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Probing the energy flow in Bessel light beams using atomic photoionization
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The growing interest in twisted light beams also requires a better understanding of their complex internal
structure. Particular attention is currently being given to the energy circulation in these beams as usually described
by the Poynting vector field. In the present study we propose to use the photoionization of alkali-metal atoms as a
probe process to measure (and visualize) the energy flow in twisted light fields. Such measurements are possible
since the angular distribution of photoelectrons, emitted from a small atomic target, appears sensitive to and is
determined by the local direction of the Poynting vector. To illustrate the feasibility of the proposed method,
detailed calculations were performed for the ionization of sodium atoms by nondiffractive Bessel beams.
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I. INTRODUCTION

Light beams with a helical phase front, that also carry
orbital angular momentum (OAM), have been in the focus
of research since the seminal work by Allen et al. in 1992 [1].
Today, such twisted beams are routinely produced across the
electromagnetic spectrum, with photon energies ranging from
meV to hundreds of eV, and with the OAM projection on
their propagation direction as high as �ml � 1000� [2–4].
The twisted light provides a unique tool for manipulating
microparticles [5–7], for multiplexing in optical communi-
cations [8,9], or for studying the angular momentum transfer
to liquid crystals, Bose-Einstein condensates, or even the bulk
of semiconductors [10–12]. During recent years, moreover,
intense studies have been performed to explore how to produce
high-energy OAM beams by means of high-order-harmonic
generation [13] or Compton backscattering [14], and how the
OAM of incident light may influence the selection rules in
atomic transitions [15–18].

In contrast to the “usual” plane-wave radiation, twisted
light typically has a much more complex internal structure. In
particular, its intensity distribution in the beam cross section is
not uniform but usually appears as concentric (and alternating)
dark and bright rings. Also the direction of the energy flow
varies significantly within the wave front, and this indicates
that the propagation of twisted light is accompanied by internal
energy redistribution [19]. Recent studies have revealed, for
instance, the possibility of the “negative propagation” of
twisted light, i.e., of the backward energy flow in some regions
of a beam [20].

The investigation of the energy flow patterns in OAM light
beams attracts currently much attention in both experiment
and theory [19–21]. It provides valuable information about
the “internal structure” of twisted radiation and, in particular,
about its spatial and polarization degrees of freedom. The
knowledge and control of energy flows is essential, moreover,
for various applications such as optical micromanipulation or
the development of novel quantum information protocols.

Despite the growing interest in the circulation of the
energy in OAM beams, experimental observation of the flow
patterns still remains a rather difficult problem. Most of the

methods to measure the energy flow are based on either
(i) the mechanical action of the optical field upon the probe
microparticles or (ii) observations of the intensity profile of
the free-space propagating beams [19]. In the present work
we propose an alternative and very promising approach that
enables one to “visualize” the energy flow fields of twisted
beams. This approach employs the fundamental process of the
photoionization of alkali-metal atoms by incident (twisted) ra-
diation. Based on detailed theoretical analysis of nondiffractive
Bessel light, we show below that the angular distribution of
photoelectrons emitted from (small) atomic targets is uniquely
defined by the direction of the local energy flow. The proposed
measurement is likely to become feasible in the near future and
may provide valuable information about the energy circulation
in twisted light beams.

To describe the ionization of atomic targets by OAM
beams, we first recall in the next section the definition of
the Bessel waves in terms of their vector potential. By making
use of this potential, we derive then the Poynting vector of
the twisted (Bessel) radiation and discuss its complex spatial
structure. The angular distribution of photoelectrons emitted
from a single atom is derived in Sec. III A. A more realistic
scenario of a mesoscopic atomic target is discussed later in
Sec. III B. Finally, conclusions and a brief outlook of the
present work are given in Sec. IV. The relativistic Gaussian
units with � = c = 1 are used throughout the paper unless
stated otherwise.

II. PROPERTIES OF BESSEL LIGHT BEAMS

A. Vector potential

To perform a theoretical analysis of atomic photoionization,
one needs to consider also the quantum state of the incident
light. In the present study we assume that incoming radiation
is prepared in the pure Bessel state |� m kz λ〉. The Bessel
light beam is characterized by a well-defined projection m

of the total angular momentum (TAM) upon its propagation
direction, chosen as the z axis. Moreover, the longitudinal
momentum kz and the absolute value of the transverse
momentum � = k⊥ ≡ |k⊥| of the twisted wave (tw) are also
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kept fixed. The vector potential of such a nonparaxial Bessel
beam,

A(tw)
�mkzλ

(r) =
∫

ekλ eik·ra�m(k⊥)
k⊥ dk⊥ dφk

(2π )2
, (1)

can be written as a coherent superposition of
plane waves ekλ exp(ik · r) with wave vectors
k = (k sin θk cos φk, k sin θk sin φk, k cos θk), energy ω = |k|,
and polarization vectors

ekλ =
+1∑

ms=−1

cms
e−imsφkηms

, (2)

with the coefficients

c±1 = 1

2
(1 ± λ cos θk), c0 = λ√

2
sin θk. (3)

Here, θk = arctan(�/kz) is often called the opening angle and
η 0,±1 are spherical unit vectors [22]. In Eq. (1) each plane
wave is weighted with the amplitude

a�m(k⊥) = (−i)m eimφk

√
2π

k⊥
δ(k⊥ − �), (4)

with φk being the azimuthal angle of the wave vector k. We as-
sume, moreover, that the plane-wave components are prepared
in a pure circularly polarized state that is characterized by
the helicity λ = ±1. In classical electrodynamics, the helicity
λ = +1 (λ = −1) corresponds to electromagnetic radiation
with right (left) rotation of the electric field vector.

The integral representation (1) of the vector potential
A(tw)

�mkzλ
(r) is very convenient for the calculation of proba-

bilities of atomic photoexcitation and photoionization (see,
e.g., Refs. [15–17,23]). Moreover, it can be easily used to
evaluate the observable properties of twisted light. In the next
section, for example, we briefly discuss the components of
the electromagnetic field as well as the Poynting vector of the
Bessel beam.

B. Field components and energy flow

We are ready now to discuss the observable properties of the
nonparaxial Bessel light and start from the electromagnetic-
field components. For further analysis it is convenient to
represent these components in cylindrical coordinates with
the z axis chosen along the beam propagation direction. By
using Eqs. (1) and performing some algebra we can derive, for
example, the magnetic field B(tw) = ∇ × A(tw) as

B(tw) = ezBz(r) + er⊥Br⊥(r) + eϕr
Bϕr

(r), (5)

where

Bz(r) = ω

√
�

2π
eikzz eimϕr Jm(k⊥r⊥) sin θk,

Br⊥ (r) = iω λ

√
�

2π
eikzz eimϕr

×(Jm+1(k⊥r⊥) c−1 + Jm−1(k⊥r⊥) c1),

Bϕr
(r) = ωλ

√
�

2π
eikzz eimϕr

×(Jm+1(k⊥r⊥) c−1 − Jm−1(k⊥r⊥) c1) (6)

(see Refs. [15,23] for further details). In these expressions,
r = (r⊥,ϕr ,z), Jm are the Bessel functions of the first kind,
and the coefficients cms

are given by Eq. (3). The electric field
components can be easily obtained from these expressions by
noting that E(tw) = iλB(tw) (see, e.g., Ref. [15]). As usual, the
physical fields are the real parts of E(tw) and B(tw).

The electric and magnetic fields from above can be
used to derive finally the time-averaged Poynting vector
P (tw) = Re(E(tw) × B(tw)∗)/2. This vector characterizes both
the intensity profile and the energy flow of the light, and reads
in cylindrical coordinates as

P (tw)(r) = er⊥Pr⊥ (r) + eϕr
Pϕr

(r) + ezPz(r), (7)

where

Pr⊥ (r) = 0,

Pϕr
(r) = �ω2

4π
sin θk Jm(k⊥r⊥)

×(Jm+1(k⊥r⊥) c−1 + Jm−1(k⊥r⊥) c+1),

Pz(r) = �ω2λ

4π

(
J 2

m−1(k⊥r⊥) c2
+1 − J 2

m+1(k⊥r⊥) c2
−1

)
. (8)

As seen from these expressions, the radial component of the
Poynting vector vanishes identically, Pr⊥ = 0, thus making
explicit that the Bessel beams are nondiffractive as known
from the literature. Moreover, the other two components, Pϕr

and Pz, depend only on the transverse coordinate r⊥ but not
on the angle ϕr . This implies that spatial properties of the
(time-averaged) Bessel light possess azimuthal symmetry. For
example, the intensity profile of the beam in the plane normal
to its propagation direction (z axis) is given by

I⊥(r⊥) = |Pz(r)| (9)

and exhibits the concentric ring pattern with a central zero-
intensity spot; see Fig. 1. Similarly, also the (local) direction
of the energy flow in the Bessel beam does not depend on the
azimuthal angle ϕr but is characterized by the polar tilt angle:

θP (r⊥) = arctan
Pϕr

Pz

, (10)

which is defined with respect to the propagation z axis. As
seen from the bottom panel of Fig. 1, the angle θP strongly
depends on the distance r⊥ from the center of the Bessel
beam. While this angle is rather small near the “rings” of high
intensity and with a predominant energy flow in the forward
(z) direction, it becomes large, |θP | � 60◦, in the low-intensity
regions, and where the energy flow is almost perpendicular to
the beam propagation axis. Such a complex structure of twisted
Bessel beams obviously affects also all atomic photoexcitation
and photoionization processes. Therefore, an analysis of the
properties of excited atoms or ionized electrons may reveal
information about the spatial structure of Bessel radiation.

III. ANGULAR DISTRIBUTIONS OF PHOTOELECTRONS

A. Photoionization of a single atom

We start the analysis of atomic ionization by Bessel light
from the simplest possible target that consists of just a single
atom. Both the probability of ionization of this atom and the

033420-2



PROBING THE ENERGY FLOW IN BESSEL LIGHT BEAMS . . . PHYSICAL REVIEW A 94, 033420 (2016)

0 1000 2000 3000 4000 5000
Radial distance r⊥ (nm)

0.0

0.2

0.4

0.6

0.8

1.0

L
oc

al
in

te
n
si

ty
P

z

−100

−50

0

50

100

L
oc

al
en

er
gy

flo
w

p
ol

ar
an

gl
e

θ P
(d

eg
)

FIG. 1. Top: The intensity profile of the Bessel beam in the xy

plane, perpendicular to its propagation direction (z axis), exhibits
concentric right structure. The direction of the Poynting vector (7)
with respect to the z axis is characterized by the tilt angle θP which
depends solely on the transverse distance r⊥ from the center of the
beam. Bottom: The transverse intensity I⊥(r⊥) (blue solid line) and
the tilt angle θP (r⊥) of the Poynting vector (red dashed line) of twisted
light with energy �ω = 5 eV, helicity λ = +1 (i.e., right circular
polarization), TAM projection m = 4, and opening angle θk = 10◦.

properties of emitted photoelectrons can be expressed in terms
of the (square of the) matrix element:

M
(tw)
f i (b) =

∫
ψ∗

f (r) A(tw)
�mkzλ

(r + b) p̂ ψi(r) d r. (11)

In this expression, written in the nonrelativistic framework,
ψi(r) and ψf (r) are Schrödinger wave functions of the initial-
bound and final-continuum electrons, respectively, while p̂
is the electron linear momentum operator, and the vector
potential of incident light is given by Eq. (1). We note that the
light vector potential A(tw)

�mkzλ
(r + b) needs to be taken at the

position b of the target atom within the Bessel wave front.
This so-called impact parameter (vector) b is always normal
to the propagation direction of the beam, and b = 0 refers to
an atom at the beam center with zero intensity.

The matrix element (11) can be readily employed to study
photoionization of low-Z hydrogenlike ions and—within the
single-active-electron approach—of light alkali-metal atoms.
If the photon energy is not too high, the photoionization is
well described by the leading electric-dipole (E1) transition.
In this approximation, we can further simplify the M

(tw)
f i by

taking eik·r ≈ 1 in the integral representation (1) of the vector
potential:

M
(tw,E1)
f i (b) = A(tw)

�mkzλ
(b) · dif . (12)

This E1 approach also implies that the matrix element for the
atomic ionization by twisted Bessel light factorizes into the
product of (i) the light vector potential at the location of a
target atom and (ii) the standard dipole matrix element

dif =
∫

ψ∗
f (r) p̂ ψi(r) d r, (13)

whose evaluation is well established (see, e.g., Ref. [24]).
Using the dipole matrix element (12) we are ready now to

derive the angular distribution W
single
b of an electron ionized by

the twisted Bessel light. In practice, the explicit form of this
distribution depends on the setup under which the electron
emission is observed. In the present work, we propose to
“detect” the photoelectron in a plane, normal to the impact
parameter vector b and which, as seen from Eqs. (8) and Fig. 1,
coincides with the plane of the Poynting vector of incident
light. We therefore expect the electron emission pattern to
be sensitive to the (direction of) P (tw)(r) at r = b. Indeed,
inserting the vector potential (1) into Eq. (12), requesting
b · p = 0, and performing some simple algebra, we find

W
single
b (θ ) = N sin2 (θ − θP (b)), (14)

where N is a normalization constant and where both the tilt
angle of the Poynting vector θP (b) and the electron emission
angle θ are defined with respect to the beam propagation (z)
axis. Equation (14) clearly shows that the angular distribution
of a photoelectron, if ionized at a distance r⊥ = b from the
center of the Bessel beam, depends upon the direction of the
Poynting vector P (tw)(b) at the location of the target. That
is, electron emission is forbidden in parallel or antiparallel to
P (tw), while W

single
b is maximal for θ = θP (b) + 90◦.

The dependence of W
single
b (θ ) upon the impact parameter b

and the tilt θP (b) of the Poynting vector is displayed in Fig. 2.
This figure shows that near the center of the wave front the
Poynting vector is parallel to the beam propagation direction (z
axis) and, hence, the photoelectron is emitted predominantly
under the angle θ = 90◦. In contrast, if the P (tw) is (almost)
normal to the beam propagation, as in the first low-intensity
ring, the electron angular distribution is maximal at forward
and backward angles with respect to the z axis. This sensitivity
of the electron emission pattern to the direction of the energy
flow is well known for the atomic ionization by plane-wave
light [24,25]. In that case and in the dipole approximation, the
electron emission pattern also has a characteristic sin2 θ shape,
where θ is defined with respect to the wave vector of incident
light. In contrast to the twisted beams, however, the direction of
the plane-wave Poynting vector P (pl) is constant over the entire
wave front and, hence, the photoelectron angular distribution
does not change with the position of a target atom.

B. Photoionization of a mesoscopic atomic target

Equation (14) shows that the angular distribution of the
emitted electrons can be utilized for studying the energy
flow, i.e., the Poynting vector field in Bessel light beams.
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FIG. 2. The intensity profile and the Poynting vector (field) of
the Bessel light beam. In addition, we here also display the angular
distributions of an electron (gray line) ionized at three different
distances from the center of the beam. Obviously, these angular
distributions, if measured in the plane normal to the impact parameter
vector b, are uniquely defined by the direction of the Poynting vector
P (tw)(b). Calculations have been performed for sodium target atoms
and for the same set of beam parameters as used in Fig. 1.

This expression for W
single
b (θ ) has been derived for just a

single target atom, placed at some well-defined position.
In fact, the experiments with single alkali-metal-like atoms
(and ions), localized with nanometer precision and interacting
with tailored light beams, are feasible today [26,27]. These
experiments make use of a laser-cooled atom trapped in a
microstructured Paul trap. However, the successful realization
of the proposed photoionization measurement with a single-
atom target can be hampered by statistical issues. Below,
therefore, we discuss a more realistic scenario in which the
twisted Bessel light interacts with a mesoscopic atomic target.
The atomic density of this target in the plane of the incident
wave front (xy plane; see Fig. 1) is assumed to follow the
Gaussian distribution

f (b) = 1

2πσ 2
e
− (b−b0)2

2σ2 . (15)

In this formula, σ is the width of the target and the vector b0

points from the vortex line of the twisted beam to the center
of the target (cloud). Making use of Eq. (15) and the transition
matrix element (11), we can compute the angular distribution
of electrons ionized from a mesoscopic target:

W
target
σ, b0

(θ ) = C

∫
f (b)

∣∣M (tw)
f i (b)

∣∣2 d2b
(2π )2

. (16)

This expression is general and accounts for the size and
position of a target as well as for the non-electric-dipole effects
in the electron-photon interaction. Its further evaluation is
rather lengthy and is not shown in detail for the sake of brevity.

We can directly apply Eq. (16) to investigate (i) how the
size of the atomic target σ affects the angular distribution
of the photoelectrons and (ii) to which extent measurements
of W

target
σ, b0

(θ ) provide information about the Poynting vector of
light. In Fig. 3, for example, we present numerical results
as obtained from Eq. (16) and with the help of the RATIP

computer code [28] for two clouds of sodium atoms with size
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FIG. 3. Top: The angular distribution of electrons photoionized
from sodium atomic targets located at distances (a) 1000 nm, (b)
2650 nm, and (c) 4250 nm from the beam center. Bottom: The angle
θmin at which the photoelectron angular distribution is minimal. The
calculations for both panels have been performed for the single-atom
target (green solid line) as well as for mesoscopic targets of size σ =
20 nm (red dotted line) and 100 nm (blue dashed line). Parameters of
the incident Bessel beam are the same as used in Fig. 1.

σ = 20 nm (red dotted line) and 100 nm (blue dashed line).
These results are compared with the prediction of Eq. (14) for
a single Na atom, located at the center of the cloud b = b0

(red solid line). Again, calculations have been performed for
the incident twisted light with energy 5 eV, opening angle
θk = 10◦, right circular polarization of the plane-wave com-
ponents (λ = +1), and the projection of the total angular
momentum m = 4. Moreover, the target atoms were assumed
to be in the 1s2 2s2 2p6 3s ground state before the ionization.

As seen from the top panel of Fig. 3, the angular distribution
of electrons coincides for relatively small targets with σ �
20 nm almost completely with that of a single atom, W single

b (θ ).
However, significant deviations from the sin2 (θ − θP (b))
shape can occur as the size of the target increases. For a target
of size σ = 100 nm and centered at position b = 4250 nm,
for example, the W

target
σ, b0

(θ ) tilts by almost 15◦ with respect

to W
single
b (θ ). Moreover, in contrast to Eq. (14), the minimum

value of the angular distribution is not zero, although it is
still rather small. This behavior follows from the fact that
the electron can be ionized at some distant spots of the (large)
target at which the directions of the Poynting vector may differ
significantly. In this case one observes the superposition of the
angular distributions (14) for rather different angles θP (b) and
with different weights N .

It also follows from Eq. (14) that the minimum (zero) of
the photoelectron emission pattern W

single
b (θ ) always marks

the direction of the Poynting vector P tw(b) at a particular
impact parameter r⊥ = b within the wave front. Therefore,
since W

target
σ, b0

(θ ) ≈ W
single
b (θ ) for sufficiently small targets, the

angular distribution of electrons emitted from such clouds can
also be employed to image the energy flow in the Bessel beams.
In the bottom panel of Fig. 3, for example, we display the angle
θ

target
min under which the electron emission W

target
σ, b (θ ) is minimal

and compare it with that of the Poynting vector θP (solid green
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line). Similar as before, calculations have been performed for
different positions b0 and sizes σ of the atomic sodium target.
As seen from the figure, the θ

target
min is virtually identical to

the tilt angle of the Poynting vector for the targets with width
σ � 20 nm. However, the minimum-emission angle θ

target
min may

significantly deviate from the θP if the target size σ exceeds
100 nm. Indeed, the discrepancy becomes most pronounced
for impact parameters b0 for which the intensity of the Bessel
radiation is low and energy flows (almost) normally to the
beam propagation direction; see Figs. 1 and 3.

IV. SUMMARY AND OUTLOOK

In summary, we have investigated the ionization of an
alkali-metal atom by twisted Bessel light. Special attention was
paid to the angular distribution of an emitted photoelectron.
We found that the electron emission pattern depends on the
position of a target atom within the light wave front and

that it is uniquely defined by the direction of the Poynting
vector of the incident radiation at that position. The sensitivity
of the photoelectron angular distribution to the (direction
of the) Poynting vector persists also for the ionization of
mesoscopic atomic ensembles whose size, however, should not
exceed ∼50 nm. The production of hundred-nanometer-size
clouds of alkali-metal atoms has been recently demonstrated
experimentally with the help of evaporative cooling [29].
Further development of cooling and trapping techniques will
likely make the proposed photoionization experiment feasible
in the near future.

For the sake of brevity we restricted the present study to
the particular case of incident Bessel light. Of course, the
photoionization of alkali-metal atoms can be employed for
probing the energy flow in other classes of (twisted) light
beams, such as, for example, Laguerre-Gaussian modes. The
systematic and comprehensive analysis of these photoion-
ization measurements is currently under way and will be
presented elsewhere.
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