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Cancellation of the N-composite-boson correlation energy under a BCS-like potential:
A dimensionality-dependent effect
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We use Richardson-Gaudin exact equations to derive the ground-state energy of N composite bosons (cobosons)
interacting via a potential which acts between fermion pairs having zero center-of-mass momentum, that is,
a potential similar to the reduced BCS potential used in conventional superconductivity. Through a density
expansion, we show that while for two-dimensional (2D) systems, the N -coboson correlation energy undergoes a
surprising cancellation which leaves the interaction part with an N (N − 1) dependence only, such a cancellation
does not exist in 1D, 3D, or 4D systems (which correspond to 2D parabolic traps) nor when the cobosons interact
via a similar short-range potential but between pairs having an arbitrary center-of-mass momentum. This shows
that the previously found cancellation which exists for the Cooper-pair correlation energy results not only from
the very peculiar form of the reduced BCS potential, but also from a quite mysterious dimensionality effect, the
density of states for Cooper pairs feeling the BCS potential being essentially constant, as for 2D systems.
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I. INTRODUCTION

The success of the BCS theory [1,2] for conventional
superconductors remains fascinating today for its impressive
agreement with experimental data, in spite of its extreme
simplicity. One of its insightful ingredients is that the attraction
between free electron pairs with opposite spins and opposite
momenta is enough to capture the physics of superconductivity
induced by Cooper pairing. This attractive potential reads

VBCS = −V
∑
pp′

wpwp′B
†
0pB0p′ , (1)

where B
†
0p ≡ a

†
pb

†
−p creates a zero-momentum pair made of an

up-spin (p) electron and a down-spin (−p) electron. V denotes
the potential amplitude, taken as positive and constant, and wp
designates the energy layer close to the normal electron Fermi
energy εF , in which a phonon-mediated attraction acts; wp is
taken equal to unity within this energy layer and zero outside
it.

This so-called reduced BCS potential leads to one of the
very few exactly solvable many-body problems. Richardson
[3–6] and Gaudin [7] have independently shown that the
ground-state energy of N pairs reads as EN = ∑N

i=1 Ri , where
the Ri’s are solutions of the N coupled equations

1

V
=

∑
p

wp

εp − Ri

+
N∑

j=1

′ 2

Ri − Rj

. (2)

In this set of equations, the prime (′) excludes the j = i

term of the j sum. εp = p2/2μe denotes the free-pair kinetic
energy, with μe = me/2 being the electron pair reduced mass.
Being valid for any N , these Richardson-Gaudin equations
are quite appropriate for studying superconducting grains and
nanostructures [8–15] outside the thermodynamical limit.

*yiachang@gate.sinica.edu.tw

For conventional superconductors, the normal electron
Fermi energy εF is much larger than the potential extension
width �, on the order of a phonon energy; so, the density of
states in this layer is essentially constant. It has been shown
[16] that for a pair density of states ρ taken as constant, the
ground-state energy of N Cooper pairs in the thermodynamic
limit takes a surprisingly simple form, within under-extensive
terms, as

EN = NE1 + N (N − 1)

2ρ

1 + σ

1 − σ
, (3)

where σ = e−1/ρV . (The factor of 2 difference from the
standard exponent comes from the fact that ρ here is the pair
density of states.) E1 is the single-pair energy found by Cooper
[17], which can be obtained from Eq. (2) taken for N = 1, that
is, without the second sum.

The exact cancellation in the N Cooper pair energy of all
extensive terms beyond N (N − 1) suggests that under a BCS-
like potential, a composite boson (coboson) only interacts
with one among N cobosons, as if it is completely ignorant
of the other surrounding cobosons. The physics behind this
astonishing many-body effect remains obscure up to now.

Two reasons can lead to this strange result:
(i) The attractive potential given in Eq. (1) only acts between

zero-momentum pairs. To prove this first point, we must
show that for a short-range potential between pairs having an
arbitrary center-of-mass momentum, the N -coboson ground-
state energy has extensive terms beyond N (N − 1).

(ii) The density of states in the energy extension where
the potential acts is constant. To prove this second point
and ascribe the mysterious cancellation to the system dimen-
sionality, we must show that exact cancellation of extensive
terms beyond N (N − 1) does not occur for space dimensions
other than two; i.e., it occurs only in two-dimensional (2D)
systems.

The present work is devoted to these two possible reasons.
The understanding of the underlying physics that leads to the
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N -pair energy given in Eq. (3) will shed light on the merits
and limitations of the VBCS potential when used in the study
of realistic systems.

To this end, we slightly modify the potential given in Eq. (1)
in order for the present work to be applicable for cold-atom
(CA) systems [18,19] which today are of major interest:
the operators (a†,b†) now denote the creation operators of
the two fermion species at hand with reduced mass μ−1 =
m−1

a + m−1
b ; the range of εp = p2/2μ energy in which the

attractive potential acts, that is, wp = 1, now extends from 0
to �. Moreover, to study the first reason, we generalize the
VBCS potential given in Eq. (1) into a short-range separable
potential VCA, which acts between fermion pairs having an
arbitrary center-of-mass momentum K

VCA = −V
∑
Kpp′

wpwp′B
†
KpBKp′, (4)

where B
†
Kp ≡ a

†
p+γaKb

†
−p+γbK with γa = 1 − γb = ma/(ma +

mb). In translationally invariant systems as here considered,
the center-of-mass momentum K is conserved during particle
scattering.

The most striking result of this work is that for N cobosons
interacting via a BCS-like potential between zero-momentum
pairs, the density expansion of their ground-state energy
depends on space dimension D in a very compact form for
D = (1,2,3), namely,

EN−NE1

E1
=−(N−1)(4−D){ν1(Nλ2) + (2−D)D[ν2(Nλ2)2

+ ν3(24−14D−D2)(Nλ2)3+ · · · ]}. (5)

The νn’s are numerical factors while λ2 scales as (aB/L)D

with L being the sample size and aB the single-pair Bohr
radius; so Nλ2 scales as the pair density n. This result confirms
that in 2D systems, the interaction part of the N -coboson
energy is in N (N − 1) only. It further suggests that the whole
interaction part should cancel for D = 4, which would be
even stranger because the system energy would then reduce to
that of N noninteracting cobosons. Four-dimensional systems
actually are of physical interest because their densities of states
have the same energy dependence as 2D parabolic traps [18].
We will show in Sec. VI that this seemingly pathological
dimensionality-induced cancellation of all interaction terms
does not occur in 4D.

II. SINGLE-PAIR BINDING ENERGY

Let us first consider the ground-state binding energy of a
single pair in D = (1,2,3,4) dimension. Since a single pair
in its ground state has zero center-of-mass momentum, the
ground-state energy obtained for VCA coincides with that for
VBCS.

By turning the discrete sum into an integral, with a density
of states in D dimension written as ρ(ε/�)(D−2)/2, where ρ is
the density of states at the upper potential cutoff �, the single-
pair binding energy follows from the (−E1) > 0 solution of
Eq. (2) taken for N = 1, namely,

1

V
=

∑
p

wp

εp − E1
�

∫ �

0
ρdε

(ε/�)(D−2)/2

ε − E1
. (6)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

−E
1
/Ω

ρ 
V

D=4

D=3

D=2

D=1

FIG. 1. ρV as a function of (−E1)/� for D = (1,2,3,4), accord-
ing to Eqs. (7), (9), (11), and (13), respectively.

(i) For D = 1, the energy dependence of the density of
states is in 1/

√
ε; so

1

ρV
=

∫ �

0

dε√
ε/�

1

ε − E
(1)
1

= 2

√
�

−E
(1)
1

arctan

√
�

−E
(1)
1

.

(7)

This equation has a (−E
(1)
1 ) > 0 solution for whatever V (see

Fig. 1). In the regime of physical interest, that is, |E(1)
1 | � �,

it reads

E
(1)
1 � −�(ρV π )2. (8)

(ii) For D = 2, the density of states is constant; so

1

ρV
=

∫ �

0
dε

1

ε − E
(2)
1

= ln

(
�

−E
(2)
1

+ 1

)
, (9)

from which we analytically derive the single-pair energy as

E
(2)
1 = −�

σ

1 − σ
, (10)

with σ = e−1/ρV (see Fig. 1). This negative energy, which
exists even for V vanishingly small, corresponds to the binding
energy of a single pair obtained by Cooper [17]: indeed, the
effect of a large normal electron Fermi energy εF is to make
constant the density of states in the energy layer where the 3D
potential acts.

(iii) For D = 3, the energy dependence of the density of
states is in

√
ε; so

1

ρV
=

∫ �

0
dε

√
ε/�

ε − E
(3)
1

= 2 − 2

√
−E

(3)
1

�
arctan

√
�

−E
(3)
1

.

(11)
A solution (−E

(3)
1 ) > 0 exists for V larger than a threshold

value V
(3)

th = 1/2ρ (see Fig. 1). In the regime of physical
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interest, that is, |E(3)
1 | � �, this yields

E
(3)
1 � − 4

π2
�

(
1 − 1

2ρV

)2

. (12)

(iv) For D = 4, the density of states is linear in ε; so

1

ρV
=

∫ �

0
dε

ε/�

ε − E
(4)
1

= 1 − −E
(4)
1

�
ln

(
�

−E
(4)
1

+ 1

)
(13)

has a (−E
(4)
1 ) > 0 solution provided that V is larger than the

threshold value V
(4)

th = 1/ρ. The threshold for a single pair to
form a bound state increases with space dimension, as seen in
Fig. 1. In the physically relevant regime |E(4)

1 | � �, the above
equation yields

E
(4)
1 � �

1 − 1/ρV

ln(1 − 1/ρV ) − ln[− ln(1 − 1/ρV )]
. (14)

III. DENSITY EXPANSION PARAMETER

We are going to perform the density expansion of the energy
of N cobosons interacting via the VCA potential and the VBCS

potential. In this study, the natural dimensionless parameter
appears as

λ2 ≡ 2

ρ�

(
�

−E1

)D/2

. (15)

Since the density of states ρ scales as the sample volume LD ,
the product Nλ2 ∝ n can be used as a parameter to study
the small density expansion of the N -coboson energy. More
precisely, λ2 scales as (aB/L)D , where aB is the single-pair
Bohr radius defined through E1 ≡ −1/2μa2

B . To show it
explicitly, we first note that the density of states in D dimension
is defined through


D

(
L

2π

)D

pD−1dp = ρ
(εp

�

)D/2−1
dεp, (16)

where 
D = 2πD/2/�(D/2) is the solid angle in D dimen-
sion, with �(x) being the gamma function. As εp = p2/2μ,
this gives


D

(
L

2π

)D

= 2ρ�

(2μ�)D/2
. (17)

So for E1 written in terms of aB , Eq. (15) leads to

λ2 = 2�(D/2)

(
2
√

πaB

L

)D

. (18)

This shows that the Nλ2 expansion we are going to perform,
in fact, corresponds to an expansion in the usual dimensionless
parameter that controls many-body effects in the coboson
systems [20,21], namely, η = N (aB/L)D .

Another dimensionless coefficient that appears for co-
bosons interacting via the VBCS potential is

αm = λ2

2

∑
p

wp
(−E1)m+1

(εp − E1)m+1
=

∫ �
−E1

0
dx

xD/2−1

(x + 1)m+1
.

(19)
Since the integrand of the above equation decreases as
xD/2−2−m, we can safely extend the upper integral limit to
infinity for m � 1 and D = (1,2,3) in the physically relevant
regime |E1| � �. This gives

α1 = π

2
for D = (1,3), (20a)

α1 = 1 for D = 2. (20b)

Higher αm’s are related through

2mαm = (2m − D)αm−1, (21)

as obtained from Eq. (19) by an integration by part. So, for
m � 2,

αm = (2m − D) · · · (4 − D)

2m−1m!
α1. (22)

As a result, all αm’s are finite. They form a geometrical series
that depend on space dimension D = (1,2,3), but not on the
single-pair energy E1 nor on the potential cutoff �, provided
that |E1| � �.

IV. EFFECT OF ARBITRARY CENTER-OF-MASS
MOMENTUM

We tackle the first question by considering cobosons having
an arbitrary center-of-mass momentum K and interacting
through the short-range potential VCA given in Eq. (4).
We want to study whether, in D = (1,2,3) dimension, the
density expansion of the N -coboson energy has extensive
terms beyond N (N − 1). For this purpose, we consider the
Hamiltonian mean value in the N -coboson state, namely,

〈H 〉N = 〈v|BN
0 HB

†N
0 |v〉

〈v|BN
0 B

†N
0 |v〉

, (23)

where B
†
0 creates a ground-state coboson and |v〉 is the vacuum

state. 〈H 〉N corresponds to the Born value of the N -coboson
ground-state energy.

Using the coboson many-body formalism [20,21], we have
shown that 〈H 〉N is given, within the present notation, by [see
Eq. (86) in Ref. [22]]

〈H 〉N − NE1

E1

� −(N − 1)

[
α2

2α2
1

(Nλ2)+
(

α2α3

2α4
1

− α4

4α3
1

)
(Nλ2)2+ · · ·

]
,

(24)

which, for αn’s given in Eq. (22), reduces to

〈H 〉N − NE1

E1
� −(N − 1)(4 − D)

[
1

8α1
(Nλ2)

+ (6 − D)(8 − 3D)

768α2
1

(Nλ2)2 + · · ·
]
. (25)
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The above result gives evidence that for a short-range potential
which acts between fermion pairs having an arbitrary center-
of-mass momentum, the N -coboson ground-state energy in
the Born approximation has terms beyond N (N − 1) in D =
(1,2,3) dimension—but apparently not in 4D.

V. EFFECT OF SPACE DIMENSION

We now turn to the second question related to the effect of
space dimension on the ground-state energy of N cobosons.
To this end, we consider N pairs having zero center-of-mass
momentum and interacting via the VBCS potential given in
Eq. (1) for D = (1,2,3) dimension. Their energy follows from
solving the Richardson-Gaudin equations given in Eq. (2) for
a density of states not necessarily constant.

A. Resolution of Richardson-Gaudin equations

To solve these equations in an easy way, we rescale Ri as
E1(1 − ri) and expand 1/(εp − Ri) in powers of ri as

1

εp − Ri

=
∞∑

m=0

(−E1)m

(εp − E1)m+1
rm
i . (26)

The Richardson-Gaudin equations (2) then read, with the help
of Eq. (6),

0 =
∞∑

m=1

rm
i

∑
p

wp
(−E1)m+1

(εp − E1)m+1
+

N∑
j=1

′ 2

ri − rj

, (27)

which, using Eq. (19), we rewrite as

0 =
∞∑

m=1

αmrm
i + λ2

N∑
j=1

′ 1

ri − rj

. (28)

To solve the above equation, we expand ri as

ri = aiλ + biλ
2 + ciλ

3 + diλ
4 + eiλ

5 + fiλ
6 + · · · . (29)

This expansion has been previously [23] worked out up to λ4

to obtain the cubic term in the density expansion of the N -
Cooper-pair ground-state energy, that is, for a constant density
of states made possible by the existence of a large normal
electron Fermi energy. We here wish not only to consider
energy-dependent density of states in D dimension, but also
to go up to λ6 to obtain the quartic term in density, in order to
better control the effect of space dimension on the N -coboson
correlation energy.

To this end, we insert Eq. (29) into Eq. (28) and expand
1/(ri − rj ) in powers of λ. By matching the coefficients of the
λ and λ2 terms, we get

0 = α1ai +
∑

j

′ 1

ai − aj

, (30a)

0 = α1bi + α2a
2
i −

∑
j

′ bi − bj

(ai − aj )2
. (30b)

Similar but heavier relations obtained from higher-order
terms in λ are given in Appendix A.

The N -coboson ground-state energy

EN =
N∑

i=1

Ri = E1(N − RN ) (31)

follows from RN = ∑
i ri . It is possible to obtain its λ

expansion without having to determine the ri’s individually. To
do it, we first sum Eq. (28) over i. As the second sum reduces
to zero by symmetry, this yields

0 =
∞∑

m=1

αm

∑
i

rm
i , (32)

in which we replace the ri’s by their λ expansion.
(i) The λ term immediately gives∑

i

ai = 0, (33)

from which we conclude that RN has no term in λ.
(ii) The λ2 term of Eq. (32) gives

0 = α1

∑
i

bi + α2

∑
i

a2
i . (34)

To obtain
∑

i a
2
i , we multiply Eq. (30a) by ai and we sum over

i. This yields

0 = α1

∑
i

a2
i +

∑
i

∑
j

′ ai

ai − aj

. (35)

As the double sum is equal to (1/2)
∑

i

∑′
j (ai − aj )/(ai −

aj ), which readily gives N (N − 1)/2, we get

∑
i

a2
i = −N (N − 1)

1

2α1
. (36)

Equation (34) then gives the λ2 term of RN , with α2 obtained
from Eq. (22), as

∑
i

bi = N (N − 1)
α2

2α2
1

= N (N − 1)

8α1
(4 − D). (37)

(iii) Similar calculations for the λ3 and λ5 terms of Eq. (32),
shown in Appendix B, give∑

i

ci = 0 =
∑

i

ei , (38)

which supports the fact that RN has no odd term in λ. So RN ,
hence EN , has an analytical expansion in the coboson density,
which is rather reasonable.

(iv) The n3 term of RN follows from the λ4 term of ri , that
is, the sum of di’s. Using the αm’s given in Eq. (22), we find
their sum as (see Appendix B)

∑
i

di � N3

2α4
1

(
3α2α3 − 2

α3
2

α1
− α1α4

)

= N3

384α2
1

D(2 − D)(4 − D). (39)
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(v) In the same way, the n4 term of RN follows from the
λ6 term of ri , that is, the sum of fi’s. This sum is given (see
Appendix B) by

∑
i

fi � N4

8α4
1

(
32

α5
2

α4
1

− 92
α3

2α3

α3
1

+ 48
α2

2α4

α2
1

+45
α2α

2
3

α2
1

− 18
α3α4

α1
− 20

α2α5

α1
+ 5α6

)
, (40)

which also reads, with the help of Eq. (22), in a surprisingly
compact form as

∑
i

fi � N4

36864α3
1

D(2 − D)(4 − D)
(
24 − 14D − D2

)
.

(41)

B. N-coboson ground-state energy

Combining the above results, we find that in the thermo-
dynamic limit, the expansion in density, n ∝ Nλ2, of the
N -coboson ground-state energy for D = (1,2,3) dimension
appears as given in Eq. (6), with ν1 = 1/8α1, ν2 = 1/384α2

1 ,
and ν3 = 1/36864α3

1 where α1 and λ2 depend on space
dimension D according to Eqs. (20) and (15). This result
confirms that for D = 2, that is, for a constant density of states,
the interaction part of the energy for N cobosons interacting
via a BCS-like potential is in N (N − 1) only. By contrast, the
exact cancellation of extensive terms beyond N (N − 1) does
not occur for D = (1,3).

Moreover, from the above result, the whole interaction
part of the ground-state energy seems to cancel for D = 4,
suggesting an even stranger many-body effect in 4D. Since
the 4D density of states has the same energy dependence as
the one of 2D parabolic trap [18], 4D systems have physical
relevance. Actually, the previous calculations are not valid for
4D. On closer inspection, we found that the exact cancellation
of all interaction terms does not occur in 4D, that is, in a 2D
parabolic trap, as we will now show.

VI. 4D OR 2D PARABOLIC TRAP

Let us first calculate the αm’s given in Eq. (19) for 4D. To
get α1, we must keep the integral upper boundary �/(−E1) in
the integral to avoid logarithmic divergence. We then find

α1 = ln

(
1 + �

−E1

)
− �/(−E1)

1 + �/(−E1)
. (42)

Contrary to D = (1,2,3), the α1 coefficient depends on the
single-pair energy E1 and the cutoff � through their ratio. By
contrast, αm’s for m � 2 can be obtained by extending the
integral upper boundary to infinity. This gives

α2 = 1

2
. (43)

Higher αm’s again form a geometric series, as in Eq. (21),
but the series now starts with α2. The fact that α1 does not

belong to this geometric series makes the D-dependence of the
interaction energy for D = 4 different from lower dimensions.
The density expansion of the N -coboson ground-state energy
instead appears as

EN − NE1

E1

� −(N − 1)

[
1

4α1
(Nλ2) − α2

1 − 3α1 + 3

24α4
1

(Nλ2)2

+4α4
1 − 18α3

1 + 39α2
1 − 46α1 + 24

192α8
1

(Nλ2)3 + · · ·
]
.

(44)

So, in 4D or in a 2D parabolic trap, the exact cancellation of
all interaction terms in the N -coboson energy does not occur.

Using these αm’s in Eq. (24), we also find that for the
above same reason, exact cancellation does not occur in the
interaction energy of the Hamiltonian mean value for N

ground-state cobosons interacting via the VCA potential.

VII. CONCLUSION

We study the ground-state energy of N cobosons inter-
acting through a BCS-like potential between zero-momentum
fermion pairs and through a short-range separable potential
between fermion pairs having an arbitrary center-of-mass
momentum. Our goal is to determine the effects of the potential
characteristics and the space dimension on the interaction
part of the N -coboson ground-state energy. We find that
for 2D systems interacting via a BCS-like potential, the
interaction part is in N (N − 1) only, in agreement with
previous results obtained in the context of Cooper pairs.
Such a striking exact cancellation of the correlation energy
exists uniquely for 2D systems. This mysterious cancellation
results from the marriage of the very peculiar form of the
reduced BCS potential which acts between zero-momentum
pairs only, and the constant density of states where the potential
acts. Our analysis based on the density expansion of the
N -coboson energy shows that this cancellation does not occur
for systems with energy-dependent density of states nor for
cobosons having an arbitrary center-of-mass momentum. This
microscopic understanding allows us to better appreciate the
beauty of the reduced BCS potential originally proposed to
understand standard superconductivity, and to be cautious of its
possible limitations when used in other fields such as nuclear
[9,24,25] and cold-atom [19] physics.

ACKNOWLEDGMENTS

M.C. acknowledges many fruitful visits to Academia Sinica
and NCKU, Taiwan. S.-Y.S. acknowledges a three-month
financial support from CNRS (France) as invited researcher
at INSP in Paris. Y.-C.C. wishes to thank INSP for hospitality
during his frequent visits to Paris. Work supported in part by
Ministry of Science and Technology, Taiwan under Contract
MOST 104-2112-M-001-009-MY2.

032710-5



SHIAU, COMBESCOT, AND CHANG PHYSICAL REVIEW A 94, 032710 (2016)

APPENDIX A: RELATIONS FOR HIGHER-ORDER λ

COEFFICIENTS

We here list the relations, obtained in the same way as
Eq. (30), for the λ3, λ4, and λ5 terms:

0 = α1ci +2α2aibi +α3a
3
i +

∑
j

′
(

(bi − bj )2

(ai − aj )3
− ci − cj

(ai − aj )2

)
,

(A1a)

0 = α1di +α2(b2
i + 2aici) + 3α3a

2
i bi + α4a

4
i

+
∑

j

′
(

− (bi − bj )3

(ai − aj )4
+2

(bi − bj )(ci − cj )

(ai − aj )3
− di − dj

(ai − aj )2

)
,

(A1b)

0 = α1ei +2α2(aidi + bici) + 3α3
(
a2

i ci + aib
2
i

)+4α4a
3
i bi

+α5a
5
i +

∑
j

′
(

(bi − bj )4

(ai − aj )5
− 3

(bi − bj )2(ci − cj )

(ai − aj )4

+ 2
(bi − bj )(di − dj )

(ai − aj )3
+ (ci − cj )2

(ai − aj )3
− ei − ej

(ai − aj )2

)
.

(A1c)

These equations are necessary to obtain the λ expansion of
ri up to λ6.

APPENDIX B: RESOLUTION FOR HIGHER-ORDER λ

COEFFICIENTS

We here explicitly derive the λ3, λ4, λ5, and λ6 terms ofRN .
These straightforward but quite heavy calculations ultimately
show that the RN expansion only contains even powers of λ.

1. λ3 term

The λ3 term of RN follows from
∑

i ci . The λ3 coefficient
in Eq. (32) gives this sum through

0 = α1

∑
i

ci + 2α2

∑
i

aibi + α3

∑
i

a3
i . (B1)

To calculate
∑

i a
3
i , we multiply Eq. (30a) by a2

i and we
sum over i. This gives

0 = α1

∑
i

a3
i +

∑
i

∑
j

′ a2
i

ai − aj

. (B2)

The double sum gives zero since we can rewrite
it as (1/2)

∑
i

∑
j
′(a2

i − a2
j )/(ai − aj ) = (1/2)

∑
i

∑
j
′(ai +

aj ) while
∑

i ai = 0, due to Eq. (33). So,
∑

i a
3
i = 0.

To calculate
∑

i aibi , we multiply Eq. (30b) by bi and sum
over i. This gives

0 = α1

∑
i

aibi + α2

∑
i

a3
i −

∑
i

∑
j

′
ai

bi − bj

(ai − aj )2
. (B3)

Because
∑

i a
3
i = 0, while the double sum also reads

−
∑

i

∑
j

′
ai

bi − bj

(ai − aj )2

= −1

2

∑
i

∑
j

′ bi − bj

ai − aj

= −
∑

i

bi

∑
j

′ 1

ai − aj

= α1

∑
i

aibi, (B4)

as obtained with the help of Eq. (30a) for the j sum, we
conclude from Eq. (B3) that

∑
i aibi = 0. So, Eq. (B1)

ultimately gives

∑
i

ci = 0. (B5)

As a result, the λ3 term of RN is equal to zero.

2. λ4 term

The λ4 term of RN follows from
∑

i di . The λ4 coefficient
of Eq. (32) gives this sum through

0 = α1

∑
i

di + α2

∑
i

(
b2

i + 2aici

) + 3α3

∑
i

a2
i bi

+α4

∑
i

a4
i . (B6)

To calculate
∑

i a
4
i , we multiply Eq. (30a) by a3

i and we
sum over i. This gives

0 = α1

∑
i

a4
i +

∑
i

∑
j

′ a3
i

ai − aj

. (B7)

We rewrite the double sum in the above equation as

∑
i

∑
j

′ a3
i

ai − aj

= 1

2

∑
i

∑
j

′ a3
i − a3

j

ai − aj

= 1

2

∑
i

∑
j

′(
a2

i + aiaj + a2
j

)
, (B8)

which gives (N − 3/2)
∑

i a
2
i + (1/2)(

∑
i ai)2. Using Eq. (36)

and
∑

i ai = 0, we end up with

∑
i

a4
i = N (N − 1)(2N − 3)

1

4α2
1

. (B9)

To calculate
∑

i a
2
i bi , we multiply Eq. (30b) by a2

i and we
sum over i. This gives

0 = α1

∑
i

a2
i bi + α2

∑
i

a4
i −

∑
i

∑
j

′ a2
i (bi − bj )

(ai − aj )2
. (B10)
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We rewrite the double sum in the above equation as

−
∑

i

∑
j

′ a2
i (bi − bj )

(ai − aj )2

= −1

2

∑
i

∑
j

′
(
a2

i − a2
j

)
(bi − bj )

(ai − aj )2

= −1

2

∑
i

∑
j

′ (ai + aj )(bi − bj )

ai − aj

. (B11)

Since
∑

i

∑
j
′(bi + bj )(ai + aj )/(ai − aj ) = 0, while (ai +

aj )/(ai − aj ) = (−1 + 2ai)/(ai − aj ), the right-hand side of
the above equation also reads

−
∑

i

bi

∑
j

′
(

−1 + 2ai

ai − aj

)
, (B12)

which, with the help of Eq. (30a), gives (N − 1)
∑

i bi +
2α1

∑
i a

2
i bi . Combining this result with Eqs. (37) and (B9),

we end up with

∑
i

a2
i bi = −N (N − 1)(4N − 5)

α2

12α3
1

. (B13)

To calculate the second term of Eq. (B6), we multiply
Eq. (A1a) by ai and we sum over i. This gives

0 = α1

∑
i

aici + 2α2

∑
i

a2
i bi + α3

∑
i

a4
i

+
∑

i

∑
j

′
ai

(
(bi − bj )2

(ai − aj )3
− ci − cj

(ai − aj )2

)
. (B14)

The double sum in the above equation also reads

1

2

∑
i

∑
j

′
(ai − aj )

(
(bi − bj )2

(ai − aj )3
− ci − cj

(ai − aj )2

)
, (B15)

which reduces to

∑
i

bi

∑
j

′ bi − bj

(ai − aj )2
−

∑
i

ci

∑
j

′ 1

ai − aj

. (B16)

Using Eq. (30) for the two sums over j , we end up with

0 = α1

∑
i

(
b2

i + 2aici

) + 3α2

∑
i

a2
i bi + α3

∑
i

a4
i . (B17)

By combining Eqs. (B6), (B17), (B9), and (B13), we get the
prefactor of the λ4 term in RN as

∑
i

di = N (N − 1)

4α4
1

[
(6N − 8)α2α3 − (4N − 5)

α3
2

α1

−(2N − 3)α1α4

]
. (B18)

3. λ5 term

The λ5 term of RN follows from
∑

i ei . The λ5 coefficient
of Eq. (32) gives this sum through

0 = α1

∑
i

ei + 2α2

∑
i

(aidi + bici)

+ 3α3

∑
i

(
a2

i ci + aib
2
i

) + 4α4

∑
i

a3
i bi + α5

∑
i

a5
i .

(B19)

To calculate
∑

i a
5
i , we multiply Eq. (30a) by a4

i and sum
over i. This gives

0 = α1

∑
i

a5
i +

∑
i

∑
j

′ a4
i

ai − aj

. (B20)

We rewrite the double sum in the above equation as

∑
i

∑
j

′ a4
i

ai − aj

= 1

2

∑
i

∑
j

′ a4
i − a4

j

ai − aj

= 1

2

∑
i

∑
j

′(
a3

i + a2
i aj + aia

2
j + a3

j

)
,

(B21)

which leads to (N − 2)
∑

i a
3
i + ∑

i a
2
i

∑
i ai ; so

∑
i a

5
i = 0,

since
∑

i ai = 0 = ∑
i a

3
i .

To calculate
∑

i a
3
i bi , we multiply Eq. (30b) by a3

i and we
sum over i. This gives

0 = α1

∑
i

a3
i bi +

∑
i

a5
i −

∑
i

∑
j

′ a3
i (bi − bj )

(ai − aj )2
. (B22)

The double sum in the above equation also reads

−1

2

∑
i

∑
j

′
(
a3

i − a3
j

)
(bi − bj )

(ai − aj )2

= −
∑

i

bi

∑
j

′ a2
i + aiaj + a2

j

ai − aj

. (B23)

By writing a2
i + aiaj + a2

j as (ai − aj )2 + 3aiaj and aj/(ai −
aj ) as −1 + ai/(ai − aj ), the above term is equal to

−
∑

i

bi

∑
j

′
(ai − aj ) + 3

∑
i

aibi

∑
j

′
1

−3
∑

i

a2
i bi

∑
j

′ 1

ai − aj

. (B24)

The sum of the first two terms give (2N − 3)
∑

i aibi +∑
i ai

∑
i bi = 0, while using Eq. (30a), the last term gives

3α1
∑

i a
3
i bi . Since

∑
i a

5
i = 0, we find from Eq. (B22) that∑

i a
3
i bi = 0.
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To calculate the third term of Eq. (B19), we multiply
Eq. (A1a) by a2

i and we sum over i. This gives

0 = α1

∑
i

a2
i ci + 2α2

∑
i

a3
i bi + α3

∑
i

a5
i

+
∑

i

∑
j

′
a2

i

(
(bi − bj )2

(ai − aj )3
− ci − cj

(ai − aj )2

)
. (B25)

The double sum also reads

1

2

∑
i

∑
j

′(
a2

i − a2
j

)( (bi − bj )2

(ai − aj )3
− ci − cj

(ai − aj )2

)
, (B26)

which is equal to

∑
i

bi

∑
j

′
(ai + aj )

bi − bj

(ai − aj )2
−

∑
i

ci

∑
j

′ ai + aj

ai − aj

.

B writing (ai + aj )/(ai − aj ) as −1 + 2ai/(ai − aj ), we find
from Eqs. (B25) and (30) that

0 = 3α1

∑
i

(
a2

i ci + aib
2
i

) + 4α2

∑
i

a3
i bi + α3

∑
i

a5
i

+ (N − 1)
∑

i

ci . (B27)

Since the last three terms are equal to zero, we end up with∑
i(a

2
i ci + aib

2
i ) = 0.

To calculate the second term, we multiply Eq. (A1b) by
ai and we sum over i. Similar calculation for the double sum
leads to

0 = 2α1

∑
i

(aidi + bici) + 3α2

∑
i

(
a2

i ci + aib
2
i

)

+ 4α3

∑
i

a3
i bi + α4

∑
i

a5
i . (B28)

Since the last three terms are equal to zero, we end up with∑
i(aidi + bici) = 0.
Equation (B19) then gives

∑
i

ei = 0. (B29)

So, RN has no term in λ5.

4. λ6 term

The λ6 term of RN follows from
∑

i fi . The λ6 coefficient
in Eq. (32) gives this sum through

0 = α1

∑
i

fi + α2

∑
i

(
c2
i + 2aiei + 2bidi

)

+α3

∑
i

(
b3

i + 3a2
i di + 6aibici

)

+α4

∑
i

(
4a3

i ci + 6a2
i b

2
i

) + 5α5

∑
i

a4
i bi + α6

∑
i

a6
i .

(B30)

To calculate
∑

i a
6
i , we multiply Eq. (30a) by a5

i and we
sum over i. Since

∑
i ai = 0 = ∑

i a
3
i , we get

0 = α1

∑
i

a6
i + 2N − 5

2

∑
i

a4
i + 1

2

( ∑
i

a2
i

)2
. (B31)

To calculate
∑

i a
4
i bi , we multiply Eq. (30b) by a4

i and we
sum over i. Similar algebras lead to

0 = 5α1

∑
i

a4
i bi + α2

∑
i

a6
i + 3(N − 2)

∑
a

a2
i bi

+
( ∑

i

bi

)( ∑
i

a2
i

)
. (B32)

To calculate the fourth term of Eq. (B30), we multiply
Eq. (A1a) by a3

i and we sum over i. This yields

0 = α1

∑
i

(
4a3

i ci + 6a2
i b

2
i

) + 5α2

∑
i

a4
i bi + α3

∑
i

a6
i

+2N − 3

2

∑
i

(
b2

i + 2aici

) + 1

2

( ∑
i

bi

)2
. (B33)

To calculate the third term, we multiply Eq. (A1b) by a2
i

and we sum over i. This yields

0 = α1

∑
i

(
b3

i + 3a2
i di + 6aibici

) + α2

∑
i

(
4a3

i ci + 6a2
i b

2
i

)

+5α3

∑
i

a4
i bi + α4

∑
i

a6
i + (N − 1)

∑
i

di . (B34)

To calculate the second term of Eq. (B30), we multiply
Eq. (A1b) by bi and Eq. (A1c) by ai and we sum over i. By
adding these two equations, we get

0 =α1

∑
i

(
c2
i + 2aiei +2bidi

)+α2

∑
i

(
b3

i + 3a2
i di +6aibici

)

+α3

∑
i

(
4a3

i ci +6a2
i b

2
i

)+5α4

∑
i

a4
i bi +α5

∑
i

a6
i .

(B35)

Equations (B30)–(B35) ultimately lead to the sum of fi’s given
in Eq. (40).
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