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Effective three-particle forces in polyvalent atoms
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We study the effective three-particle interactions between valence electrons, which are induced by the core
polarization. Such interactions are enhanced when valence orbitals have a strong overlap with the outermost
core shell, in particular, for systems with partially filled f shells. We find that in certain cases the three-particle
contributions are large, affecting the order of the energy levels, and need to be included in high-precision
calculations.
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I. INTRODUCTION

The accurate prediction of atomic properties is crucial
for many applications, ranging from tests of fundamental
physics [1,2] to building ultraprecise atomic clocks [3]. In
recent years, atoms and ions with more complicated electronic
structures, including lanthanides and actinides, were the focus
of many studies [4–10]. In particular, highly charged ions
(HCIs) with open nf shells have been suggested for the design
of high-precision atomic clocks and the search for the variation
of the fine-structure constant [11,12]. These applications
require accurate predictions of transition wavelengths and
other atomic properties, motivating further development of
high-precision atomic methodologies.

It is well known that three-particle interactions play
important roles in nuclear physics. Such interactions arise,
for example, because of the internal structure of the nucleons
[see Fig. 1(a)]. If the nucleon c polarizes the nucleon b,
then the interaction of the latter with the third nucleon a is
modified. In atomic physics we deal with pointlike electrons,
and such a mechanism of generating effective three-particle
interactions is absent. However, the atoms have an electronic
shell structure and interactions between valence electrons are
modified by the stronger bound core electrons, which form
a kind of inhomogeneous dielectric medium. This is known
as core polarization, or the screening effect, and is described
by the diagrams shown in Fig. 1(b). The loop in this diagram
includes the sums over all core states n and all possible states α

above the core. However, some of the states α can be occupied
by valence electrons and should be excluded due to the Pauli
principle. This leads to the diagram shown in Fig. 1(c), which
cancels the contributions of the states α = b,b′ in the diagram
shown in Fig. 1(b). Therefore, we can say that three-electron
interactions (TEIs) between valence electrons appear because
core polarizability depends on the presence of the valence
electrons. Note that TEIs are also considered in condensed
matter physics (see, e.g., Ref. [13]).

The diagram shown in Fig. 1(c) (and its possible permuta-
tions) is the only three-electron diagram in the second order of
the many-body perturbation theory (MBPT) in residual two-
electron interactions. In the case of an initial three-electron

state (a,b,c) and a final state (a′,b′,c′) there are 36 diagrams,
which differ by permutations of these states. This number
rapidly grows with the number of valence electrons and the
number of valence configurations, which are included in
the calculation. As a result, the total contributions of such
diagrams for polyvalent atoms may be large.

Effective TEIs described by the diagram shown in Fig. 1(c)
were introduced in Ref. [14] within the CI+MBPT approach.
This approach combines the configuration interaction (CI)
method for treating valence correlations with MBPT for core-
valence and core-core correlations. Since then this method
was used for calculations of various properties of polyvalent
atoms with several closed core shells [15–21]. Later, a CI+AO
(all-order) method was developed in Refs. [22–24]. It includes
higher-order core valence correlations by combining the con-
figuration interaction and linearized coupled-cluster approach.

In Ref. [14] neutral Tl was calculated as a three-valence
atom and the TEI contribution to the valence energy was
found to be very small, on the order of 10 cm−1, leading
to the omission of TEI contributions in a vast majority of
later calculations. The reason for the suppression of the TEI
contribution is clear from Fig. 1(c): Valence orbitals b and b′
typically have a very small overlap with all core orbitals n.
However, this is not always the case. When valence d or f

shells are filled, they may have a relatively large overlap with
the outermost core shell, which in these cases has the same
principal quantum number. In Ref. [25] TEI corrections to
the transitions frequencies of Ti+ were found to be from 100
to 200 cm−1. The ground configuration of Ti+ is 3d24s and
the outermost core shell is 3p. The 3d and 3p shells are not
spatially separated and have a significant overlap, resulting in
the enhancement of the TEI contributions.

As we noted above, there is significant recent interest in
HCIs with optical transitions between the states of configura-
tions with 4f and 5f electrons [11,12]. Two very important
experimental steps toward the development of new frequency
standards with these systems and subsequent applications
to the search for a possible variation of the fine-structure
constant α were recently completed. First, the predicted 5s-4f

transitions were detected in a number of HCIs [26]. Second,
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FIG. 1. Effective interactions. (a) Complex particles: Particle c

polarizes particle b, which then interacts with particle a. (b) Screened
interaction: Particle c polarizes the core and interacts with particle a.
(c) Particles a, b, and c interact through the excitation of the core.

sympathetic cooling of Ar13+ with Be+ was demonstrated [27],
paving the way to placing the highly charged ions on the same
footing as the singly charged ions, such as Al+ currently used
for optical atomic clocks [28].

Recent work [10] identified ten HCIs with very narrow
optical transitions, where high-precision spectroscopy is pos-
sible. All these ions have atomic cores with 46 electrons
[1s2 . . . 4d10] and one to four valence electrons from the 4f ,
5s, and 5p shells. Five ions from this list have three valence
electrons: Ce9+, Pr10+, Nd11+, Sm13+, and Eu14+. Their ground
configurations are either 5s25p or 5s24f . Pr9+ and Nd10+ have
four valence electrons with ground-state configurations 5s25p2

and 5s24f 2, respectively. We expect that valence 4f orbitals
have a large overlap with the core shell 4d, significantly
enhancing three-particle interactions. Since the prediction of
accurate transition energies in these highly charged ions is
crucial for rapid experimental progress, it is important to
evaluate the TEI contributions in these systems, which have
been so far omitted in relevant HCI calculations.

In this paper we study the role of such effective three-
electron interactions in the spectra of polyvalent atoms and
ions. Below, we calculate TEI corrections to the transition
frequencies of the following ions: Ce9+, Pr9+,10+, Nd10+,11+,
Sm13+, and Eu14+. We also calculate the properties of the U2+
ion as an example of a tetravalent system with a partially filled
5f shell [29]. We find that TEI corrections to the valence
energies are typically of the order of a few hundred cm−1

in these systems, but may exceed a thousand cm−1. In some
cases this is enough to change the order of low-lying levels,
significantly affecting theoretical predictions.

II. THEORY

We use a Dirac-Coulomb-Breit Hamiltonian in the no-pair
approximation [30,31]. Low-lying levels of ions are found with
the CI+AO method [23]. In this method, the core-valence and
core-core correlations are treated using the linearized coupled-
cluster method in the single-double approximation [32,33]
instead of the second-order MBPT used in the CI+MBPT
approach. A complete treatment of the TEI at the CI+AO
level involves modification of the TEI diagrams in Fig. 1(c)
to the form presented in Fig. 2, where one Coulomb-Breit
interaction is substituted by the respective cluster core-valence
amplitude [22]. However, we find it sufficient to carry out
CI+AO calculations of the wave functions and then treat TEI
corrections within the second-order MBPT for the systems of
interest.

FIG. 2. The effective three-electron interaction in the coupled-
cluster approximation. The double vertical line corresponds to the
two-electron core-valence cluster amplitude. Such amplitudes are
found by solving standard cluster equations [23]. Then, the TEI
diagrams are evaluated using the resulting cluster amplitudes.

Our initial approximation corresponds to the Hartree-Fock
potential of the core, V Nc , where Nc is the number of core
electrons. Such an approximation completely neglects the
interactions between valence electrons and may be too crude
for some neutral polyvalent atoms [24], but is sufficiently good
for HCIs. Next, we form an effective Hamiltonian for valence
electrons,

Heff(E) = HFC + �(E), (1)

where HFC is the Hamiltonian in the frozen-core approxi-
mation, which includes Coulomb-Breit interactions between
valence electrons and the core potential V Nc .

The energy-dependent operator �(E) accounts for the core
polarization effects, such as in Fig. 1(b). In the second order
of MBPT this operator is a three-electron operator. In higher
orders it is the Nv-electron operator, where Nv is the number of
valence electrons (we assume that Nv � 3 and N = Nc + Nv

is the total number of electrons in the system). At this stage
we neglect three-electron and many-electron interactions and
consider the operator � as a two-electron operator. Explicit
expressions for � are given in Refs. [14,23]. We use the
Davidson algorithm to find the L lowest eigenvalues and
eigenfunctions of the operator Heff (typically L ∼ 10).

The selection rules for three-electron matrix elements are
much weaker than for two-electron ones and the number of
nonzero matrix elements of the effective Hamiltonian drasti-
cally increases. Consequently, the matrix becomes less sparse.
Forming and diagonalizing such a matrix in a complete config-
urational space is impractically time consuming. Instead, we
include TEIs by forming a small L × L matrix using eigen-
functions from the previous stage of the computation. Diago-
nalization of this matrix gives us eigenvalues with TEI correc-
tions. This approach radically reduces the number of required
three-electron diagrams without a significant loss of accuracy.

III. RESULTS AND DISCUSSION

A. In-like and Sn-like HCI with narrow optical transitions

For In-like Ce9+, Pr10+, Nd11+, Sm13+, and Eu14+ ions (49
electrons) and for Sn-like Pr9+ and Nd10+ ions (50 electrons)
we use the results of previous CI+AO calculations with
the Dirac-Coulomb-Breit two-electron effective Hamiltonian
described in detail in Refs. [34,35], respectively. In-like ions
were calculated in Ref. [34] in two approximations, either
as systems with one or three valence electrons. Similarly,

032512-2



EFFECTIVE THREE-PARTICLE FORCES IN POLYVALENT . . . PHYSICAL REVIEW A 94, 032512 (2016)

FIG. 3. TEI for the case of the valence 4f electron and the
4d core shell. Left panel: Selection rules for the 4d-4f vertex
require odd multipoles K,K ′ for the Coulomb interaction. Right
panel: Example of the nonzero diagram for the configuration 5s4f 2.
Selection rules for the 5s24f and 4f 3 configurations require even
multipoles and prohibit vertexes with 4d core shell electrons; thus,
for these configurations the 4d contribution to TEI diagrams vanishes.

Sn-like ions were treated in Ref. [35] as systems with two
or four valence electrons. Calculations with three and four
valence electrons include correlations more completely and
are expected to be more accurate. On the other hand, in these
approximations we need to include TEI contributions. In this
work, we use eigenfunctions obtained in Refs. [10,34,35] and
add TEI corrections as discussed above.

Trivalent ions considered in this work have the following
low-lying valence configurations with 4f electrons: 5s24f ,
5s4f 2, and 4f 3. Figure 3 illustrates that the contribution from
the uppermost 4d core shell in TEI diagrams vanishes for the
5s24f and 4f 3 configurations. Therefore, we can expect large
TEI corrections only for the 5s4f 2 configuration. In Ce9+,
Pr10+, and Nd11+ this configuration lies very high and is not of
interest to clock applications. Only in Sm13+ is this configura-
tion within the optical range transition from the ground config-
uration 5s24f . In Eu14+ the 5s4f 2 configuration becomes the
ground one. Consequently, the TEI corrections to the energies
of the low-lying levels of Ce9+, Pr10+, and Nd11+ are rather
small, but become much larger for Sm13+ and Eu14+. For the
former group of ions these corrections are on the order of 100
cm−1 or less, but for the latter group they exceed 500 cm−1.

The results of our calculations for HCI with three valence
electrons are presented in Table I. The spectrum of Eu14+ is
also shown in the central panel of Fig. 4. The TEI corrections
shift the levels of the odd parity down by approximately
500 cm−1, with the only exception being one level at the top
of the plot. For this level there is a large nondiagonal TEI
interaction with the lower level of the same J and parity. This
interaction is shown by the vertical arrow.

Tetravalent Pr9+ and Nd10+ ions have low-lying 5s25p2,
5s25p4f , and 5s24f 2 configurations. There are no contri-
butions of the uppermost core shell 4d to the TEI diagrams
for the pure 5s25p2 configuration. On the other hand, the
configuration interaction for these ions is stronger than for
three-electron ions and the 4d shell contributes even to those
levels, which nominally belong to the 5s25p2 configuration.
Moreover, the number of permutations of the TEI diagrams
for four-electron ions is larger, leading to an additional
enhancement of the TEI corrections. Our results are presented
in Table II. The spectrum of Nd10+ is also shown in Fig. 4.
We see that TEI corrections for all configurations are positive
and large, on the order of 1000 cm−1. The respective energy

TABLE I. Calculated low-lying levels of Ce9+, Pr10+, Nd11+,
Sm13+, and Eu14+. Column 4 lists excitation energies in the CI+AO
approximation from Ref. [34]. TEI corrections to the valence energy
and respective shifts relative to the ground state are given in columns
5 and 6. The last column presents the final calculated spectra. All
values are in cm−1.

Ion Config. J CI+AO TEI �TEI Total

Ce9+ 5s25p 1
2 0 171 0 0

5s25p 3
2 33436 177 6 33442

5s24f 5
2 55694 126 −45 55649

5s24f 7
2 58239 121 −50 58189

Pr10+ 5s25p 1
2 0 183 0 0

5s24f 5
2 4496 147 −36 4460

5s24f 7
2 7817 141 −42 7776

5s25p 3
2 39127 190 7 39134

Nd11+ 5s24f 5
2 0 167 0 0

5s24f 7
2 4173 160 −7 4167

5s25p 1
2 52578 198 31 52609

5s25p 3
2 97945 205 39 97984

Sm13+ 5s24f 5
2 0 205 0 0

5s24f 7
2 6165 197 −8 6157

5s4f 2 11
2 22521 530 326 22847

5s4f 2 3
2 24774 531 326 25100

5s4f 2 13
2 28135 527 322 28458

5s4f 2 5
2 31470 528 324 31794

Eu14+ 5s4f 2 7
2 0 574 0 0

5s4f 2 9
2 2592 575 1 2593

4f 3 7
2 4235 −126 −700 3535

5s4f 2 11
2 6694 569 −4 6690

4f 3 11
2 8348 −115 −689 7659

5s4f 2 3
2 9664 571 −3 9662

5s4f 2 13
2 11259 565 −9 11250

5s4f 2 5
2 11410 570 −3 11407

4f 3 11
2 12583 −110 −684 11900

shifts relative to the ground state are significantly smaller,
about 600 cm−1or less. We conclude that the size of the TEI
corrections for Pr9+ and Nd10+ is not so sensitive to the leading
configuration and, therefore, is less predictable based on the
selection rule arguments, since it is significantly affected by
the configuration interaction.

B. The U2+ ion

In this section we consider U2+ as an example of an ion with
a partially filled 5f shell. This ion has four valence electrons
and a [1s2 . . . 5d106s26p6] core. Low-lying configurations
include 5f 36d, 5f 37s, and 5f 4. Here, two valence orbitals
have a large overlap with the core: 5f overlaps with the
5d shell, while 6d overlaps with the 6p shell. As a result,
the TEI corrections are very large for the 5f 36d and 5f 37s

configurations. For the 5f 4 configuration, selection rules for
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FIG. 4. Level diagrams of Nd10+, Eu14+, and U2+ ions with and without TEI corrections. Solid red lines: levels of even parity; dashed blue:
odd parity. The vertical arrow in the central panel shows two strongly interacting levels.

multipoles suppress the TEI corrections. We use the results
from Ref. [29] as a starting point for our calculation. In
Table III we present the calculated spectrum of U2+ from
Ref. [29] and our TEI corrections to the energies. Both spectra
are also shown in the right panel of Fig. 4.

TABLE II. Calculated low-lying levels of Pr9+ and Nd10+ (cm−1).
Notations are the same as in Table I.

Ion Config. J CI+AO TEI �TEI Total

Pr9+ 5s25p2 0 0 571 0 0
5s25p4f 3 22918 544 −28 22891
5s25p4f 2 25022 874 303 25325
5s25p4f 3 28023 692 121 28143
5s25p2 1 28422 606 34 28456

5s25p4f 4 30370 396 −175 30195
5s25p2 2 36459 720 149 36607

5s25p4f 3 56234 869 298 56532

Nd10+ 5s25p4f 3 0 534 0 0
5s24f 2 4 454 1115 581 1035
5s24f 2 2 3580 828 293 3873
5s24f 2 5 3512 1104 569 4081

5s25p4f 3 5910 772 238 6147
5s24f 2 6 6669 1093 559 7228

5s25p4f 4 7316 698 164 7480
5s24f 2 2 8320 975 441 8761

We see that TEI corrections in U2+ are large and signifi-
cantly differ even for levels of the same configuration. This
can be explained by the large number of diagrams for the
four-electron system which can either add coherently or cancel

TABLE III. Calculated levels of U2+ (cm−1). The eight lowest
levels of each parity are listed. Notations are the same as in Table I.

Ion Config. J CI+AO TEI �TEI Total

U2+ 6d5f 3 6 0 679 0 0
6d5f 3 5 567 680 −13 568

5f 4 4 2294 −45 −724 1571

6d5f 3 3 3890 972 130 4184
5f 37s 7 4324 698 80 4344
6d5f 3 4 3769 1393 333 4483

5f 4 5 5238 −44 −723 4515
6d5f 3 6 4698 704 −181 4724
5f 37s 5 4771 1482 145 5575
6d5f 3 4 6276 352 304 5949

5f 4 6 7886 −48 −727 7159
5f 4 7 10221 −76 −755 9466
5f 4 4 10722 149 −529 10192
5f 4 3 11677 369 −309 11368
5f 4 8 12345 −115 −794 11551
5f 4 3 12660 355 −324 12336
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each other. As expected, TEI corrections for the levels of the
5f 4 configuration are several times smaller than for two other
configurations due to selection rules.

The U2+ ion has a very dense spectrum with a typical
level spacing of a few hundred cm−1 even near the ground
state. This is much smaller than the average TEI correction.
Moreover, the dispersion of TEI corrections is also larger than
the typical level spacing. Thus, it is not surprising that the
order of levels appears to be significantly different when the
TEI corrections are taken into account (see the right panel
of Fig. 4). We note, however, that the TEI corrections are
insufficient to significantly improve agreement between our
theory and the experiment for U2+.

C. Accuracy analysis

Let us briefly discuss how accurately we account for TEI
interactions. Potentially, there are three sources of errors:

(1) Incompleteness of the one-electron basis set. It is clear
from Fig. 1(c) that in TEI diagrams we do not sum over
intermediate states (the only sum is over core states), so there
is no error associated with the final basis set.

(2) The truncation of the contributions from the subdom-
inant configurations. We neglect small contributions to the
eigenfunctions when calculating TEI corrections. Typically,
the configurational mixing accounts for a 10% correction to the
binding energy. The main part of these corrections comes from
the small number of leading configurations, which we take
into account. We estimate the neglected part of this correlation
correction to be on the order of 2%–3% of the largest TEI
correction.

(3) High-order corrections to TEI diagrams. We calculate
TEI corrections within the second-order MBPT, Fig. 1(c),
instead of using the more accurate expression, Fig. 2. Higher-
order terms typically give 5%–10% corrections to the second-
order diagrams. As long as the cluster amplitudes in the
diagram shown in Fig. 2 are the same as in two-electron
valence diagrams, we can expect similar sizes of the high-order
corrections here, i.e., 5%–10%.

We conclude that our error for the TEI contribution can be
up to 10%. According to this estimate we can assign the TEI
error bar to be 50 cm−1 for three-electron ions from Table I and
about 100 cm−1 for four-electron ions from Table II. For U2+

both CI and high-order errors are the largest. We can assume
here a conservative error bar of 200 cm−1. All these error bars
for TEI corrections are smaller than the total theoretical errors,
so they do not affect the overall accuracy of the theory.

IV. CONCLUSIONS

We calculated corrections to the energies of several heavy
polyvalent ions from effective three-electron interactions
induced by core polarization. We find that these corrections
may be on the order of 1000 cm−1 for systems with partially
filled 4f or 5f shells. Atoms and ions with a partly filled f

shell usually have a very dense spectrum and TEI corrections
can change the predicted order of the energy levels. Large TEI
diagrams obey specific selection rules. For some configura-
tions these selection rules cannot be satisfied, suppressing the
TEI corrections for levels of such configurations.

The number of TEI diagrams rapidly grows with the
number of valence electrons and the Hamiltonian matrix
becomes less sparse. This makes it very difficult to accurately
account for TEI corrections when they become large. Here, we
used a relatively simple approximation when we calculated
the TEI corrections only in a small subspace spanned by
lower eigenvectors of the unperturbed problem. This method
works for the eigenvalues, but may be insufficient for other
observables.

Finally, we note that ions considered here are sufficiently
heavy for quantum electrodynamic (QED) corrections to be
important. In fact, QED corrections appear to be of the
same order as the TEI corrections considered here. Therefore,
accurate calculations have to account for both types of correc-
tions. However, the accurate treatment of QED corrections in
many-electron systems is highly nontrivial [36–39], and this
topic is studied elsewhere [40].
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465 (2016).

[5] M. Saffman and K. Mølmer, Phys. Rev. A 78, 012336
(2008).

[6] J. J. McClelland and J. L. Hanssen, Phys. Rev. Lett. 96, 143005
(2006).
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