
(x) φnj

(x)

∣∣∣∣
2

,

(29)

where (ni,nj ) denotes any possible pairs of N eigenfunctions,
and the factor (N − 1)! cancels out by (N − 1) summations
of xj within each there are (N − 2)! copies of the minors. In
the below we show specifically the results for finite number of
atoms up to N = 6.

For N = 4, we have 10 terms of integral regions. From
Eq. (29), we have

ρ(k̄)

xho

=
k̄→∞

2×24/19

2πk̄4

18.604

π
= 2.38

k̄4
. (30)
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For N = 5 and 6, we have respectively

ρ(k̄)

xho

=
k̄→∞

2×64/51

2πk̄4

33.57

π
= 4.27

k̄4
, (31)

ρ(k̄)

xho

=
k̄→∞

2×180/141

2πk̄4

53.93

π
= 6.98

k̄4
. (32)

The above factors of 24/19, 64/51, and 180/141 for N=4–6
respectively are equal to 1 + w2N/wN . Equations (30)–(32)
are exactly the forms that follow Eq. (29). The factors
18.604/π , 33.57/π , and 53.93/π are the sums over (ni,nj )
in Eq. (29) where we obtain the integrals of the determinants
numerically.

V. NUMERICAL RESULTS AND DISCUSSIONS

The momentum distribution of a 1D spinor Bose gas has
been studied in some selected spin configurations [16], which
shows Friedel-like oscillations similar to the noninteracting
fermions or broadened momentum distributions depending on
the symmetry of the spin functions. Here we consider the
spin-incoherent regime using Eq. (9), and demonstrate the
momentum distribution of a 1D spin-1 Bose gas in TG limit.
We use the Monte Carlo (MC) integration method to derive
ρ(x,x ′), which is implemented in Linux system with message
processing interface. To have a sense of the computation time,
for N = 5 with MC simulations of M = 1×107 sets of random
numbers, it requires about two days with 250 parallel CPU
cores.

In Fig. 1, the momentum distribution is demonstrated up to
N = 6. As the number of particles increases, its momentum
distribution broadens almost uniformly in the peaks and the
widths. This hugely contrasts with noninteracting fermions or
spinless bosons, which have Friedel oscillations or narrower
peaks at p = 0, respectively. The uniformly broadened and
structureless distribution is due to the spin function overlaps
in the spin-incoherent regime that averages out the oscillatory
features. The MC simulations in Fig. 1 are M = 1×104,
1×105, 1×106, 1.8×108, and 3.5×108 for N = 2–6. In
contrast, the results of spinless bosons (or equivalently
fully spin polarized) are shown in Fig. 2, where we have
a sharp momentum distribution as N increases, while the
widths of the distributions stay almost the same. Therefore,
the spin-incoherent Bose gas has a broadened momentum

−4 −2 0 2 4
0

0.5

1

1.5

px
ho

ρ(
p

)/
x h

o

N=2
N=3
N=4
N=5
N=6

FIG. 1. Momentum distributions of a spin-incoherent 1D spin-1
TG gas up to N = 6 in the sector of Sz = 0. Uniformly broadened
distributions as N grows are demonstrated, which are due to the spin
function overlaps.
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FIG. 2. Momentum distributions of a 1D spinless TG gas up to
N = 5. The momentum distributions become sharper as N increases.

distribution relative to the spinless case. Figure 3 shows a
direct comparison of spin-1 and spinless cases for N = 3 and
5. At finite temperature, the momentum distribution would
also be broadened. However, we shall see below that these two
situations can be easily distinguished.

In Figs. 4 and 5, we show the large momentum asymp-
totics in logarithmic scales and compare with our analytic
calculations in Sec. IV. The asymptotics for the spinless case
can be obtained from Eq. (29) by replacing (1 + w2N/wN )
by 2. The N = 2 case can also be evaluated exactly [45]. Our
numerical results match well with the exact ones for pxho � 4.
Moreover, we see that although the momentum distributions
by MC integration are approaching their asymptotic values
for increasing p, the differences between them remain rather
large (around a factor of 3) for pxho ≈ 4. For even larger
momentum p � 6, the differences become larger because of
the inaccuracy of MC integration. For larger N , one may expect
that the asymptotics would take even larger p to reach [14]. Our
numerical results become inaccurate for large p for larger N ’s.
However, we can still make use of the asymptotics to improve
our evaluation of the total kinetic energy of the system, as
discussed below. For the spinless case, we also show the results
from the asymptotic formula ≈ 0.1297 × N3/2/k̄4 proposed
by Olshanii and Dunjko [14]. We see that in Fig. 5, for N = 5,
this value is much below the asymptotic that we obtain from
(the modified) Eq. (29).

At finite temperature, we show in Fig. 6 that the momentum
distributions are broadened as the temperature increases. The
spinless case always has higher peaks than the spin-1 bosons

−4 −2 0 2 4
0

0.5

1

1.5

2

2.5

3

px
ho

ρ(
p

)/
x h

o

N=3
N=5
N=3
N=5

FIG. 3. Comparison of the momentum distributions of spin-
incoherent 1D spin-1 (solid) and 1D spinless (dash) TG gases for
N = 3 and 5.
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1 2 3 4 5 6
0.001

0.01

0.1

1

px
ho

ρ(
p

)/
x h

o

FIG. 4. Asymptotics of large momentum distributions in Fig. 1.
Large momentum asymptotics are plotted in logarithmic scales and
compared with analytic calculations (dash) in a 1D spin-1 TG
gas. (a) The analytically derived asymptotics are 0.34/p4, 0.98/p4,
2.38/p4, 4.27/p4, and 6.98/p4 respectively for N = 2–6. The result
of N = 2 (dash-•) obtained by conventional numerical integration
almost overlaps with the one by Monte Carlo integration, which
asymptotically approaches the analytic curve in large p limit as
expected. The line symbols and colors follow Fig. 1, and a horizontal
line of 10−2 is used to guide the eye for approximately the accuracy
for the Monte Carlo results.

at the same temperature. The case of N = 3 is numerically
averaged over all orbitals by e−βEs [β ≡ 1/(kBT )] at the cutoff
of Es = 6�ω where it shows no significant changes when
including more orbitals. We also compare the spin-1 bosons at
zero temperature with the spinless case at T = 0.65�ω/kB

where they almost overlap at the peaks while differing in
the tails of the momentum distributions as shown in the
inset. The spin-incoherent regime in spin-1 bosons can be
distinguished from the spinless ones from the measurements
of the momentum distributions and the system energies as
well.

The total energy (〈Es〉) of the system is the sum of the
potential (〈V 〉) and kinetic (〈K〉) contributions. For our 1D
bosonic system in the TG limit, the density distribution is

1 2 3 4 5 6
0.001

0.01

0.1

1

px
ho

ρ(
p

)/
x h

o

FIG. 5. Asymptotics of large momentum distributions in Fig. 2.
Large momentum asymptotics are plotted in logarithmic scales and
compared with analytic calculations (dash) in a 1D spinless TG
gas. The analytically derived asymptotics are 0.51/p4, 1.715/p4,
3.77/p4, and 6.8/p4 respectively for N = 2–5, and we also compare
with Olshanii’s calculation [14] of large momentum result 1.45/p4

(dash-dot) for N = 5. The result of N = 2 (dash-•) obtained by
conventional numerical integration again overlaps with the one
by Monte Carlo integration, which asymptotically approaches the
analytic curve in large p limit as expected. Similarly the line symbols
and colors follow Fig. 2, and a horizontal line of 10−2 is also plotted
for approximately the accuracy for the Monte Carlo results.

−4 −3 −2 −1 0 1 2 3 4
0
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0.4
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10

−4

10
−3

10
−2N=2,T=0, spin−1

k
B

T=ω, spinless

k
B

T=ω, spin−1

k
B

T=2ω, spinless

k
B

T=2ω, spin−1

k
B

T=0.65ω, spinles

N=3,k
B

T=ω, spin−1

FIG. 6. Momentum distribution comparisons of 1D spin-1 and
spinless TG gas at finite temperature. The widths of the distributions
broaden as the temperature increases for both the spin-1 and spinless
case. To differentiate the momentum distributions of both, a fitting
case of spinless bosons at T = 0.65�ω/kB (×) overlaps with spin-1
case at small p, while they differ in the large momentum limit (inset).

identical with a Fermi gas. At zero temperature, we then have
〈V 〉 = N2

�ω/4. The kinetic energy can be obtained easily
by considering the action of the Hamiltonian on the wave
function at a point where all xj ’s are unequal. We see easily
that 〈K〉 = N2

�ω/4. The above is in accordance with the
Virial theorem [46,47], 〈K〉 = 〈V 〉 = 〈Es〉/2. Accordingly,
both the momentum distributions in Figs. 1 and 2 have the same
value of

∫
dp p2ρ(p). The sharper momentum distribution

for the spinless case implies that ρ(p) must be larger at
larger p than the spin incoherent case, as can be seen in
Fig. 4. Correspondingly, while the momentum distribution of
the spinless case broadens with increasing temperature, this
broadened distribution is distinct from the broadening due to
spin averaging as the total kinetic energy must be higher at
finite temperature.

We have also evaluated numerically the potential and
kinetic energies by Monte Carlo integration. The potential
energy is numerically derived by evaluating

∫
dx x2ρ(x),

which is always below the relative error 1.5% to the exact
value of 〈V 〉. For 〈K〉 ∝ ∫

dp p2ρ(p), it is more demanding
of the accuracy in numerical calculations. We then attach the
tails of our momentum distributions by the analytically derived
asymptotics starting at around pxho ≈ 4.5, which improves the
relative error of 〈K〉 significantly to below 9% for example in
the case of spin-1 bosons. In Monte Carlo integration of our
1D spin-1 and spinless bosons, the integral boundaries are
set to x = ±4xho with 41×41 meshes in ρ(x,x ′). The results
are convergent within M = 1×104, 1×105, 1×106, 5×107,
and 3.5×108 for N = 2–6, and note that the symmetry of
ρ(x,x ′) = ρ(x ′,x) can be used to double the M , thus reducing
the computation time required for convergence.

VI. CONCLUSION

In conclusion, we have investigated the properties of the
spin-incoherent Luttinger liquid in a spin-1 Bose gas. The
density matrix of such universal class can be calculated by
the spin function overlaps from the highly degenerate spin
configurations. We show that the spin function overlap is
directly related to the traces of the conjugacy classes in the
permutation groups. We also analytically derive the universal
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TABLE I. Traces of the conjugacy classes of S2.

�����������Class
Traces

Trχ1 (G) Trχ2 (G)

E 1 2
P12 1 0

dependence of 1/p4 in large p limit, and compare with the
momentum distributions of a spin-1 Bose gas in TG limit using
Monte Carlo integrations up to six bosons. The spin-incoherent
Bose gas has a broadened momentum distribution which
we can confirm and distinguish from the spinless case by
measuring its momentum distribution and the total kinetic
energy. The ultracold spinor Bose gas thus sets up a promising
paradigm to realize this universal while different class of
Luttinger liquid.
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APPENDIX: TRACES OF THE CONJUGACY
CLASSES OF SN

Here we list the traces of the conjugacy classes relevant to
the spin function overlaps. We note here that the number of
conjugacy classes of SN is 2, 3, 5, 7, and 11 for N = 2–6.

For N = 2, we have {|χ1〉P } = |00〉 and {|χ2〉P } = |+−〉,
|−+〉, respectively. In Table I we have the traces in these bases
for E and P12 corresponding to two conjugacy classes, and G

represents the group operators in relevant conjugacy classes in
the calculations of spin function overlaps.

Here Trχi
(G) ≡ ∑

χi
〈χi |G|χi〉. We note that Trχ in the

main paper has a relation that Trχ = ∑
i Trχi

. Since {|χ2〉P } has
two possible number of states, for example of G = E, we have
Trχ (E) = Trχ1 (E) + Trχ2 (E) = 3.

For N = 3, we have {|χ1,2〉P } = |000〉 and {|+ − 0〉P },
respectively, where {|+ − 0〉P } represent six different states
by permutations. In Table II we give the traces for the
three conjugacy classes, E, P12, and P123, in these sets of
states.

For N = 4, we have {|χ1,2,3〉P } = |0000〉, {|+ − 00〉P }, and
{|+ − +−〉P }, respectively. In Table III we give the traces for
the four conjugacy classes, E, P12, P123, and P1234, in these
sets. The other conjugacy class involves P12P34 which we do
not need in calculating the spin function overlap of Eq. (10)
due to the intended order of particle positions we choose in
the first place. However, it helps confirm our calculated traces

TABLE II. Traces of the conjugacy classes of S3.

�����������Class
Traces

Trχ1 (G) Trχ2 (G)

E 1 6
P12 1 0
P123 1 0

TABLE III. Traces of the conjugacy classes of S4.

���������Class
Traces

Trχ1 (G) Trχ2 (G) Trχ3 (G)

E 1 12 6
P12 1 2 2
P123 1 0 0
P1234 1 0 0

from the identity relation, which we will demonstrate in the
end of this Appendix.

For N = 5, we have {|χ1,2,3〉P } = |00000〉, {|+ − 000〉P },
and {|+ − + − 0〉P }, respectively. In Table IV we give the
traces for the five conjugacy classes, E, P12, P123, P1234, and
P12345, in these sets.

For N = 6, we have {|χ1,2,3,4〉P } = |000000〉, {|+ −
0000〉P }, {|+ − + − 00〉P }, and {|+ − + − +−〉P }, respec-
tively. In Table V we give the traces for the six conjugacy
classes, E, P12, P123, P1234, P12345, and P123456, in these
sets.

Finally, we demonstrate the details for the construction
of conjugacy classes and the calculation of the traces in
the class. Take four bosons in the symmetric group S4, for
example; the classification of the conjugacy classes of SN can
be derived by a cycle decomposition that counts the number of
unordered integer partitions. We then decompose four bosons
as

4,3 + 1,2 + 2,2 + 1 + 1,1 + 1 + 1 + 1,

→ P1234,P123,P12P34,P12,E, (A1)

which accounts for five conjugacy classes. The size of each
conjugacy class can be calculated as N !/[�j (j )aj aj !] [38],
where we have aj ’s integer of j in the unordered integer
partitions. This calculation of the size can be also seen as N

permutations with aj times of j ’s cycling and aj permutations
of the groups P12...j , Pj+1...2j , etc. Take {|χ3〉P } of N = 4 as
an example where we have three classes, E, P12, and P12P34,
that have nonvanishing traces. Their traces in this basis are 6,
2, and 2 respectively with the sizes 1, 6, and 3. Therefore, the
identity relation reads

∑
G

Trχ (G) = 6×1 + 2×6 + 2×3 = 4!, (A2)

where the traces are verified.
For the final demonstration of the identity relations in the

symmetric group S5, the classification of the conjugacy classes

TABLE IV. Traces of some conjugacy classes of S5.

���������Class
Traces

Trχ1 (G) Trχ2 (G) Trχ3 (G)

E 1 20 30
P12 1 6 6
P123 1 2 0
P1234 1 0 0
P12345 1 0 0
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TABLE V. Traces of some conjugacy classes of S6.

�������Class
Traces

Trχ1 (G) Trχ2 (G) Trχ3 (G) Trχ4 (G)
E 1 30 90 20
P12 1 12 18 8
P123 1 6 0 2
P1234 1 2 0 0
P12345 1 0 0 0
P123456 1 0 0 0

becomes

5,4 + 1,3 + 2,3 + 1 + 1,2 + 2 + 1,2 + 1 + 1 + 1,

1 + 1 + 1 + 1 + 1,

→ P12345,P1234,P123P45,P123,P12P34,P12,E, (A3)

which accounts for seven conjugacy classes. We can verify the
traces of each conjugacy class by the identity relation. Take
{|χ2〉P } of N = 5 as an example,

∑
G

Trχ (G) = 20×1 + 6×10 + 2×20 = 5!, (A4)

where the sizes of P12 and P123 are 10 and 20, respectively.
Lastly, for {|χ3〉P }, we have

∑
G

Trχ (G) = 30 × 1 + 6 × 10 + 2 × 15 = 5!, (A5)

where the size of 15 belongs to P12P34 and its trace is 2. The
above examples show the identity relation between the total
traces of the conjugacy classes and the order of SN .
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below Eq. (15), we have

ρ(x < x ′)/2 = φ0(x)φ0(x ′) + φ1(x)φ1(x)

− 4

3

∫ x′

x

dx2[φ0(x)φ1(x2) − φ1(x)φ0(x2)]

× [φ0(x ′)φ1(x2) − φ1(x ′)φ0(x2)],

where the factor (−4/3) is due to the averaged spin function
overlap (1/3) for a spin-1 Bose gas. The above also applies to
the cases of a noninteracting fermions or spinless bosons when
we let (−4/3 → 0) or (−4/3 → −2), respectively.
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