
PHYSICAL REVIEW A 94, 033422 (2016)

Continuous spectra of atomic hydrogen in a strong magnetic field
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We describe a theoretical method, developed in the coupled-channel formalism, to study photoionization of
H atoms in a strong magnetic field of a size that is typical for magnetic white dwarfs. The coupled Schrödinger
equations are solved numerically using the renormalized Numerov method proposed by Johnson [B. R. Johnson,
J. Chem. Phys. 67, 4086 (1977); 69, 4678 (1978)]. The distinct advantage of this method is the fact that no
overflow problems are encountered in the classically forbidden region, and hence the method exhibits excellent
numerical stability. Photoionization cross sections are presented for magnetized H atoms in the ground and 2p

excited states. The calculated results are compared with those obtained by other theories. The present method
is particularly useful for explaining the complex features of continuous spectra in a strong magnetic field and
hence provides an efficient tool for modeling photoionization spectra observed in the atmosphere of magnetic
white dwarfs.
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I. INTRODUCTION

Investigations of spectra of magnetized atoms are of special
importance to understand the evolution of normal stars to
magnetic white dwarf stars (magnetic fields of 102–105 T)
and neutron stars (107–109 T). The initial magnetic fields in
stars are believed to increase with their evolution [1]. The
components of the atmospheres of white dwarf and neutron
stars, as well as the size of their magnetic field strengths, may
be determined by comparing computed and observed spectrum
lines. During the past few decades, many astronomically
observed spectra of magnetized atoms have been reported,
and a great deal of effort has been devoted to developing
theories and numerical algorithms for describing the properties
of magnetized atoms. Although steady progress has been
made, theories and computations are still far from meeting
the requirements for simulating the astronomically observed
spectra [2,3]. Today, it is regarded a considerable success to
be able to accurately model the discrete spectra of magnetized
H atoms [4]. High-accuracy spectra for any transition between
bound states of H atoms in an arbitrary magnetic field, obtained
with several theoretical methods, have been reported in the
literature [4–7].

Going beyond atomic hydrogen, even the simulation of the
discrete spectra of multielectron atoms in a strong magnetized
field is highly challenging due to the theoretical difficulties
associated with an efficient and accurate treatment of electron
correlations in a strong magnetic field. Most calculations of
atomic structures of magnetized multielectron atoms published
to date have been performed within the framework of Hartree-
Fock theory (see, for example, Refs. [8–11] and references
therein). Electron correlations in a magnetic field have been
effectively taken into account only for the light helium atom
[12,13].

Compared to discrete spectra of atoms in a magnetic
field of white-dwarf strength, their continuous spectra are
only sparsely reported in the literature. A few theoretical
and computational attempts have been implemented. Alijah
et al. [14] constructed a coupled-channel theory to describe
photoionization of strongly magnetized H atoms. They ex-

panded the total wave function in terms of Landau states.
The resulting coupled Schrödinger equations were solved
with a stable numerical integration procedure based on the
logarithmic derivative method, proposed by Johnson [15],
with some modifications. The photoionization spectrum was
presented for the initial ground state in a magnetic field of
2000 T, and a Rydberg series of resonance states was identified.

By combining a complex-rotation technique with a
Sturmian-type basis expansion, Delande et al. [16] developed
a theoretical method to yield continuous spectra of strongly
magnetized H atoms, and they applied it to calculations
of photoionization from the ground state in a magnetic
field of 23 500 T. Today, this spectrum has become the
benchmark for testing the reliability of later theories. Soon
afterwards, Wang and Greene [17] presented their R-matrix
calculations of ground-state H atoms in a strong magnetic
field, based on a method developed within the framework of
multichannel quantum-defect theory (MQDT). However, they
did not reproduce the photoionization spectrum of Alijah et al.
[14] at 2000 T, but rather found a pronounced difference.

Based on the complex-rotation method combined with
a mixed Slater-Landau basis expansion, Zhao and Stancil
[18] also developed a computational scheme to describe
the photoionization of atomic hydrogen in strong magnetic
fields. Since the basis expansion of this scheme explicitly
incorporates the physics of the strong-field regime, it can
cover a wide field region more efficiently than previously
reported methods. The scheme was successfully applied to
photoionization calculations for 12 initial states with magnetic
field strengths from 2350 T to 235 000 T [19]. Furthermore,
Meinhardt and co-workers [20] presented their coupled-
channel results for the continuous spectra of magnetized H
atoms. They found them to be in excellent agreement with
those from both the complex-rotation method [16] and the
R-matrix method [17], but once again not with those of Alijah
et al. [14].

More recently, Mota-Furtado and O’Mahony [21] proposed
an R-matrix propagation technique with adiabatic bases to
calculate the photoionization spectra of atoms in magnetic
fields. In their scheme, the configuration space is divided
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into many subregions. In each subregion, the R matrix is
propagated, and then continuity of the wave functions and
their derivatives is enforced at the boundaries between all
subregions. While this propagation technique was successful,
it needs to be generalized to deal with higher magnetic
field strengths that significantly distort the field-free wave
functions of the atoms in the inner region [21]. Since
any complex-rotation method fails to represent the overall
perspective of Rydberg structures due to the limitation of a
finite basis, our previous method described in Ref. [18] cannot
be utilized to elucidate the remaining differences between the
photoionization spectra obtained by a variety of theoretical
methods. It is hence necessary to develop a different method
to effectively describe photoionization near the ionization
threshold. The work reported in this paper is devoted to this
goal.

This manuscript is organized as follows. Section II de-
scribes the coupled-channel formalism for photoionization of
atomic hydrogen in a strong magnetic field typical of magnetic
white dwarf stars. The numerical method to solve the coupled
Schrödinger equations for obtaining the wave functions of the
final continuum states is outlined, and solutions for the initial
bound states in a magnetic field are recapitulated. In Sec. III,
we apply our method to study photoionization of magnetized
H atoms. Photoionization spectra for the ground state and
some excited states are presented and comparison is made
with predictions from other theories. Section IV summarizes
our principal results and contains some concluding remarks.
Unless specified otherwise, atomic units (a.u.) are used
throughout this paper.

II. THEORETICAL METHOD

This section is devoted to the description of the coupled-
channel formalism for magnetized hydrogen atoms, the outline
of the numerical method to solve the coupled Schrödinger
equations for the continuum states, and the sketch of the
solutions for the bound states in a magnetic field.

A. Coupled-channel formalism

In this section, we formulate the standing-wave solutions
as well as the incoming- and outgoing-wave solutions of
the coupled Schrödinger equations. Within the framework of
nonrelativistic theory, the Hamiltonian of H atoms in a uniform
magnetic field B along the z axis is given by

Ĥ = −1

2
∇2 − 1√

ρ2 + z2
+ γ

2
(�̂z + 2ŝz) + 1

8
γ 2ρ2. (1)

Here γ = B/B0 is the magnetic field strength in atomic units,
i.e., in multiples of B0 � 2.35 × 105 T. Using cylindrical
coordinates (ρ,z), �̂z and ŝz are the operators for the z

components of the orbital and spin angular momenta, re-
spectively. The third term (linear in γ ) is the paramagnetic
potential, while the fourth term (quadratic in γ ) is the
diamagnetic potential. Depending on the relative magnitudes
of the Coulomb and diamagnetic potentials, the symmetry
of the system changes. The system more resembles spherical
symmetry if the Coulomb potential dominates the diamagnetic
potential, whereas it is closer to cylindrical symmetry in the

opposite case. For strong magnetic fields, therefore, the system
is most conveniently described in cylindrical coordinates.

We expand the total wave function in terms of Landau states
as

�(ρ,φ,z) =
∑
n′

Rn′ (ρ,φ)Fn′(z)

=
∑
n′

Rn′(ρ)
eimφ

√
2π

Fn′(z), (2)

whereRn(ρ,φ) is the normalized wave function for the Landau
state with n � 0, given in Ref. [22] as

Rn(ρ,φ) = γ (|m|+1)/2

m!

√
(|m| + n)!

2|m|n!
e−ρ2γ /4ρ|m|

× 1F 1(−n,|m| + 1,ρ2γ /2)
eimφ

√
2π

, (3)

with 1F 1 denoting the confluent hypergeometric function and
m the magnetic quantum number. Substituting Eq. (2) into the
Schrödinger equation with the Hamiltonian (1) and projecting
onto the basis Rn, we obtain the following set of coupled
differential equations:[

−1

2

d2

dz2
− εn

]
Fn +

∑
n′

Vnn′Fn′ = 0, (4)

where εn = E − En. Here E denotes the energy of the free
electron and En = γ [n + (|m| + m + 1)/2] the energy of the
Landau state. For simplicity of notation, we omit the energy
E in the argument of Fn, as well any function below that is
constructed from these continuum solutions.

The matrix element Vnn′ (z) is given in Ref. [23] as

Vnn′ (z) = −
∫ ∞

0
Rn′ (ρ)

1√
ρ2 + z2

Rn(ρ)ρ dρ

= − 2√
π

min(n′,n)∑
j=0

[n′!n!(n′ + |m|)!(n + |m|)!]1/2

(n′ − j )!(n − j )!(|m| + j )!j !

× I(n′ + n − 2j,2j + |m|; z), (5)

with

I(α,β; z) =
√

γ

2

∫ π/2

0
(sin x)2β(cos x)2α exp

[
−γ z2cos2 x

2 sin2 x

]
dx.

(6)

As seen from Eq. (4), the presence of the Coulomb potential
couples the Landau channels. Since each linearly independent
solution should be a linear combination of the channel wave
functions, it is essential to introduce an additional subscript n

to identify these solutions. Thus we adopt the indices n′ and n

in Fn′n to identify the channel and the solution, respectively.
Equation (2) is then rewritten as

�n(ρ,φ,z) =
∑
n′

Rn′(ρ,φ)Fn′n(z). (7)

It was shown in Refs. [14,21] that the free electron feels
a Coulomb potential in the asymptotic region at large z.
Therefore, Fn′n(z) should asymptotically have the form

Fn′n = snδn′n + cnKn′n, (8)
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where sn and cn, respectively, are regular and irregular
Coulomb functions as defined by Seaton [24], and Kn′n is
the matrix element of the reactance matrix K.

In compact matrix notation, Eq. (8) reads

F = s + cK. (9)

If all channels are open, F represents a matrix of the physical
standing-wave solutions of the coupled Schrödinger equations.
However, F contains exponentially growing terms in any
closed channel, and these correspond to unphysical solutions.

In order to formulate physically meaningful solutions,
therefore, the matrices F and K are each partitioned into
open-open, open-closed, closed-open, and closed-closed sub-
matrices, as suggested by Seaton [24]. Generically denoting
these matrices by A for simplification, we have

A =
(Aoo Aoc

Aco Acc

)
. (10)

Using these submatrices, physical standing-wave solutions F

are constructed by imposing physical boundary conditions,(
Foo

Fco

)
=

(Foo Foc

Fco Fcc

)(
Loo

Lco

)
, (11)

where the subscripts o and c denote the open and closed
channels, Loo is the identity matrix, and

Lco = −[tan(πν) + Kcc]−1Kco, (12)

with ν denoting the effective quantum number. The physical
reactance matrix Koo (open channels only) is given by

Koo = Koo + KocLco. (13)

Finally, the incoming- and outgoing-wave solutions of the
coupled Schrödinger equations are expressed as

F± = ∓iF (I ∓ K)−1. (14)

Note that the parity of F (z) under the transformation
z → −z (denoted by πz = ±1 for even or odd parity) should
be conserved. Hence, πz and the other good quantum number
m (the projection of the orbital angular momentum on the
z axis) together are adopted to identify the hydrogen atomic
states mπz in a magnetic field.

B. Numerical integration of the coupled equations

In matrix notation, the coupled-channel Schrödinger equa-
tions (4) are written as[

I
d2

dz2
+ Q(z)

]
F(z) = 0, (15)

where I denotes the identity matrix, and the matrix elements
of Q are given by

Qnn′(z) = 2 εnδnn′ − 2 Vnn′ (z). (16)

In the present work, we adopt Johnson’s algorithm [25] to
numerically integrate the coupled differential equations (15).
This algorithm propagates the ratio of the wave function at a
given mesh point and the adjacent point, rather than the wave
function itself. Since it efficiently avoids potential overflow
problems of the wave function in the classically forbidden

region, it is apparently superior to numerical methods that
propagate the wave function itself. In matrix notation, the ratio
is defined by

Rn = (I − Tn+1)Fn+1F−1
n (I − Tn)−1, (17)

where Tn = − h2

12Qn, with h being the step size of the
integration. Setting

Un = (I − Tn)−1(2I + 10 Tn), (18)

the ratio matrix is propagated from the origin in terms of the
two-term recurrence relation

Rn = Un − R−1
n−1. (19)

The wave function at the origin is zero for states of odd
parity, while its derivative is zero at this point for states with
even parity. These properties of the wave functions and their
derivatives are exploited to obtain the ratio R0 at the origin. It
is determined to be

R0 =
{∞ for odd parity,

(I + 5T0)(I − T0)−1 for even parity.
(20)

In practical calculations, R0 for the odd-parity states is
taken as a large number, e.g., 1030. Our numerical integration
begins from the origin and stops in the asymptotic region,
where we match the numerical ratio matrix R to the ratio
matrix calculated with the asymptotic forms given in Eq. (9)
to extract the reaction matrix K. We then apply the procedure
described in the preceding section to calculate the standing-
wave solutions and then construct incoming- or outgoing-wave
solutions of the coupled Schrödinger equations with physical
boundary conditions. Finally, the wave functions obtained
in this way are utilized to calculate dipole matrix elements,
photoionization cross sections, and oscillator strengths.

C. Solutions for bound states in a magnetic field

In magnetic fields of white-dwarf strength, it is inevitable
to consider the influence of such strong fields on the initial
atomic states in photoionization. In order to do this, we
apply our finite-basis-set method with B splines developed
previously [26] to calculate the low-lying atomic states in
a strong magnetic field. Using a representation in spherical
coordinates, the total wave functions are expanded in terms of
a B-spline basis in the radial direction and spherical harmonics
for the angular part. Due to the nonorthogonality inherent in a
B-spline basis, the solution of the resulting matrix equations is
a generalized eigenvalue problem involving the decomposition
of the overlap matrices. Once the decomposition has been
done, standard routines for matrix diagonalization are used
to generate the eigenvalues and eigenvectors numerically.
Finally, the eigenvectors obtained in this way are mapped to
the cylindrical coordinate system and subsequently applied to
the calculations of the dipole matrix elements.

D. Differential oscillator strength and cross sections
for photoionization

The numerically obtained wave functions for the initial
bound and final continuum states, denoted by �i and �−

n ,
respectively, are then utilized to calculate differential (with
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respect to energy and state) oscillator strengths and cross sec-
tions for photoionization. The differential oscillator strength
for magnetized H atoms in the photoionization process from
an initial state with energy Ei to a final state with energy E is
given by

dfn,i

dE
= 2(E − Ei)|〈�−

n |D|�i〉|2, (21)

where D is the dipole operator and �−
n is defined by

�−
n (ρ,φ,z) =

∑
n′

Rn′(ρ,φ)F−
n′n(z). (22)

The total differential (with respect to energy) oscillator
strength is an astronomically observable quantity. It is obtained
by summing the differential oscillator strengths for photoion-
ization into the individual state according to

dfi

dE
=

∑
n

dfn,i

dE
. (23)

The photoionization cross section is related to the total
differential oscillator strength by

σi(E) = 2π2α
dfi

dE
, (24)

where α ≈ 1/137 is the fine-structure constant.
Looking at the literature in this field, we note that different

authors preferred to present their results either as cross sections
or as oscillator strengths, in both cases usually with the
independent variable chosen as the ejected electron energy
E. The latter is related to the photon energy ω through
E = ω + Ei . To simplify the visual comparison with previous
works (numerical data are not available, and the spectra are
too complex for digitizing the graphs), we generally adapt our
presentation below and follow previous authors.

III. RESULTS AND DISCUSSION

The coupled-channel formalism described above was ap-
plied to study the photoionization of H atoms in strong
magnetic fields. First of all, we tested our method by
comparing the results with the accepted benchmark spectrum
for photoionization from the ground state. We assumed that H
atoms in the ground state were placed in a uniform magnetic
field of strength B = 0.1 a.u. (23 500 T). They were then
irradiated by a beam of linearly polarized light with the
polarization direction parallel to the magnetic field and ionized
into the final continuum state with mπz = 0−.

We checked the convergence of the predicted photoioniza-
tion cross sections by varying the number of coupled channels
as well as zmax, where the ratio matrix R is matched to the
asymptotic form to extract the reactance matrices. We found
that seven coupled channels and zmax = 30 a.u. were sufficient
to obtain the converged spectrum shown in Fig. 1.

While we do not have access to their actual data, comparison
with the figures shows excellent visual agreement between
our results and those from other theories [16–18,21]. On
the other hand, the complex-rotation calculations reported in
Refs. [16,18] fail to represent the overall Rydberg structures
near the ionization thresholds. The detailed information about
the complex structures associated with high-lying Rydberg
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FIG. 1. Photoionization spectrum for magnetized hydrogen
atoms in a magnetic field of B = 0.1 a.u. (23 500 T). It is assumed
that the atoms in the ground state are irradiated by a beam of linearly
polarized light and, therefore, ionized to the final state mπz = 0−.
The energy region covers a range from the first up to the third Landau
threshold. The convergence of the Rydberg series towards the second
and third Landau thresholds with energies of 0.15 and 0.25 a.u.,
respectively, is clearly visible.

states is lost in the complex-rotation calculations. This is not
surprising in light of the fact that the rotated continua are
represented by a set of discrete eigenvalues in the complex-
rotation method, and the imaginary parts of the discrete
eigenvalues in the close vicinity of a Landau threshold are very
small. It is simply impossible to describe an infinite Rydberg
series with a finite basis.

To further test our method, it is essential to compare our
results with other photoionization spectra. Figure 2 illustrates
our spectra at B = 0.05 a.u. (11 750 T) for photoionization
from the ground state to the final continuum states mπz = 1+
and 0−. The two spectra display regular patterns of broad
resonances embedded in narrow dense resonances associated
with high-lying Rydberg states. Such a phenomenon was
also noticed and discussed by Wang and Greene [17]. The
resonances associated with different Rydberg series interfere
with each other and hence generate very complex patterns in
the spectra. The two spectra due to photoionization from the
ground state into the final continuum states with mπz = 1+ and
0− are found to be in excellent agreement with those presented
in Ref. [17].

We now move on to the photoionization spectrum of H
atoms in a magnetic field with strength B = 0.0085 a.u.
(2000 T). Here the spectrum of interest concerns photoioniza-
tion of magnetized ground-state hydrogen atoms irradiated by
a beam of circularly polarized light. The final continuum state
is thus mπz = 1+. The ejected-electron energy range shown
in the insert of Fig. 3 covers the narrow region from 0.0280
to 0.02977 a.u., i.e., between the second and third Landau
thresholds.

Looking at the respective papers [14,17,20], one will notice
a pronounced discrepancy between the spectra calculated by
three groups. Our calculations contain two open and 12 closed
channels. Choosing zmax = 80 a.u. yields convergence of the
predicted photoionization cross sections. Alijah et al. [14],
on the other hand, also included two open but only eight
closed channels, and they set zmax = 50 a.u. While the authors
claimed to have obtained a convergent spectrum, we could
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FIG. 2. Photoionization spectra of magnetized hydrogen atoms
from the ground state to the final states mπz = 1+ (a) and mπz = 0−

(b) at B = 0.05 a.u. (11 750 T). The ejected-electron energies cover
the range from the first to the sixth Landau threshold. The dashed
vertical lines indicate all the Landau thresholds in this regime.

0.0280 0.0284 0.0288 0.0292 0.0296
0.0

0.5

1.0

1.5

2.0

Ejected electron energy (a.u.)

O
sc

ill
at

or
 s

tr
en

gt
h 

(a
.u

.)

0.0292 0.0295 0.0298
0.0

1.0

2.0

FIG. 3. Photoionization spectrum for magnetized hydrogen
atoms from the ground state into the final continuum state mπz = 1+

at B = 0.0085 a.u. (2000 T). The insert corresponds to the energy
regime used by Wang and Greene [17] in the bottom part of their Fig. 6
to compare with the results of Alijah et al. [14]. For consistency, we
use the same energy scale in all our figures, and hence we subtracted
the electron paramagnetic spin energy of 0.004 255 3 a.u. from the
scale used by Alijah et al. [14].

not reproduce the results of Alijah et al. [14] with the same
parameters.

The R-matrix method based on MQDT developed by
Wang and Greene [17] did not reproduce the spectrum of
Alijah et al. [14] either, and neither did the direct numerical
integration method of Meinhardt and co-workers [20]. The
latter authors suspected that nondecaying closed-channel
solutions in Ref. [14] caused inaccuracies in their calculations
of the transition matrix elements. Unfortunately, Meinhardt
et al. [20] only discussed the spectrum, but no illustration was
provided.

While we obtain at least qualitative agreement with Wang
and Greene [17] (see their Fig. 6), we do not agree with them
in all details of their predictions. The latter authors carefully
tested the sensitivity of their calculated spectrum to variations
of the numerical parameters, for example, by increasing the
cylindrical R-matrix box size z0 and by changing the number
of coupled-channel numbers. They found that the individual
resonance positions, widths, and shapes change substantially
with variations in those two parameters. Their predicted
spectrum reaches convergence with z0 = 80 a.u. and a total
of 12 channels, which are essentially our parameters. Looking
at their Fig. 6 in detail, it appears as if Wang and Greene [17]
did not resolve the detailed resonance structure in this very
narrow energy regime. They found the oscillator strength to
oscillate around 0.7, which is in reasonable agreement with
our predictions if the latter were convoluted with a Gaussian
of realistic width.

Having found some quantitative disagreement with the
results of Wang and Greene [17], it seemed important to
investigate some more cases, particularly at lower field
strengths. Figure 4 exhibits our results for B = 0.01 a.u. (2350
T) for the initial 1s0 state and the final continuum states
mπz = 1+ and mπz = 0−. Since the energy-resolved spectra
are very complex, we follow Wang and Greene [17] and also
present our results after convolution with Gaussians of width
0.0025 and 0.0009 a.u., respectively. The figure corresponds to
about half the energy range presented in Figs. 2 and 4 of Wang
and Greene [17]. Looking at those figures and comparing with
our results, one will notice significant differences in the details.
While the convoluted results from their and our calculations
are still in qualitative agreement, they do not agree as well with
each other as even the unconvoluted results did at the higher
field strengths. Without knowing the numerical details of their
method, we refrain from speculating about potential reasons
for the remaining disagreement. We note, however, that Wang
and Greene [17] themselves expressed some caution regarding
the reliability of their results at relatively low field strengths.

Having gained sufficient confidence in our approach, we
now present additional results. The photoionization cross
sections from the 2p0 excited state to the final state with
mπz = 1− at B = 0.1 a.u. (23 500 T) are shown in Fig. 5
as a function of the ejected-electron energy. The figure
exhibits rich resonance structures converging to the second
and third Landau thresholds. Such resonance structures have
been observed in photoionization from the ground state to the
final continuum mπz = 0−, as shown in Fig. 1.

These resonances are associated with quasibound Coulom-
bic states embedded in the Landau continua. From the
spectrum, one can obtain insight into interactions between the
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FIG. 4. Photoionization spectrum for magnetized hydrogen
atoms from the ground state into the final continuum states mπz = 1+

(a) and mπz = 0− (b) at B = 0.01 a.u. (2350 T). Similar to Wang and
Greene [17], the thicker (red) lines show our results after convolution
with a Gaussian of width 0.0025 a.u. for mπz = 1+ and 0.0009 a.u. for
mπz = 0−, respectively. The dashed vertical lines indicate the Landau
thresholds in this regime.

Rydberg states and the Landau continuum states. For example,
the first resonance above the first Landau threshold displays
a pronounced asymmetric line shape, thus indicating a strong
resonance-background interference. Similarly asymmetric line

FIG. 5. Cross section for photoionization from the 2p0 excited
state to the final mπz = 1− state for B = 0.1 a.u. (23 500 T). The
insert displays the detailed resonance structure over a narrow ejected-
electron energy region from 0.34 to 0.35 a.u., just below the third
Landau threshold.

FIG. 6. Same as Fig. 5, except for photoionization from the
ground state to the final continuum state mπz = 0− at B = 0.5 a.u.
(117 500 T) (a) and B = 1.0 a.u. (235 000 T) (b). The insert in each
panel displays the detailed resonance structure below the third Landau
threshold.

shapes are also seen above the second Landau threshold in
this figure. The detailed resonance structure over a narrow
ejected-electron energy region from 0.34 to 0.35 a.u., just
below the third Landau threshold, is exhibited in the insert
of the graph.

Figure 6 illustrates photoionization spectra from the ground
state to the final continuum state with mπz = 0− at B =
0.5 a.u. (117 500 T) and B = 1.0 a.u. (235 000 T). The
two spectra were calculated earlier with the complex-rotation
method [18], but then only the first few dominant resonances
were found to be stable against small variations in the
numerical details. Contrary to the spectra from the complex-
rotation method, for both B = 0.5 a.u. and B = 1.0 a.u.,
our coupled-channel formalism produces many resonances
converging to the second and third Landau thresholds. The
regularity of these resonance sequences is also visible in those
two spectra.

IV. SUMMARY AND CONCLUSIONS

We have developed a theoretical method, based on the
coupled-channel formalism, to study photoionization of H
atoms in a strong magnetic field of strength typical for
magnetic white dwarf stars. After expanding the total wave
function in Landau states, the resulting coupled Schrödinger
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equations are solved numerically using the renormalized
Numerov method proposed by Johnson [25]. This algorithm
propagates the ratio of the wave function at two adjacent points,
rather than the wave function itself. Consequently, it effectively
avoids overflow problems in the classically forbidden region.
The present theoretical method was applied to calculations of
continuous spectra due to photoionization from the ground
state and excited states at selected magnetic fields.

Our calculations reproduced the benchmark spectra for
photoionization from the ground state to the final continuum
state with mπz = 0− at B = 0.1 a.u. (23 500 T). The spectra for
a field strength of B = 0.05 a.u. (11 750 T) for the transition
from the ground state to the final states with mπz = 1+ and 0−
are also in excellent agreement with those calculated using the
R-matrix method based on MQDT, as developed by Wang
and Greene [17]. However, we found some differences in
the photoionization spectrum at B = 0.0085 a.u. (2000 T)
from the ground state to the final continuum state with mπz =

1+, when calculated with our method or by other theories.
Specifically, like Wang and Greene [17] and Meinhardt and
co-workers [20], we disagree already in the qualitative energy
dependence of the spectrum with the predictions of Alijah
et al. [14]. Regarding the predictions of Wang and Greene
[17], the qualitative agreement is satisfactory, although some
quantitative differences were found at the lower field strengths
of 2000 and 2350 T.
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