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Spin and spatial dynamics in electron-impact scattering off S-wave He using
R-matrix-with-time-dependence theory
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R-matrix-with-time-dependence theory is applied to electron-impact ionization processes for He in the S-wave
model. Cross sections for electron-impact excitation, ionization, and ionization with excitation processes
for impact energies between 25 and 225 eV are in excellent agreement with benchmark cross sections.
Ultrafast dynamics induced by a scattering event is observed through time-dependent signatures associated with
autoionization from doubly excited states. Further insight into dynamics can be obtained through examination of
the spin components of the time-dependent wave function.
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I. INTRODUCTION

Scientific progress greatly benefits from the development of
theoretical and computational methods that complement new
experimental techniques. Recent developments in the study
of electron dynamics on the sub-femtosecond timescale [1–4]
have enhanced the need for the development of computational
models able to obtain a time-dependent description of ultrafast
multielectron processes. In the present paper, we demonstrate
a time-dependent ab initio computational method for the study
of electron spatial and spin dynamics through its application
to electron-He impact processes in the S-wave model (known
as the Temkin-Poet model when applied to electron-hydrogen
scattering [5,6]). We choose this particular model as it provides
a simple atomic process which contains both spin and spatial
dynamics, and for which benchmark data for comparison is
readily available [7,8].

Electron-impact processes for He in the S-wave model were
investigated through application of the time-dependent Close-
Coupling (TDCC) approach [9]. Since then, a range of other
advanced approaches have been applied to investigate this
problem, including the convergent close-coupling approach
[10–12] and the exterior-complex-scaling approach (ECS)
[7,8,13]. We note that this description of a three-electron
system bears great similarity to the time-dependent calculation
of Li processes in [14], since the restriction in angular
momentum corresponds to a 1D description for each electron.

In this paper, we build upon the R-matrix with
time-dependence (RMT) theory [15,16]. This approach
combines the R-matrix division of configuration space
with time propagation to model attosecond processes in
many-electron atoms. RMT has recently provided valuable
insights into high-harmonic generation [17], and experimental
attosecond transient absorption spectroscopy data [18]. The
RMT approach has been extended to model dynamics in
atomic systems where two electrons are ejected from the core,
demonstrated with an application to double photoionisation
from a Helium atom [19].

We use RMT theory to consider ultrafast dynamics
that occur within electron-impact excitation, ionization,
and in particular ionization-excitation processes. Whereas
previous application of RMT theory for two electron ejection
considered systems with a single double-ejection threshold,

the present study investigated the numerical accuracy of
the approach for systems with multiple thresholds. The
present process provides an opportunity to robustly assess
the numerical techniques in the RMT approach through
quantitative comparison with present data for electron-impact
of He in the S-wave model [7,8,11–13].

The treatment of this particular problem provides a stepping
stone towards the development of an RMT approach for the
full treatment of double ionization in general atomic systems.
The backbone of the treatment would be formed by states
consisting of a double ionization threshold of two or more free
electrons. The electron-He scattering process can be regarded
as the simplest of such systems. The RMT approach for this
scattering process thus offers a clear development path towards
a general atomic code for the treatment of double ionization.
In addition to this, the time-dependent nature of the RMT
treatment can provide dynamical insight into the scattering
processes. For example, whereas the excitation of autoionizing
states in this scattering process has been considered previously
[13], a time-dependent treatment can reveal clear signatures of
dynamics within these states. Furthermore, a time-dependent
method, such as RMT also allows the spin coupling between
the electrons to be traced during the scattering process.

Throughout this paper, we use atomic units unless otherwise
stated.

II. THEORY

In RMT, the three-electron S-wave Hamiltonian

Ĥ =
3∑

n=1

(
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)
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is used within the Schrödinger equation

i
d

dt
�( �R,χ,t) = Ĥ�( �R,χ,t), (2)

where �R is the position vector (r1,r2,r3) and rn is the radial
coordinate of electron n. r>

n′n′′ is the greater of rn′ and rn′′ .
�( �R,χ,t) is the time-dependent wave function, where χ

indicates the spin coupling of the electrons.
Three regions of configuration space are defined within

RMT for two-electron ejection [19]: region (I) with r1,r2,
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r3 < b, where b is the size of the so-called inner region; region
(II), where r1,r2 < b and r3 > b; and region (III), where r1 < b

and r2,r3 > b. The RMT wave function in each region is
described in terms of a time-dependent coefficient and a
time-independent basis as

(I) �( �R,χ,t) =
∑

j

C
(I)
j (t)ψ (I)

j (r1,r2,r3,χ ), (3)

(II) �( �R,χ,t) =
∑

k

C
(II)
k (r3,t)ψ

(II)
k (r1,r2,χ ), (4)

(III) �( �R,χ,t) =
∑
m

C(III)
m (r2,r3,t)ψ

(III)
m (r1,χ ), (5)

where the coefficients C
(II)
k (r3,t) and C(III)

m (r2,r3,t) are defined
at FD grid points across r3 > b, and r2,r3 > b, respectively.
k and m correspond to single- and two-electron channels
in regions (II) and (III), respectively, whereas j indicates
a region-(I) eigenstate. Three-electron escape corresponding
to r1,r2,r3 > b is not considered. Configuration space not
covered in regions (I), (II), and (III) is included via antisym-
metrization of the wave function.

The basis functions ψ (N) are expanded in terms of a further
basis of functions ζ

(N)
k [for (N ) = (I), (II), and (III)] and

appropriate spin functions. These ζ
(N)
k functions are, in turn,

constructed from antisymmetrized products of hydrogenic
eigenfunctions ζ +

n (ri), corresponding to the nth eigenvalue of
the operator

Ĥ+
i = −1

2

d2

dr2
i

− 2

ri

+ Lb, (6)

where Lb is the Bloch operator [20], written as

Lb = 1

2
δ(ri − b)

d

dri

. (7)

To minimize the number of basis functions, at least one of the
electrons within the inner region (ri < b) is restricted to the
lowest three eigenstates. This “core” electron is thus restricted
to the 1s, 2s, and 3s orbitals. We obtain eigenfunctions for
the inner-region (ri < b) aspect of the wave function in each
of the three regions through diagonalization of the following
Hamiltonians:

(I) Ĥ+
1 + Ĥ+

2 + Ĥ+
3 + 1

r>
12

+ 1

r>
23

+ 1

r>
13

,

(II) Ĥ+
1 + Ĥ+

2 + 1

r>
12

, (8)

(III) Ĥ+
1 ,

where Ĥ+
i is the hydrogenic Hamiltonian given in Eq. (6).

As with previous RMT implementations, the wave function
is propagated in time from an initial state at t = t0. This initial
state contains two electrons in the He ground state and an
incoming s electron, described by a Gaussian wave packet
with a rms width of 10a0 centered on r3 = 75a0.

In this study, we use a sixth-order Taylor-series propagator.
The kinetic-energy operations on the coefficients defined
across FD grids [− 1

2
d2

dr2
3

in region (II) and − 1
2

d2

dr2
2
, − 1

2
d2

dr2
3

in region (III)] are evaluated using FD operators. Near the
inner boundary of regions (II) and (III), the FD grids contain

insufficient grid points to complete the center-difference FD
operation. The missing data points are hence obtained from the
wave function in region (I) or region (II), respectively. Addi-
tionally, propagation using the physical three-electron Hamil-
tonian in Eq. (1) requires cancellation of the Bloch operator
terms contained within Ĥ+

3 [region (I)] and Ĥ+
2 [region (II)],

as defined in Eq. (8). This is achieved through the evaluation
of an FD first-derivative operation on the wave function at
the boundary between regions (I) and (II), and the boundary
between regions (II) and (III), as implemented in [19].

The initial wave function is propagated in time until the
scattered electron has moved well away from the residual atom
or ion. Electron-impact excitation yields are then obtained
from the total population in the relevant region-(II) channel.
Electron-impact ionization yields are obtained from the total
population in region (III) associated with a particular residual
He+ state (1s, 2s, or 3s). These yields are then transformed
into electron-impact scattering cross sections.

III. RESULTS

Figure 1 shows impact excitation and ionization cross
sections for He in the S-wave model over the electron-impact
energy range between 25 and 225 eV. For all processes shown,
we observe good agreement with the benchmark data. The
largest difference (25%) is seen at large impact energies for
electron-impact ionization with excitation of the residual ion
to the 2s state, where the restriction of the core electron to
1s, 2s, or 3s could have a more significant effect on the
modeling. We also note a more pronounced difference near the
threshold for electron-impact ionization. In this energy range,
the main difficulty lies in distinguishing two-electron ejection
from the excitation of high-lying excited states (a similar
challenge was encountered in [19]). Overall, the cross sections
for electron-impact scattering show excellent agreement with
those obtained in [7] and demonstrate the accuracy of the
present approach.

Following excitation, the population of the 2s2s state
decreases over time as the state autoionizes. In Fig. 2, the
population of the channel associated with the 2s2s state in
region (II) is shown as the calculation propagates in time.
We note that the sharp increase in yield (light red points)
corresponds not to the excitation of the 2s2s state, but rather
to the flow of the scattered electron in the 2s2s channel from
region (I) into region (II). The exponential decay of the 2s2s

state is then seen in Fig. 2 (dark red points). The light blue
line is a fit of the exponential decay function A exp(−γ t)
to the dark red points. From this fit, a 2s2s decay rate of
γ = 1.10 × 1014 s−1 is obtained, which agrees to within 10%
with the decay rate given in [7]. The earliest dark red point is
taken as the yield for the 2s2s state, from which the value
for the 2s2s cross sections shown in Fig. 1 is calculated.
The moment of collision in the calculation shown in Fig. 2 is
estimated to happen approximately 1.1 fs after the beginning
of the calculation, with the first reliable 2s2s yield obtained
approximately 0.5 fs later. We estimate that this lack of
access to an immediate 2s2s yield introduces an uncertainty
of approximately 10% to the RMT 2s2s cross section.

Previous studies have shown the theoretical time-dependent
description of autoionization to be an interesting chal-
lenge [21–23]. We can identify such autoionization dynamics
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FIG. 1. Electron-impact cross sections for He in the S-wave
model for impact energies between 25 and 225 eV as obtained in
the RMT approach. Cross sections for electron-impact excitation to
1s2s and 2s2s; electron-impact ionization, leaving He+ in 1s; and
electron-impact ionization with excitation of He+ to 2s. All cross
sections are compared with benchmark data (calculated using the
PECS method) from [7,8].

within the RMT model of the scattering process. We show
in Fig. 3 the probability density associated with a residual
He+ ion in the 1s state at 11.96 fs after the beginning
of the model. The direct electron-impact-ionization wave
packet can be seen as an arc from

√
r2

2 + r2
3 ≈ 750a0 to√

r2
2 + r2

3 ≈ 1050a0. In addition to this arc, a series of six
peaks is seen along along r3 ≈ 535a0 and r2 ≈ 535a0. These
peaks signify dynamics associated with doubly excited 2sns

states and their autoionization. The different natures of the two
processes are reflected in the strong interference where this
series and arc overlap. We consider that the distance along
coordinate r3 at time t corresponds to the momentum of a
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FIG. 2. Yield of the 2s2s state in region (II). Light red data points
indicate a yield obtained before the excited wave packet has entered
region (II), and dark red data points indicate a yield obtained after
the wave packet has entered region (II). The blue line indicates an
exponential decay fit of the dark red points.

scattered electron after excitation of a doubly excited 2sns

state, i.e., r3 = (t − tc)/kin . Here tc is the value of t at the
moment of collision, and kin is the momentum of the impact
electron after exciting the atom to the 2sns autoionizing
state. Sometime after the moment of collision, the 2sns state
autoionizes, leading to emission of an electron associated with
the r2 radial coordinate. Since this autoionized electron has
a well-defined momentum, r2 and t can be mapped to the
moment of autoionization τn(r2,t) from state 2sns as

τn(r2,t) = t − tc − r2/
√

2En, (9)
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FIG. 3. Probability density of finding electrons 2 and 3 at
positions r2 and r3 when the residual He+ ion in the S-wave model is
left in the 1s state. The density shown is obtained after 11.96 fs for an
incoming electron wave packet of 76 eV, initially centered at 75a0.
The red line at r3 = 535a0 indicates data shown in Fig. 4, associated
with autoionization of the 2sns states.
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FIG. 4. Wave-function density along the lines r3 =
704a0,535a0,375a0,217a0 at times 15.29, 11.96, 8.64, and
5.32 fs after the start of the model, respectively. The 11.96-fs data
correspond to the data shown in Fig. 3. The RMT density (blue)
is compared to model data (red), obtained as described in the text.
The variations in the density correspond to time variation in the
autoionization rate of a superposition of 2sns states.

such that the autoionized electron has traveled from r = 0
at time of emission τn(r2,t) to r = r2 at time t . Interference
between autoionization contributions from 2s2s and higher
2sns states then gives a time-dependent autoionization rate
for the doubly excited He atom, which is reflected in the series
of peaks in Fig. 3.

Figure 4 shows the probability density along the autoion-
ization wave packet (as described by the red line in Fig. 3) at
four moments during the calculation along with a model of the
autoionization arising from the 2sns states. The wave packet
along r2 is modeled by considering the autoionization of the
2s2s, 2s3s, and 2s4s states:

P (r2,t) = C

∣∣∣∣∣
4∑

n=2

√
σnγne−γnτn(r2,t) exp [i(knr2 − Ent)]

∣∣∣∣∣
2

. (10)

In these equations, En is the energy of the 2sns state, γn

is its autoionization rate, and σn is its cross section. These
quantities are obtained from [7]. It is possible to obtain
initial estimates for the normalization constant C from the
shape of the R-matrix wave packet. However, for the sake of
avoiding unnecessary complication, we obtain C by a fit to
each RMT data set. Figure 4 shows close agreement between
the model and the RMT density. The rapid oscillations in
Fig. 4 with a wavelength of ≈55a0 are related to interference
between autoionization from 2s2s and from the superposition
of 2s3s and 2s4s. The modulation of these oscillations with
a wavelength of ≈270a0 is associated with the interference
between autoionization from 2s3s and 2s4s. Hence the
sequence of peaks follows the time-varying autoionization of
the doubly excited residual He atom.

We now turn to a demonstration of the capability of the
RMT approach to describe spin dynamics as well as spatial
dynamics. We note that RMT does not currently directly solve
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FIG. 5. The fraction of the wave function in which the two
innermost electrons are coupled to a triplet state as a function of
time for different impact energies in electron scattering off He in the
S-wave model.

the relativistic Pauli or Dirac equations as the regimes of
interest here are nonrelativistic. Rather, the changes in spin
coupling within the three electron system are inferred from
the antisymmetry that is imposed on the wave function.

To illustrate how this kind of spin dynamics can manifest
itself, we consider a simple thought experiment of sequential
double photoionization of a spin-polarized three-electron
system (such as atomic Li). An incoming high-energy photon
can eject a 1s electron from the spin-polarized Li 1s22s ground
state. The resulting 1s2s state will be in a superposition of 1s2s
1S and 1s2s 3S. The mS = ±1 components of this state can
only be formed by the 1s2s 3S state. However, the mS = 0
component of this state created by photoionization consists
of a coherent superposition of the 1S and 3S states. This
superposition will now change over time between |1s ↑ 2s ↓〉
and |1s ↓ 2s ↑〉, due to the energy gap between the 1S and
3S states. Subsequent photoionization of the 2s electron by
a short time-delayed pulse will then result in an observable
time variation in the spin polarization of the ejected electron,
signifying spin dynamics.

The RMT approach offers the capability to investigate
such spin dynamics effects in an ab initio manner. This is
demonstrated in Fig. 5, which shows the fraction of the
three-electron wave function in which the innermost two
electrons are coupled to triplet spin symmetry as a function
of time for different electron-impact energies. Before the
collision occurs, the innermost electrons are coupled to a
singlet as the He atom is in the initial 1s2 ground state. During
the collision, the incoming electron partially penetrates the
ground state atom, becoming one of the innermost electrons.
The coupling between impact electron and the other inner
electron is partially described by a triplet coupling, causing the
triplet spin fraction of the inner electrons to increase. After the
collision, there is a notable probability for the impact electron
to leave the atom, causing the original atomic electrons to
return to being the inner electrons. This explains the later
increase in singlet coupling.

Figure 5 suggests that, for our particular choice of initial
wave packet, the main spin dynamics in this scattering process
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occurs on a time scale that is dependent on the impact energy.
We note that access to the full time-dependent wave function
enables the use of different recoupling schemes, so it is
possible to investigate the full range of dynamics in spin
coupling between electrons. This may be of particular interest
when more complex atoms with different residual-ion states,
e.g., Ne2+, are investigated.

IV. CONCLUSION

In summary, the RMT approach has been successfully
applied to study dynamics on the attosecond time scale for
three-electron systems from first principles. We have demon-
strated that the RMT approach can reliably describe impact
ionization processes involving double continua associated with
different ionization thresholds. This includes processes where
the incoming electron excites a superposition of doubly excited
states, which leads to ultrafast dynamics in the subsequent
autoionization. The autoionization rates in region (II) are

in excellent agreement with benchmark calculations. With
RMT, it is possible to extract both spin and spatial dynamics
from a single calculation. The RMT codes hence provide
a foundation for the investigation of intense-field multiple-
ionization processes in three-electron systems as a stepping
stone for our long-term aim to study such processes in general
atoms.
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