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Application of a grid numerical method to calculate state-selective cross sections
for electron capture in Be4+ + H(1s) collisions
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Charge-transfer n partial cross sections have been calculated for collisions of Be4+ with H(1s) by means of a
versatile lattice method that is applicable in a wide energy range (between 1 and 500 keV/u). The cross sections,
which include up to the high-lying n = 8 level, are compared to existing semiclassical calculations in order to
quantify the accuracy of the results. The reliability of the lattice method at high impact energies is confirmed by
comparison with classical trajectory Monte Carlo calculations. It is found that the n partial cross sections larger
than 10−18 cm2, calculated using the lattice method, agree with differences smaller than 15% with those from
the method considered the most accurate at each energy. The calculation yields as well accurate total electron
capture cross sections, which are studied in detail at E = 100 keV/u to obtain a converged value.
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I. INTRODUCTION

Collisions involving Beq+ ions are especially relevant
because Be will be used as the armor material of the first
wall of the International Thermonuclear Experimental Reactor
(ITER) (see [1]) and an ITER-like wall is already under
operation in the Joint European Torus (JET) [2,3]. Chemical
and physical erosion of the first wall releases beryllium atoms
and several molecular species, which eventually lead to the
presence of fully stripped beryllium ions in the plasma core.
The diagnostics of impurity density and temperature in the
plasma core is carried out by applying the charge exchange
recombination spectroscopy (CXRS) technique [4], where a
fast beam of H atoms (100 keV in ITER [5]) collides with
the impurity ions Xq+, leading to the electron capture (EC)
reactions:

Xq+ + H → X(q−1)+∗ + H+. (1)

The diagnostics is based on the emission, usually in the visible
spectrum (see [6]), of the excited ions, X(q−1)+∗.

The application of the CXRS diagnostics requires the
knowledge of state-resolved EC cross sections (1), which
are in general difficult to measure, and, in particular, only
theoretical data are available for collisions involving Beq+

ions. The relevance of EC in fusion research has motivated
many works [7–21] applying very different methods, but
despite the apparent simplicity of monoelectronic systems,
significant discrepancies remain between the results. While
close-coupling and distorted-wave methods are very accurate
in the low (E < 25 keV/u) and high (E > 1000 keV/u) energy
range, respectively, the cross sections for the high-n capture
levels are far from been converged in the intermediate energy
domain that characterizes the probe beam.

On the other hand, the precision of the calculated cross
sections for heavy-particle collisions is in general unknown,
and the quantification of the uncertainties associated with
these cross sections is a difficult task that has not been
undertaken hitherto. The uncertainties associated with cross
section calculations are required by data users and the efforts
to quantify the uncertainties of the atomic data have been lead
by the Atomic and Molecular Data Unit, Nuclear Data Section,

of the International Atomic Energy Agency (see [22] and the
recent review on uncertainty estimates for both structure and
collision calculations of Ghung et al. [23]). However, although
the necessity of including the uncertainty estimates of the
collisional data is generally accepted (see the editorial policy
of Physical Review A [24]), only a few works on electronic
collisions (see, e.g., [25]) have provided the uncertainties of
the calculated data.

In this work we have calculated n partial cross sections for
the processes

Be4+ + H(1s) → Be3+(n) + H+ (2)

in the broad energy range 1 keV/u � E � 500 keV/u, and
up to n = 8, which is a range of energies and exit channels
that cannot be accurately covered by either close-coupling or
perturbative methods. These calculations have been performed
using a single semiclassical method, in which we solve
numerically the time-dependent Schrödinger equation with
the GridTDSE package (GTDSE) [26]. The GTDSE package
was originally designed for nuclear processes in molecular
dynamics, and has been modified to treat electron dynamics.
Specifically, it has been recently applied to treat ionization
processes [27]. The EC reaction (2) has been studied in the
past by Minami et al. [19] with a lattice method, providing
partial cross sections for n � 5. However, it must be noted
that the CXRS diagnostics for Be (IV) works in the visible
emission, which corresponds to the transitions n = 6 → n = 5
and n = 8 → n = 6 of Be3+. Accurate values of partial
cross sections into levels with n > 5, as proposed in the
present paper, are therefore key input values for the realistic
performance of CXRS experiments. One must note that the
calculation of EC cross sections into excited levels requires
the use of large lattices that involve exceptional computational
resources.

The second aim of the present calculation is to gauge
the applicability of the GTDSE method at relatively low
collision energies (E = 1 keV/u), not considered in [19],
by comparison with state-of-the-art molecular-orbital-close-
coupling (MOCC) [16] and recent atomic-orbital-close-
coupling (AOCC) calculations [20]. This comparison yields
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valuable information on the systematic application of the the
lattice methods to treat low-energy collisions. At intermediate
energies (E ≈ 30 keV/u), the lattice GTDSE cross sections
are compared with AOCC data in order to estimate the
uncertainties of these calculations. Close-coupling methods
are based on the expansion on complete sets, provided that
they include both bound and continuum states. In practice,
the electronic continuum is represented by a set of L2

integrable functions, called pseudostates, but the choice of
these pseudostates introduces an inherent uncertainty. On the
other hand, in the lattice calculations the collisional wave
function is evaluated at the nodes of a 3-dimensional grid, and
the precision is determined by the extension and density of the
grid. Since the uncertainties are very different in nature, the
comparison between probabilities and cross sections obtained
with close-coupling and lattice methods provides an estimate
of their intrinsic uncertainties, which is difficult to obtain from
the application of a single methodology.

At higher energies (E ≈ 100 keV/u), the close-coupling
methods become unpractical given the large number of states
(bound and continuum) required. At these energies, the state-
selected EC cross sections are often obtained by applying
the classical trajectory Monte Carlo (CTMC) method with a
microcanonical distribution [28] for describing the initial state
of the hydrogen atom. The suitability of the CTMC method to
represent EC into highly excited levels is hindered by the well-
known inadequacy of the initial microcanonical distribution to
accurately reproduce the quantal electron distribution. In order
to overcome this limitation, improved initial classical distri-
butions, with a better agreement of the radial distribution with
the quantal one, have been proposed in the past [29–31], which
yield practically the same results. More recently, an alternative
distribution has been proposed by Cariatore et al. [32]. It
has been shown [33] that the distribution of Ref. [32] is not
stable and cannot be applied for excited states. The results
of applying this distribution for collisions of multicharged
ions with H(1s) have been compared with previous results in
both the Comment [33] and the Reply [34], where it was
found that at energies E ≈ 100 keV/u the distribution of
Ref. [32] leads to EC partial cross sections practically identical
to those calculated with the microcanonical distribution. As
mentioned in [19], the comparison between the results of the
CTMC, with alternative initial distributions, and the numerical
results is valuable in order to discuss the accuracy of the
cross sections. In this respect, we include in the present work
CTMC calculations with both the microcanonical and the
hydrogenic [29] distributions.

Concerning the total electron capture cross sections of
Be4++H collisions, there is a remarkable disagreement in
the existing databases at E = 100 keV/u, where the splitting
between the available results is around 30% of the total cross
section. This disagreement is particularly relevant in fusion
plasmas since it appears at the energy of the ITER diagnostics
beam. In this work we discuss the limitations of previous works
and we recommend a value of the total cross section at this
energy.

The paper is organized as follows: In Sec. II we explain
the lattice method employed. In Sec. III we discuss the partial
cross sections at four representative impact energies: 1, 30,
100, and 500 keV/u. The total EC cross section is considered

in Sec. IV and a brief summary is presented in Sec. V. Atomic
units are employed unless otherwise stated.

II. THE GTDSE METHOD

At the energies considered in this work one can employ
the semiclassical impact parameter approximation, where the
nuclei follow rectilinear trajectories defined by R(t) = b +
vt , with b the impact parameter and v the relative velocity.
The electronic motion is then described by the wave function
�(r,t), solution of the semiclassical equation:[

Hel − i
∂

∂t

∣∣∣∣
r

]
� = 0 (3)

with the electronic Hamiltonian:

Hel(r,R(t)) = − 1
2∇2

r + VH + VBe, (4)

where r is the electron position vector.
We have adapted the parallel GridTDSE package [26]

to solve numerically Eq. (3) for not-bound systems and a
time-dependent potential operator. In the present application,
the wave function � is evaluated at the points of a 3D
Cartesian lattice, with the origin on the Be nucleus in order
to evaluate asymptotically the capture processes. The lattice
representation of the electronic wave function is a vector �,
solution of the matrix equation

H� = (T + V )� = i�̇. (5)

V is a diagonal matrix that stores the values of the potential
VBe + VH at the grid points, while the kinetic energy matrix,
T , is a nondiagonal sparse matrix that is obtained by applying
the finite-difference method (see [35]) considering a stencil of
ns neighboring grid points. Equation (5) is time integrated by
iteratively applying the second-order difference method (SOD)
with small time steps (i.e., of the order of 10−2 a.u.), during
which the electron-target Coulomb attraction is approximately
constant. The initial condition at t0 is the grid representation
of the traveling H(1s) orbital,

�(r,t0) = ϕH
1s[r − R(t0)] exp (−iv · r − i/2v2t0). (6)

The extension of the grid is taken as −Lmax � q � Lmax, q =
x,z, and 0 � y � Lmax, where we have taken advantage of the
symmetry of the Hamiltonian upon reflection in the collision
plane (XZ). The parallelization strategy followed in GridTDSE
is particularly efficient for Cartesian coordinates due to the
fact that the Hamiltonian matrix is highly sparse, allowing
the consideration of the massive grids (≈108 grid points)
characteristic of collisional processes. The present calculations
were carried out with a broad box of Lmax = 40a0. Although
it involves vast memory allocations (on the order of 256 Gb)
that can only be assumed with the optimized parallelization
strategy, such an extension allows the description of the Be3+

orbitals up to the quantum level n � 8. On the other hand,
the convergence of the second derivatives is rapidly reached in
Cartesian coordinates with a stencil of ns = 15 points. The pre-
cision of the provided cross sections has been tested with sev-
eral grid densities: G1, with �q = qi+1 − qi = 0.2a0; G2, with
�q = 0.137a0. For the specific case of capture into n = 1,2
levels, where the convergence is particularly slow, we have ad-
ditionally performed calculations with grids G3 (�q = 0.1a0)
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TABLE I. Soft-core parameters εH, εBe [Eq. (7)] employed for
different grid densities. Numbers in square brackets indicate power
of 10.

�q (a.u.) εH εBe

0.2 (G1) 3.65[−3] 5.40[−3]
0.137 (G2) 1.70[−3] 2.22[−3]
0.1 (G3) 7.98[−4] 1.08[−3]
0.05 (G4) 1.75[−4] 2.29[−4]

and G4 (�q = 0.05a0). Nevertheless, for the sake of the
memory allocation, the extension of the grid in these cases
has been substantially reduced, which allows the calculation
of the capture probabilities into n � 3. As a final remark,
according to the uncertainty principle, the time step employed
in the time integration is directly related to the grid spacing

as �t < 1/Emax, with Emax = π2/(2�2
q) [36]. Therefore, as

the description of the wave function in the spatial coordinates
improves with increasing density, shorter time steps must be
employed.

In practice, as in previous numerical treatments [19], a
soft-core approximation is introduced to allow the integration
near the Coulomb singularity. The potentials are

VH(r,R(t)) = − 1

(|r − R|2 + εH)1/2
,

VBe(r) = − 4

(r2 + εBe)1/2
, (7)

and the soft-core parameters εH,Be � �q have been optimized
by fitting the atomic energies for each grid density (Table I),
with deviations smaller than 1% from the exact energies. In
order to avoid unphysical reflections at the walls of the box,
we have introduced the mask function [27,37]:

M(r) =
∏
i=1,3

{
exp{−α(|qi| − Lmax + δ)2}, if Lmax − |qi | < δ,

1, elsewhere,

with δ = 3.0a0 and α = 0.002a−2
0 . As pointed in previous

works [38,39], mask functions used in grid schemes are
directly related to complex absorbing potentials. With the
origin of coordinates placed at the projectile, the mask function
completely absorbs the part of the wave function that correlates
asymptotically to ionization and target bound states, while only
those capture states with the electronic density confined inside
the box can be properly described.

III. ELECTRON CAPTURE PARTIAL CROSS SECTIONS

A. E = 1 keV/u

At E = 1 keV/u, only the levels Be3+(n = 3,4) are
significantly populated in the reaction (2), while the partial
cross sections for populating the levels n = 2 and n = 5 are
100 times smaller than those of the dominant channels (see
Ref. [16]). The MOCC calculations (see Table II) converge to
cross section values that agree with the large-scale AOCC cal-
culation of Ref. [20]. In this table, the MOCC (18) calculations
employ a minimal 18-term basis set that includes the molecular
channels dissociating into Be3+(n = 3,4), and MOCC (88, 96)
are the two extended bases of Refs. [15,16]. Since both MOCC

TABLE II. Total cross sections in 10−16 cm2 for reactions (2) at
E = 1 keV/u. The number of basis functions of the close-coupling
calculations is indicated in brackets.

Calculation n = 3 n = 4

MOCC (17) [15] 34.7 2.45
MOCC (88) [16] 34.5 3.17
MOCC (96) [15] 34.4 3.11
AOCC (170) [20] 34.4 3.10
GTDSE 33.2 3.27

and AOCC computational procedures are very different, the
agreement indicates that the absolute uncertainties of these
cross sections are smaller than ±10−17 cm2. The validity
of the eikonal approximation for the collision (2) has been
discussed in Ref. [15] by comparing eikonal and full quantum
mechanical calculations. This comparison at E = 250 eV/u
shows that the differences for the total EC cross section and for
the n = 3 partial cross section are on the order of 1%, and on
the order of 5% for the partial cross section for populating the
level Be3+(n = 4). Since the eikonal approximation becomes
more accurate as E increases, the uncertainty associated with
the use to the eikonal approximation is expected to be smaller
than 1% at E � 1 keV/u for the dominant channels.

The GTDSE calculations for grids G1 and G3 yield
indistinguishable partial cross sections that disagree from the
close-coupling ones in about 3%–6%. To further analyze the
workings of the GTDSE calculation, we compare in Fig. 1
the EC opacity functions bP EC

n (b), obtained using MOCC and
GTDSE, where

P EC
n = lim

t→+∞

∑
l,m

∣∣〈φBe
nlm

∣∣�〉∣∣2
. (8)

One can note that the GTDSE calculation correctly re-
produces the oscillations of the transition probability with
small differences in the height of the maxima. This agreement
indicates that both results are consistent with the same collision
mechanism. Moreover, we have checked that the eigenvalues
of the molecular Hamiltonian obtained in the grid represen-
tation agree with the energies of the molecular orbitals. In
particular, the gap between the electronic energies of the
orbitals 4f σ and 3dσ in the pseudocrossing between them
is 0.0985 hartrees (GTDSE) and 0.0984 hartrees (MOCC),
which is particularly relevant because the transitions in this
pseudocrossing furnish the main mechanism of the EC process
at low velocities.
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FIG. 1. Transition probability times the impact parameter
[Eq. (8)] for electron capture in Be4+ + H(1s) collisions at
E = 1 keV/u. bP EC

3 : (• − •), GTDSE; (−�−), 88-state MOCC.
bP EC

4 : (− ◦ −), GTDSE; (− � −), 88-state MOCC.

B. E = 30 keV/u

At E = 30 keV/u the ionization cross section starts to be
relevant, and the MOCC method, without pseudostates, is not
appropriate as the ionization flux populates the most energetic
molecular channels, which are correlated to high-n capture
levels [40]. In fact, calculations at this energy were not reported
in Ref. [16]. Igenbergs et al. [20,41] have carried out AOCC
calculations with different basis sets that indicate that the EC
total cross section has converged within ±0.4 × 10−16 cm2,
and the partial cross sections reported in [41] for the largest
basis set (170 orbitals that include 42 united atom orbitals
to describe the continuum). Partial cross sections from n =
1 to n = 8 are presented in Table III. The present GTDSE
results show an excellent agreement with those of Igenbergs
et al. [20,41], as can be noted in Table III and Fig. 2, with the
exception of the partial cross section for EC into Be3+(n = 8),
which is probably overpopulated in the AOCC calculation.

C. E = 100 keV/u

We display in Fig. 3 the n partial cross sections at E =
100 keV/u, where the unphysical behavior of the AOCC cross
sections for n > 5 is clear, probably due to an incorrect trap-
ping of the flux leading to ionization and electron excitation in

TABLE III. Total cross sections in 10−16 cm2 for reactions (2) at
E = 30 keV/u.

n AOCC (170) [20] GTDSE

1 3.0×10−5 3.6×10−5

2 1.17 1.19
3 11.1 11.1
4 6.29 6.67
5 2.51 2.76
6 1.14 1.25
7 0.64 0.64
8 0.58 0.40
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12

GTDSE
AOCC, Igenbergs et al.

FIG. 2. n-partial cross sections for EC in Be4+ + H(1s) collisions
at E = 30 keV/u. (•), GTDSE calculation, �, AOCC calculations of
Refs. [20,41].

the most excited levels of the basis set. We include in this figure
CTMC results obtained using both the microcanonical and the
hydrogenic distributions, as explained in [17]. We find a gen-
eral good agreement between GTDSE and CTMC-hydrogenic
cross sections, while the microcanonical distribution leads to
an important overestimation of the cross sections for n � 3.
We present a more detailed comparison of GTDSE and CTMC-
hydrogenic partial cross sections in Table IV. To ensure the
convergence of the CTMC calculation we have calculated the
cross sections with 105 and 5 × 105 electron trajectories and
we have found differences smaller than 5 × 10−19 cm2. The
convergence of the GTDSE calculation is shown in Table IV
varying the density of the grid (G1, G2, and G3). It is clear that
the calculations provide converged values with the exception
of the very small cross section for capture into the ground
state, although the value obtained with the grid G3 is close
to that from the AOCC method [41] (1.0 × 10−19 cm2). For
n � 3 the GTDSE and the CTMC calculations agree with
differences smaller than 13% of the cross sections. As has been
explained in previous works [42,43], the CTMC-hydrogenic

2 4 6 8 10 12 14 16 18 20
n

0

0.2

0.4

0.6

0.8

1

σ n (1
0-1

6  c
m

2 )

AOCC, Igenbergs et al.
CTMC-hydrogenic
CTMC-microcanonical
0.1

FIG. 3. n-partial cross sections for EC in Be4+ + H(1s) collisions
at E = 100 keV/u.
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TABLE IV. Total cross sections in 10−16 cm2 for reactions (2) at
E = 100 keV/u.

n CTMC GTDSE (G1) GTDSE (G2) GTDSE (G3)

1 0.014 3.6×10−4 3.3×10−4 9.1×10−4

2 0.49 0.39 0.39 0.38
3 0.77 0.77 0.77 0.77
4 0.57 0.58 0.60 0.60
5 0.36 0.40 0.39 0.39
6 0.23 0.26 0.26 0.26
7 0.16 0.18 0.17
8 0.11 0.12 0.11

is not appropriate to reproduce processes into low-n capture
levels, and in the particular case of Be4+ + H(1s) it yields
overestimated n = 1,2 capture cross sections with regard to
both GTDSE and AOCC values.

D. E = 500 keV/u

In order to check the applicability of the GTDSE method
at very high energies we have calculated the n partial EC
cross sections at E = 500 keV/u. Our results are plotted in
Fig. 4, together with the results from CTMC, AOCC [20],
and the eikonal impulse approximation (EIA) [44,45]. The
partial cross sections of Minami et al. [19], taken from their
Fig. 7, are practically identical to our G3 results of Fig. 4.
One can note in this plot that the CTMC-microcanonical
calculation overestimates the cross sections compared to those
from the other methods; this overestimation is larger for
the CTMC-hydrogenic, not shown in this figure for clarity.
The GTDSE calculation converges slowly because very dense
grids are required in order to reproduce the fast oscillation of
the plane wave associated to the electron translation motion.
Accordingly, large memory is needed to store the wave
function and the Hamiltonian matrix along the trajectory.
Specifically, with a memory of 256 Gb, we can employ the
grid G4 with an extension (in atomic units) −11 � x � 11,

0 1 2 3 4 5 6 7 8 9
n

0.0

0.5

1.0

1.5

2.0

2.5

σ n (1
0-1

9  c
m

2 )

EIA, Gravielle and Miraglia
CTMC-microcanonic
AOCC,  Igenbergs et al
GTDSE, G1
GTDSE, G3
GTDSE, G4

FIG. 4. n-partial cross sections for EC in Be4+ + H(1s) collisions
at E = 500 keV/u. Present GTDSE and CTMC calculations are
compared with previous EIA [44,45] and AOCC [41] results, as
indicated in the figure.

TABLE V. Total cross section for populating Be3+(n = 1) in
reaction (2) at E = 500 keV/u, as a function of the grid spacing
�q , compared with the result of the EIA method [44].

�q (a0) Cross section 10−20 cm2

0.2 5.52
0.137 6.21
0.1 6.80
0.05 7.87
0.025 8.63
EIA 9.35
B1B 6.77

0 � y � 11, −15 � z � 11, which limits the application to
the calculation of EC cross sections for n < 4. However,
these calculations illustrate the convergence of the GTDSE
partial cross sections to the AOCC values for n = 2,3; they
are somewhat larger than the EIA results. For n � 4, the
AOCC calculation probably overestimates the cross section
as already explained for E = 100 keV/u. As n increases, the
difficulty of augmenting the grid density precludes checking
the convergence of the GTDSE calculation, but the good
agreement among the GTDSE results for n = 5,6 indicates a
very small uncertainty of the grid calculations at high-n levels.
In fact, the G1 results are in agreement with the EIA values.

The convergence of the numerical calculation of the partial
cross section σ1 is particularly difficult to achieve because
many grid points are required to accurately represent the
wave function in a very small region close to the projectile
nucleus. Nevertheless, it is possible to increase the grid density
by keeping a modest box size for calculating this particular
partial cross section. For this purpose we have carried out an
exploratory calculation with the new grid −5.5 � x � 5.5,
0 � y � 5.5, −15 � z � 5.5, and �q = 0.025a0. The results
are compared in Table V with the EIA value. A least-squares
fitting of our cross sections to a polynomial of degree 2 of �−1

q

yields an extrapolated value of 9.3 × 10−20 cm2 for �q = 0,
in good agreement with the EIA result, which is probably the
most accurate value at this energy. As an additional check
we have performed a first-order Coulomb-Born [46] (B1B
in the notation of Ref. [46]) calculation of σ1 using the grid
representation of the initial and final wave functions. Although
the accuracy of the B1B method is far from outstanding, the
calculations performed with the low-density grids G1 and G2
have rapidly converged to the value shown in Table V. This
points to the kinetic energy operator, which is lacking in the
B1B approximation, as responsible for the slow convergence
of the complete GTDSE calculations.

IV. ELECTRON CAPTURE TOTAL CROSS SECTION

The calculation of the EC total cross section in close-
coupling and lattice methods is carried out by adding the
partial cross sections for reactions (2). As explained in [19],
the calculation of total cross sections requires the evaluation of
the contribution of channels not included in the close-coupling
basis set or which cannot be described by the limited extension
of the box in lattice calculations. While this “topping-up”
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FIG. 5. Total cross section for electron capture in Be4+ + H(1s)
collisions, as a function of the impact energy. (•, � [orange
dot, green square]), present GTDSE calculations; (	), present
CTMC-hydrogenic. Previous calculations: (� [magenta square]),
LTDSE [19], (− ∗ −), AOCC [20]; (− 
 −), AOCC [14]; (− 
 −),
MOCC [16].

effect is relatively unimportant at low energies, it strongly
determines the accuracy of the calculated total cross sections
at E ≈ 100 keV/u. This point is illustrated in Fig. 5, where we
compare some calculations of the EC total cross section. The
two AOCC [14,20] disagree for energies higher than 25 keV/u,
as a consequence of the limited number of channels (n � 5)
included in the calculation of Toshima [14]. Although the
calculation of Igenbergs et al. [20] includes up to n = 8, the
unphysical behavior of the partial cross sections in Fig. 3
casts some doubts on the accuracy of this calculation at
E ≈ 100 keV/u. Minami et al. [19] estimated the total cross
section for E � 50 keV/u by adding the partial cross sections
from their lattice calculation for n = 1–5 and the contributions
from n = 6–10 obtained using the 1/n3 rule, which leads to
a total cross section slightly higher than that of Toshima (see
the inset of Fig. 5).

The EC total cross section is easily obtained in the CTMC
calculations from the fraction of electron trajectories bound to
the projectile at the end of the collision, and does not rely on
the values of the partial cross sections, which are calculated
afterwards using a partition of the phase space [47]. The total
cross section from the GTDSE can be estimated as the sum of
the partial cross sections for n = 1–8 tabulated in Table IV,
which lies between those of Toshima (nmax = 5) and Minami
et al. (extrapolated to nmax = 10). Inspection of Table IV
and Fig. 3 shows that the GTDSE calculation can be easily
extrapolated to the limit n → ∞ using the CTMC-hydrogenic
cross sections that follow the n−3 rule; this extrapolation leads
to a value of 3.11 × 10−16 cm2 at E = 100 keV/u, which is
identical to the CTMC-hydrogenic cross section. The CTMC
value contains two possible uncertainties. The first one is
associated with the statistics employed. We have checked
that the total cross section changes in about 10−18 cm2 when
increasing the number of trajectories from 1 × 105 to 5 × 105.
A more important uncertainty arises from the systematic error
consequence of the overestimation of the transitions to low-n
levels. At 100 keV/u, the overpopulation of the n = 2 level can

be estimated from Table IV and Fig. 3 in 1 × 10−17 cm2 (≈3%
of the total cross section). Therefore, the GTDSE calculation,
with the CTMC “topping up” yields the most accurate total
cross section value at E = 100 keV/u of 3.1 × 10−16 cm2

with an uncertainty smaller than 10−17 cm2 by comparison
with the CTMC cross section.

V. SUMMARY

In this work we have implemented a lattice method to solve
numerically the time-dependent Schrödinger that arises in the
eikonal treatment of ion-atom collisions and we have applied it
to calculate n partial and total electron capture cross sections
for Be4+ + H(1s) collisions. The method can be applied in
a wide energy range, although for energies below 1 keV/u
trajectory effects start to be sizable, the semiclassical treatment
is not appropriate, and the full quantum mechanical formalism
must be applied. We have illustrated the workings of the
method for four energies: 1, 30, 100, and 500 keV/u, where we
have checked the convergence of the computational procedure,
and we have compared the values of the n partial cross sections
with previous calculations.

A goal of the present calculation is to estimate the precision
of the values of the cross sections, which are required in the
applications. While it is difficult to quantify the uncertainties
associated to the different calculation steps, the use of
completely different computing schemes allows us to ensure
that these uncertainties cannot be larger than the splitting
between the computed cross sections. In this respect, we
have been able to find agreement between two sets of values
from different methodologies, and to give an estimate of their
accuracy. For instance, at E = 1 keV/u, the cross sections
from AOCC and MOCC disagree by less than 5%, and the
differences with the GTDSE are on the order of 3%–6%,
which allows us to estimate the uncertainty of these data at
about 5%. At E = 30 keV/u, the partial cross sections for
2 � n � 8, calculated using AOCC and GTDSE, differ by
less than 10%. At E = 100 keV/u, the GTDSE allows us to
evaluate the accuracy of the CTMC results. As a conclusion,
the CTMC-hydrogenic calculation provides accurate n partial
cross sections with the exception of the levels n = 1,2. The
cross sections for n > 2 agree with the GTDSE ones with
differences smaller than 15%.

At E = 500 keV/u, the convergence of the GTDSE
calculation with the grid density is very slow, and the numerical
calculation of the (very small) cross sections requires vast com-
putational resources, in contrast to the requirements of other
methods. Nevertheless, we have found good agreement for
high-n capture levels between GTDSE and EIA calculations,
which are the most accurate values at this perturbative regime.

Finally, we have studied the convergence of the EC total
cross section at E = 100 keV/u, where important discrep-
ancies remain. We find that the partial cross sections from
the GTDSE method can be extrapolated using the CTMC-
hydrogenic results for high n to obtain a value of the total
cross section whose uncertainty is smaller than 10−17 cm2.
In conclusion, with the available computational resources,
the numerical solution of the time-dependent Schrödinger
equation is a valuable tool to calculate electron capture cross
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sections in ion-atom collisions at intermediate energies, where
these data are required for applications in fusion plasmas.
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