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Electromagnetic Casimir energy of a disk opposite a plane
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Building on work by J. Meixner [Z. Naturforschung 3a, 506 (1948)], we show how to compute the exact
scattering amplitude (or T-matrix) for electromagnetic scattering from a perfectly conducting disk. This
calculation is a rare example of a nondiagonal T-matrix that can nonetheless be obtained in a semianalytic
form. We then use this result to compute the electromagnetic Casimir interaction energy for a disk opposite
a plane, for arbitrary orientation angle of the disk, for separations greater than the disk radius. We find that
the proximity force approximation (PFA) significantly overestimates the Casimir energy, in the case of both
the ordinary PFA, which applies when the disk is parallel to the plane, and the “edge PFA”, which applies
when the disk is perpendicular to the plane.
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I. INTRODUCTION

Scattering methods have greatly expanded the range of
situations in which one can compute the Casimir energy [1] of
quantum electrodynamics. In this approach, one decomposes
the path integral representation of the Casimir energy [2]
as a log-determinant [3] in terms of a multiple scattering
expansion, as was done for asymptotic separations in Refs. [4]
and [5]. This representation is closely connected to the Krein
formula [6–8] relating the density of states to the scattering
matrix for an ensemble of objects. It can also be regarded as
a concrete implementation of the perspective emphasized by
Schwinger [9] that the fluctuations of the electromagnetic field
can be traced back to charge and current fluctuations on the
objects.

The scattering method was first developed for general
shapes in the context of van der Waals interactions [10].
In planar geometries, the scattering approach yields the
Casimir energy in terms of reflection coefficients [11–13]. By
relating the scattering matrix for a collection of spheres [14]
or disks [15] to the objects’ individual scattering matrices,
Bulgac, Magierski, and Wirzba were also able to use this result
to investigate the scalar and fermionic Casimir effect for disks
and spheres [16–18]. A more general formalism, developed
in [19–21], has made it possible to extend these results to
other coordinate systems, an approach that is particularly
useful for geometries, such as the ones we consider here,
with edges and tips [22–30]. It can also be applied to dilute
objects in perturbation theory [31] and extended to efficient,
general-purpose numerical calculations [32]; a review and
further references can be found in Ref. [33]. In this approach,
each object is characterized by its scattering amplitude, also
known as the T-matrix, which describes its response to an
electromagnetic fluctuation. It can therefore be implemented
for any object whose T-matrix can be calculated using a basis
for which an expansion of the free electromagnetic Green’s
function exists [34].
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For scalar models, the Casimir energy of a disk opposite
a plane has been calculated for a general angle between
the disk axis and the normal to the plane [35] as the
zero-radius limit of an oblate spheroid. Unfortunately, for
electromagnetism the wave equation in spheroidal coordinates
is not separable. However, Meixner [36] has developed a
calculation of diffraction for a disk, using a spheroidal vector
basis. By extending this calculation, including an additional
subtlety of the case where the azimuthal quantum number
m is 0, we obtain the T-matrix in this basis and use it to
calculate the Casimir energy for a perfectly conducting disk
opposite a plane. This T-matrix is nondiagonal, and the basis
in which it is expressed is not orthonormal. Nonetheless, we
can implement appropriate conversions to make it amenable
to the calculation of the Casimir interaction energy. We apply
this method to the case of a disk opposite a plane, including
rotations of the disk axis relative to the normal to the plane.
This calculation enables us to extend results for conductors
with edges in Casimir systems to an example involving a
compact object.

II. THE T-MATRIX

In this section, we calculate the T-matrix for an infinitely
thin and perfectly conducting disk. Here, we build on an earlier
calculation for this scattering problem, done by Meixner in
his classic paper [36].1 However, as we see, that solution was
incomplete; we extend it to obtain the full T-matrix, as required
for Casimir calculations.

A. Electromagnetic scattering from an infinitely thin
conducting disk

We consider a perfectly conducting, infinitely thin disk
of radius R lying in the z = 0 plane, with the z axis being
the symmetry axis of the disk. This idealized case models

1An English translation due to N. Sadeh is available from the
authors.
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thin disks, where the thickness of the disk is assumed to
be small compared to the wavelength of the electromagnetic
field but large enough for the disk to be perfectly reflecting
at the wavelengths of interest. We consider the case of zero
temperature, although it is straightforward to extend our
calculation to include thermal effects as well.

For a given incoming electric field Ein, we find the
corresponding outgoing wave Eout such that the boundary
conditions on the disk are satisfied. The standard boundary
conditions require that the tangential component of the electric
field (Ein + Eout)tang vanishes on the disk. Were the disk a
smooth body without its sharp edge, this condition would be
enough to solve the physical scattering problem. However, the
sharpness of the infinitely thin disk causes the outgoing field to
diverge on the edge. It turns out that there are many outgoing
solutions that satisfy the boundary conditions but diverge at
the edge in a way such that the integrated electromagnetic
energy density is infinite [36]. Such outgoing solutions are
nonphysical mathematical solutions of the scattering problem.
There is only one solution that diverges slowly enough so
that the electromagnetic energy density when integrated is
still finite. As a result, this edge condition uniquely fixes the
physically correct scattering solution.

The physical scattering problem for an infinitely thin disk
can then be formulated in the following way:

(1) The fields (Ein, Eout)tang obey the Maxwell equations.
(2) At large distances, the outgoing wave behaves like an

outgoing spherical wave with an angular-dependent amplitude.
(3) On the disk the field satisfies the boundary conditions

(Ein + Eout)tang = 0.
(4) On the edge, the field satisfies the edge condition,

i.e., the field diverges slowly enough that the electromagnetic
energy of the outgoing field is finite.

Note that the edge condition involves the outgoing field
only, because the incoming field does not diverge on the
edge. Of course, the scattering problem can equivalently be
formulated in terms of the magnetic field B.

1. The Debye potentials

In the following, we use natural units where c = μ0 = ε0 =
1. Following Meixner [36], we express the E and B fields in
terms of the scalar Debye potentials �1 and �2,

E = ∇ × ∇ × (r �1) + i k ∇ × (r �2), (1)

B = −i k ∇ × (r �1) + ∇ × ∇ × (r �2). (2)

Here, k is the wave number and r is the position vector r =
(x,y,z). The Debye potentials solve the scalar wave equation

��i + k2�i = 0 for i = 1,2, (3)

and therefore the E and B fields obey the Maxwell equations

∇ × E = i k B, ∇ × B = −i k E. (4)

To express the boundary conditions for the electric field
in terms of the Debye potentials, it is useful to switch to
cylindrical coordinates (ρ,ϕ,z). Due to the axial symmetry of
the problem, it is sufficient to consider Debye potentials of the
form �1,2(ρ,ϕ,z) = �1,2(ρ,z)ei m ϕ , where m is the conserved
azimuthal quantum number. Since the incoming and the

outgoing fields have the same ϕ dependence, this dependence
can be expressed as a Fourier series and considered term by
term. Let us therefore substitute �1,2(ρ,ϕ,z) = �1,2(ρ,z)ei mϕ

into Eq. (1). To eliminate the second derivative with respect to
z, we use Eq. (3). Then, dropping the common factor of ei mϕ ,
the ρ and ϕ components of the electric field E become

Eρ = k2ρ �1(ρ,0) + 2 ∂ρ �1(ρ,0) + ρ ∂2
ρ �1(ρ,0), (5)

Eϕ = i
m�1(ρ,0)

ρ
+ k ρ ∂z�2(ρ,0) + m ∂ρ �1(ρ,0). (6)

Both Eρ and Eϕ have to vanish on the disk. We first solve
Eq. (5) for �1(ρ,0) and then Eq. (6) for ∂z�2(ρ,0) and get

ρ �1(ρ,0) =α cos(k ρ) + β sin(k ρ), (7)

ρ2 ∂z�2(ρ,0) = m (α sin(k ρ) − β cos(k ρ)). (8)

Equations (7) and (8) represent the boundary conditions
expressed in terms of the Debye potentials. The functions α

and β depend on k and m. The boundary conditions are trivially
satisfied if α = β = 0. Yet even the trivial solution may violate
the edge conditions if the incoming wave is not 0. In general,
the physical solution is built out of the trivial solution plus a
special solution with nonzero α and β by exploiting the edge
conditions.

Note that if m = 0, the right-hand side of Eq. (8) vanishes
identically. This case was not considered by Meixner in [36].
One must consider this case more carefully to avoid a free
undetermined parameter in the equations or to a situation
where the edge condition cannot be satisfied at all, resulting
in an unphysical solution. We consider this case later, but first
we formulate the edge conditions.

2. The edge conditions

Let us now use coordinates appropriate for the scattering
problem. The infinitely thin disk can be considered as a limiting
case of an oblate spheroid, so that in the following we will use
oblate spheroidal coordinates (ξ,η,ϕ). They are related to the
Cartesian coordinates via

x = R
√

(1 + ξ 2)(1 − η2) cos(ϕ), (9)

y = R
√

(1 + ξ 2)(1 − η2) sin(ϕ), (10)

z = Rξη, (11)

where

0 � ξ < ∞, − 1 � η � 1, 0 � ϕ � 2π. (12)

The ξ = 0 surface is then just the disk in the z = 0 plane having
radius R and the z axis as a symmetry axis. The center of the
disk corresponds to (ξ = 0, η = ±1) and the edge is described
by (ξ = 0, η = 0). We assume that the Debye potentials can
be expanded in a Taylor series in terms of ξ and η on the
edge. The edge conditions, which guarantee that the integrated
energy density stays finite, read [36]

∂�1

∂ξ
= ∂�1

∂η
= ∂�2

∂ξ
= ∂�2

∂η
= 0 for ξ = η = 0. (13)
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To derive Eq. (13), we have to express �1 and �2 as a power
series in ξ and η, calculate the electromagnetic field using
Eqs. (1) and (2), and then integrate the electromagnetic energy
density. Then the divergences can be ruled out by imposing
Eq. (13).

Let us decompose the Debye potentials into incoming and
outgoing parts,

�i = �in
i + �

out
i + �

out

i , i = 1,2. (14)

Here, it useful to set �out
i = �

out
i + �

out

i , i = 1,2. For �
out
i on

the disk we require

�in
1 + �

out
1 ≡ 0,

∂

∂z

(
�in

2 + �
out
2

) ≡ 0 for ξ = 0.

(15)

The sum �in
i + �

out
i represents the trivial solution in Eqs. (7)

and (8). The second part of the outgoing Debye potential is
then the special solution of the same Eqs. (7) and (8). Note that
since the incoming wave fulfills the edge conditions, instead
of Eq. (13) it is sufficient to require

∂�out
1

∂ξ
= ∂�out

1

∂η
= ∂�out

2

∂ξ
= ∂�out

2

∂η
= 0 (16)

for ξ = η = 0. In the following sections we derive the solution

for �
in,out
i , �

out
i , and �

out

i in terms of spheroidal functions.

3. Debye potentials in terms of spheroidal functions

There are several coordinate systems in which Eq. (3) can
be separated. For example, in spherical coordinates, every
solution of Eq. (3) can be expanded in terms of spherical waves
hn(kr)P m

n (cos θ ) exp(imϕ), where (r,θ,ϕ) are the spherical
coordinates, n and m are spherical quantum numbers, P m

n

are the Legendre polynomials, and hn are the (incoming or
outgoing) spherical Hankel functions. The separation of the
wave equation can also be done in spheroidal coordinates
(ξ,η,φ). The equivalents of the spherical radial and angular
function then are the radial and angular spheroidal functions.
The spheroidal wave functions L are called Lamé functions
and are written as [37,38]

L(1)
n,m(ξ,η,ϕ; iγ ) = S(1)

n,m(−iξ ; iγ )Spn,m(η; iγ )eimϕ, (17)

L(3)
n,m(ξ,η,ϕ; iγ ) = S(3)

n,m(−iξ ; iγ )Spn,m(η; iγ )eimϕ, (18)

where the first function represents the incoming wave and the
second function the outgoing wave. In contrast to their spheri-
cal equivalents, the radial and angular spheroidal functions, S

and Sp, depend on γ ≡ kR. In addition, the radial spheroidal
function also depends on m. Both the angular and the radial
spheroidal functions become their spherical equivalents as
γ → 0 and ξ → ∞, and spherical waves can be expanded
in terms of spheroidal waves, and vice versa. The factors of
±i in the arguments to the spheroidal functions correspond
to the oblate case. Finally, we note that, analogously to the
spherical case, S(1)

n,m(0; iγ ) = Spn,m(0; iγ ) = 0 for n − m even
and ∂ξS

(1)
n,m(0; iγ ) = ∂ηSpn,m(η = 0; iγ ) = 0 for n − m odd.

In addition, Spn,m(η; iγ ) is even (odd) in η for n − m even
(odd).

4. The first part of the scattered field �
out
i

Having chosen the appropriate wave basis, let us return to
the scattering problem. Since the Maxwell equations, (1), are
linear in �1 and �2, it is sufficient to restrict ourselves to the
two cases

�in
1 = L(1)

n0,m0
, �in

2 = 0 (19)

and

�in
1 = 0, �in

2 = L(1)
n0,m0

(20)

for some n0,m0. In this regard we do not consider incoming
plane waves as Meixner in [36] but, instead, work in a basis of
vector spheroidal functions.

The first part, �
out
i , of the decomposed outgoing potential,

�out
i = �

out
i + �

out

i (i = 1,2), can then be found straightfor-
wardly. Considering the first case, �in

1 = L(1)
n0,m0

, �in
2 = 0, one

obtains

�
out
1 = −Lm0 (3)

n0
(ξ,η,ϕ; iγ )

Sm0 (1)
n0

(−i0,iγ )

S
m0 (3)
n0 (−i0,iγ )

, �
out
2 = 0.

(21)

For the second case, �in
1 = 0, �in

2 = L(1)
n0,m0

, the analogous
calculation shows that

�
out
1 = 0, �

out
2 = −Lm0 (3)

n0
(ξ,η,ϕ; iγ )

S
′m0 (1)
n0

(−i0,iγ )

S
′m0 (3)
n0 (−i0,iγ )

.

(22)

The derivative in Eq. (22) is taken with respect to ξ . To derive
Eqs. (21) and (22), we used Eq. (15).

In general, the edge conditions in Eq. (13) will be violated
if we substitute in Eq. (13) the first part �

out
i only. The second

part �
out

i is needed to match the edge conditions. However,
for some values of n0 and m0, the boundary conditions are
satisfied by the incoming field alone and the outgoing field
vanishes identically. Since Sm0 (1)

n0
(−i0,iγ ) ≡ 0 for n0 − m0

odd, and S
′m0 (1)
n0

(−i0,iγ ) ≡ 0 for n0 − m0 even, there is no
scattered field for n0 − m0 odd in the first case and n0 − m0

even in the second. In the next section we construct �
out

i for
general n0 and m0.

5. The second part of the scattered field �
out
i

The second part of the scattered Debye potential �
sc

j can
be expanded in terms of outgoing waves,

�
out

1 =
∞∑

n=|m0|
An0,m0

n Lm0 (3)
n (ξ,η,ϕ,iγ ), (23)

�
out

2 =
∞∑

n=|m0|
Bn0,m0

n Lm0 (3)
n (ξ,η,ϕ,iγ ). (24)

To get the functions An0,m0
n and Bn0,m0

n , Eqs. (23) and (24)
are substituted into Eqs. (7) and (8). Using the orthogonality
of the Sp functions with the normalization convention as in
Mathematica and Meixner-Schaefke [37],∫ 1

−1
Spm

n (η)Spm
l (η)dη = 2(n + m)!

(2n + 1)(n − m)!
δnl, (25)
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and recalling that ρ2 = R2(1 − η2), we can project the expres-
sions onto the Sp functions, thus eliminating the infinite sums.
Then An0,m0

n and Bn0,m0
n can be expressed in terms of α and β

as

An0,m0
n = αn0,m0a

n,m0
1 + βn0,m0b

n,m0
1 , (26)

Bn0,m0
n = αn0,m0a

n,m0
2 + βn0,m0b

n,m0
2 . (27)

Here we have explicitly included the n0,m0 indices on α and
β. In addition, we introduced new functions a1, b1, a2, b2 as

a
n,m0
1 = Nn,m0

S
m0 (3)
n (−i0)

∫ 1

−1
Spm0

n (η)
cos(γ

√
1 − η2)

R
√

1 − η2
dη, (28)

b
n,m0
1 = Nn,m0

S
m0 (3)
n (−i0)

∫ 1

−1
Spm0

n (η)
sin(γ

√
1 − η2)

R
√

1 − η2
dη, (29)

a
n,m0
2 = m0 Nn,m0

S
′m0 (3)
n (−i0)

∫ 1

−1
Spm0

n (η) η
sin(γ

√
1 − η2)

1 − η2
dη,

(30)

b
n,m0
2 = −m0Nn,m0

S
′m0 (3)
n (−i0)

∫ 1

−1
Spm0

n (η) η
cos(γ

√
1 − η2)

1 − η2
dη,

(31)

with

Nn,m = (2n + 1)(n − m)!

2(n + m)!
. (32)

Note that apart from their indices, the functions A,B,α,
β,a1,b1,a2, and b2 depend on γ , and in Eqs. (28)–(30) we
have also suppressed the dependence on γ in the functions S

and Sp. Note also that a
n,m0
1 , b

n,m0
1 vanish for n − m0 odd, and

a
n,m0
2 , b

n,m0
2 vanish for n − m0 even. Indeed for n − m0 odd,

the function Spm0
n (η) is odd in η. Since it is multiplied by an

even function in η in Eq. (28) and (29), the integrals for a1 and
b1 vanish. Analogously, one verifies the second case.

So far, we have strictly followed Meixner [36], implicitly
assuming m0 �= 0. For m0 = 0, the functions a2 vanishes
identically, whereas the function b2 becomes ill defined: on the
one hand, the integral in Eq. (31) is multiplied by m0 = 0, and
on the other hand, the integral itself diverges. The case m0 = 0
therefore requires further consideration. For m0 = 0, Eq. (8)
simply reads ρ∂z�2 = 0, meaning that �2 is proportional to
a δ function of ρ. As a result, we find a

n,0
2 = 0 and b

n,0
2 =

−(2n + 1)[Sp0
n(1) − Sp0

n(−1)]/2S
′m0 (3)
n (−i0), where we write

the right-hand side of Eq. (27) as β̃n0,0b
n,0
2 for the case of

m0 = 0.

6. Calculation of αn0,m0 and βn0,m0

In this section we calculate the functions αn0,m0 and βn0,m0

of Eqs. (26) and (27). Then we will be able to determine

the second part of the scattered Debye potential, �
sc

1 , which,
together with the known first part, Eqs. (21) and (22), will
eventually lead to the scattered field. For m0 �= 0, there are two
unknown functions, αn0,m0 and βn0,m0 , which can be calculated
from the edge conditions in Eq. (16). There are four edge
conditions, but it turns out that that two of them, the second
and third of Eq. (16), are always fulfilled, whereas the first and

the fourth yield the two equations needed to determine αn0,m0

and βn0,m0 .
For m0 = 0, as we mentioned at the end of the last section,

there are three functions, αn0,m0 , βn0,m0 and β̃n0,0, that need to
be determined. At first glance, the system of three unknowns
and only two equations seems to be overdetermined. But as
we will see, itis necessary to set αn0,0 = 0, because otherwise
the scattered solution will diverge in the center of the disk.

Let us now consider the following two cases for incoming
fields, from which all incoming fields can be constructed.

7. The case �in
1 �= 0,�in

2 = 0

Using the fourth edge condition in Eq. (16), we obtain (with
�

out
2 = 0)

∂η �
out

2 = 0 for ξ = η = 0, (33)

where �
out

2 is given by Eq. (24). Expressing Bn0,m0
n as in

Eq. (27), we get

αn0,m0

∞∑
n=|m0|+1

a
n,m0
2 (γ )Sm0 (3)

n (−i0)Sp
′ m0
n (0)

= −βn0,m0

∞∑
n=|m0|+1

b
n,m0
2 (γ )Sm0 (3)

n (−i0)Sp
′ m0
n (0). (34)

The sum starts at n = |m0| + 1, since Sp
′ m0
n (η = 0) = 0 for

n − m0 even. For m0 = 0, the first series vanishes, since a
n,0
2 =

0, whereas βn0,0 in Eq. (34) has to be replaced by β̃n0,0. To
satisfy the edge condition, we therefore need β̃n0,0 = 0, such

that �
sc

2 vanishes identically.
For m0 �= 0, we can express βn0,m0 as

βn0,m0 = −q
m0
1 (γ )αn0,m0 . (35)

The function q
m0
1 (γ ) can be calculated from Eq. (34) as

q
m0
1 (γ ) = sa

m0
2 (γ )

sb
m0
2 (γ )

, (36)

where the functions sa
m0
2 and sb

m0
2 have been defined as

sa
m0
2 (γ ) =

∞∑
n=|m0|+1

a
n,m0
2 (γ )Sm0 (3)

n (−i0)Sp
′ m0
n (0) (37)

and

sb
m0
2 (γ ) =

∞∑
n=|m0|+1

b
n,m0
2 (γ )Sm0 (3)

n (−i0)Sp
′ m0
n (0). (38)

Note that the ratio q
m0
1 (γ ) does not depend on n0.

Unfortunately, the series needed for calculating q
m0
1 do

not converge if written as in Eqs. (37) and (38). The reason
is that the derivative with respect to η has been put inside
the series. However, evaluating the series with Sp instead of
Sp′ we get well-behaved functions of η with a well-defined
derivative at η = 0. We remedy this problem by subtracting
the leading term in γ , which can then be added back in
within an analytic computation. The leading-order integrals
necessary for this subtraction can be computed analytically
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using Eqs. (A4), (A5), (A6), and (A7), as summarized in the
Appendix.

The leading order of q
m0
1 (γ ) can be found analytically for

any m0. For small γ and m0 � 0 even we find

sa
m0
2 (γ ) = −γ (m0 − 1)!!

(m0 − 2)!!
+ O(γ 3) (39)

and

sb
m0
2 (γ ) = 2m0!!

π (m0 − 1)!!
+ O(γ 2), (40)

and for m0 > 0 odd we have

sa
m0
2 (γ ) = −2γ (m0 − 1)!!

π (m0 − 2)!!
+ O(γ 3) (41)

and

sb
m0
2 (γ ) = m0!!

(m0 − 1)!!
+ O(γ 2). (42)

Subtracting the leading order from the diverging series term
by term renders them convergent and numerically evaluable.
It is straightforward to extend these results to m0 < 0, since
both sums are invariant under m0 → −m0.

The remaining edge condition,

∂

∂ξ

(
�

out
1 + �

out

1

) = 0 for ξ = η = 0, (43)

fixes αn0,m0 , which for m0 �= 0 can be found from
Eqs. (21), (23), (26), and (35):

α
n0,m0
1 (γ ) = S

′m0 (3)
n0

(−i0)Spm0
n0

(0)Sm0 (1)
n0

(−i0)[
sa

m0
1 (γ ) − q

m0
1 sb

m0
1 (γ )

]
S

m0 (3)
n0 (−i0)

. (44)

Note the subscript of αn0,m0 , which we added for clarity since
αn0,m0 will have a different functional form in the second case,
�in

1 = 0,�in
2 �= 0, considered in the next section. Analogously

to Eqs. (37) and (38), here sa
m0
1 and sb

m0
1 have been defined as

sa
m0
1 (γ ) =

∞∑
n=|m0|

a
n,m0
1 (γ )S

′m0 (3)
n (−i0)Spm0

n (0) (45)

and

sb
m0
1 (γ ) =

∞∑
n=|m0|

b
n,m0
1 (γ )S

′m0 (3)
n (−i0)Spm0

n (0). (46)

Once again, the series in Eqs. (45) and (46) only converge
if the derivative with respect to ξ is taken after the summation
over n, so we again subtract the leading behavior at small γ ,
which is responsible for the divergence. This subtraction can
then be added back in as an analytic expression for any m0.
For small γ and m0 � 0 even we obtain

sa
m0
1 (γ ) = − (m0 − 1)!!

(m0 − 2)!!
+ O(γ 2) (47)

and

sb
m0
1 (γ ) = − 2m0!!γ

π (m0 − 1)!!
+ O(γ 3), (48)

and for m0 > 0 odd we have

sa
m0
1 (γ ) = − 2(m0 − 1)!!

π (m0 − 2)!!
+ O(γ 2) (49)

and

sb
m0
1 (γ ) = − m0!!γ

(m0 − 1)!!
+ O(γ 3), (50)

while for negative m0 we use that these sums are odd in m0 →
−m0.

A special case arises for m0 = 0. Equations (26) and (27)
decouple, and strictly speaking, we now have to distinguish
between α, β in Eq. (26) and α, β in Eq. (27), which are no
longer related. Let us consider Eq. (34) for m0 = 0. Since
a

n,0
2 ≡ 0, the left-hand side of Eq. (34) vanishes identically,

and so must the right-hand side. Consequently, this implies
�out

2 = 0. Now we are left with two unknowns, α and β, in
Eq. (26). If we keep α �= 0, the derivative of the potential �1

with respect to ξ will fail to converge for η = ±1. This would
imply a diverging En in the center of the disk. This divergence
occurs only for m0 = 0 and can be cured by setting α = 0 in
Eq. (26). Remarkably, for m0 > 0, the Sp functions vanish at
η = ±1 and the field stays finite. Thus we also luckily get rid
of an overcounted parameter. The first term and the series over
b1 can then be calculated and we find βn0,m0=0 as a function of
γ by exploiting the edge condition in Eq. (43) to obtain

β
n0,0
1 (γ ) = S

′0 (3)
n0

(−i0)Sp0
n0

(0)S0 (1)
n0

(−i0)

sb0
1(γ )S0 (3)

n0 (−i0)
. (51)

8. The case �in
1 = 0,�in

2 �= 0

The second case, �in
1 = 0,�in

2 �= 0, can be treated in a
similar way as in the previous section. Using the first edge
condition in Eq. (13) and noting that �

out
1 = 0 [see Eq. (22)],

we obtain

∂ξ�
out

1 = 0 for ξ = η = 0. (52)

Expanding �
out

1 in terms of spheroidal waves as in Eq. (23)
and expressing An0,m0

n as in Eq. (26), we get

αn0,m0sa
m0
1 (γ ) + βn0,m0sb

m0
1 (γ ) = 0, (53)

where the functions sa1 and sb1 are given by Eqs. (45) and (46).
As we explained in the previous section, for m0 = 0 we have

to set αn0,0 = 0, since otherwise ∂ξ�1 will fail to converge at
ξ = 0, η = ±1, leading to a diverging electromagnetic field
in the middle of the disk. Consequently βn0,0 has to vanish in
order to satisfy Eq. (53), meaning that �out

1 = 0.
Let us now restrict to m0 �= 0 and express βn0,m0 as

βn0,m0 = −q
m0
2 (γ )αn0,m0 . (54)

The function q
m0
2 can be easily calculated from Eq. (53) and is

independent of n0,

q
m0
2 (γ ) = sa

m0
1 (γ )

sb
m0
1 (γ )

. (55)

The expansion of the functions sa1 and sb1 for small γ is given
in the previous section. The remaining edge condition

∂η

(
�

sc
2 + �

sc

2

) = 0 for ξ = η = 0 (56)

fixes αn0,m0 . Similarly to Eq. (44) we get

α
n0,m0
2 (γ ) = Sm0 (3)

n0
(−i0)Sp

′m0
n0

(0)S
′m0 (1)
n0

(−i0)[
sa

n,m0
2 − q

m0
2 sb

n,m0
2

]
S

′m0 (3)
n0 (−i0)

. (57)
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Note again the subscript that we added to αn0,m0 in order not
to confuse the different functional forms in Eq. (44) and (57).

The case m0 = 0 again needs special treatment. Since a
n,m0
2

vanishes identically for m0 = 0 [see Eq. (30)], Eq. (27) reduces
to Bn0,0

n = βn0,0b
n,0
2 , where we have dropped the tilde on βn0,0.

We then have

β
n0,0
2 (γ ) = S0 (3)

n0
(−i0)Sp

′0
n0

(0)S
′0 (1)
n0

(−i0)

sb
n,0
2 S

′0 (3)
n0 (−i0)

. (58)

As described above, we set ∂ξ�
sc

2 ∼ δ(1 − η2) for ξ = 0. Then

�
sc

2 = βn0,0
∞∑

n=0

b
n,0
2 (γ )S0 (3)

n (−iξ )Sp0
n(η), (59)

where βn0,0 is fixed by

− S0 (3)
n0

(−i0)Sp
′0
n0

(0)
S

′0 (1)
n0

(−i0)

S
′0 (3)
n0 (−i0)

+ βn0,0
∞∑

n=1

b
n,0
2 (γ )S0 (3)

n (−i0)Sp
′0
n (0) = 0. (60)

B. The T-matrix elements

Having found the complete solution of the scattering
problem, we can express our results in terms of the T-matrix.
The T-matrix depends on the product γ = kR and the quantum
numbers n and m. For large distances from the disk, k �
1/R, the spheroidal modes become spherical modes, which
can be of two types: electrical (E) modes (also called TM
modes) and magnetic (M) modes (also called TE modes).
This decomposition is a general property of Debye potentials.
The potential �1 alone yields a magnetic field with vanishing
radial component (TM or E modes), while the potential �2

corresponds to a vanishing radial component of the electric
field (TE or M modes). Therefore, the T-matrix can be split into
four submatrices, T EE,T MM,T EM, and T ME. In the following
we show how the T-matrix can be constructed from the results
in the previous sections.

1. The case �in
1 �= 0,�in

2 = 0

As we have seen, the incoming mode �
(in)
1 generates

outgoing fields �
(out)
1 and �

(out)
2 . The total potentials �1 and

�2 are a superposition of the incoming and outgoing fields
and may be written as

�1 = �m0(in)
n0

+
∑
n,m

T EE
n,m,n0,m0

�m(out)
n , (61)

�2 = 0 +
∑
n,m

T ME
n,m,n0,m0

�m(out)
n . (62)

Let us first consider the case m0 �= 0. From Eqs. (21), (23),
and (24) we find

T EE
n,m,n0,m0

= − Sm0 (1)
n0

(−i0)

S
m0 (3)
n0 (−i0)

δn,n0δm,m0

+ α
n0,m0
1

(
a

n,m0
1 − q

m0
1 b

n,m0
1

)
δm,m0 (63)

and

T ME
n,m,n0,m0

= α
n0,m0
1

(
a

n,m0
2 − q

m0
1 b

n,m0
2

)
δm,m0 . (64)

Note that all functions depend on γ .
For m0 = 0, the matrix T ME vanishes, whereas T EE

becomes

T EE
n,m,n0,0 = − S0 (1)

n0
(−i0)

S
0 (3)
n0 (−i0)

δn,n0δm,0 + β
n0,0
1 b

n,0
1 δm,0. (65)

For the Casimir interaction at large distances, it is useful to
know the behavior of the T-matrix at small γ . For the elements
of the T EE and T ME matrices we find for m0 > 0 the scaling

Sm0 (1)
n0

(−i0)

S
m0 (3)
n0 (−i0)

∼ O(γ 2n0+1), (66)

α
m0,n0
1

(
a

n,m0
1 − q

m0
1 b

n,m0
1

)
∼ O(γ n0 )[O(γ n+1) − O(γ n+3)], (67)

α
m0,n0
1

(
a

n,m0
2 − q

m0
1 b

n,m0
2

)
∼ O(γ n0 )[O(γ n+2) − O(γ n+2)]. (68)

For nonvanishing T EE elements, n0 − m0 and n − m0 have
to be even. For nonvanishing T ME elements, m0 has to
be larger than 0 and n0 − m0 even and n − m0 odd. The
matrix elements of order O(γ 3) are T EE

0,0,2,0 = 4γ 3/45iπ and
T EE

1,1,1,1 = T EE
1,−1,1,−1 = 8iγ 3/9π .

We now define the vector modes

Mm
n = ∇ × (

r�m
n

)
, Nm

n = 1

ik
∇ × ∇ × (

r�m
n

)
, (69)

so that we can write the E field in the usual form that defines
the T-matrix,

E
ik

= Nm0 (in)
n0

+
∑
n,m

(
T EE

n,m,n0,m0
Nm (out)

n + T ME
n,m,n0,m0

Mm (out)
n

)
,

(70)

showing that our definition agrees with the one used usually
for vector spherical waves.

2. The case �in
2 �= 0,�in

1 = 0

The matrices T MM and T EM can be found as in the case
before. The T-matrix elements are now defined by

�2 = �m0 (in)
n0

+
∑
n,m

T MM
n,m,n0,m0

�m (out)
n , (71)

�1 = 0 +
∑
n,m

T EM
n,m,n0,m0

�m (out)
n . (72)

We again first consider the case m0 �= 0 and obtain

T MM
n,m,n0,m0

= − S
′m0 (1)
n0

(−i0)

S
′m0 (3)
n0 (−i0)

δn,n0δm,m0

+ δm,m0α
n0,m0
2

(
a

n,m0
2 − q

m0
2 b

n,m0
2

)
(73)

and

T EM
n,m,n0,m0

= α
n0,m0
2

(
a

n,m0
1 − q

m0
2 b

n,m0
1

)
δm,m0 . (74)
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For m0 = 0, the matrix T EM vanishes, whereas T MM

simplifies to

T MM
n,m,n0,0 = − S

′0 (1)
n0

(−i0)

S
′0 (3)
n0 (−i0)

δn,n0δm,0 + β
n0,0
2 b

n,0
2 δm,0. (75)

For the elements of the T MM and T EM matrices we find, for
m > 0 at small γ , the scaling

S
′m0 (1)
n0

(−i0)

S
′m0 (3)
n0 (−i0)

∼ O(γ 2n0+1), (76)

α
m0,n0
2

(
a

n,m0
2 − q

m0
2 b

n,m0
2

)
∼ O(γ n0+1)[O(γ n+2) − O(γ n)], (77)

α
m0,n0
2

(
a

n,m0
1 − q

m0
2 b

n,m0
1

)
∼ O(γ n0+1)[O(γ n+1) − O(γ n+1)]. (78)

For the nonvanishing T MM elements n0 − m0 and n − m0 have
to be odd, and for the nonvanishing T EM elements m0 has to
be larger than 0 and n0 − m0 odd and n − m0 even. The only
matrix element of O(γ 3) is T MM

1,0,1,0 = 4γ 3/9iπ . (Without the
contribution from the edge, we would have obtained T MM

1,0,1,0 =
−2γ 3/9iπ .)

Finally, with the definitions of Eq. (69), the E field can be
written as

E
ik

= Mm0 (in)
n0

+
∑
n,m

(
T EM

n,m,n0,m0
Nm (out)

n + T MM
n,m,n0,m0

Mm (out)
n

)
,

(79)

which corresponds to the usual definition of T-matrix elements.

C. Symmetry and unitarity of the T-matrix

Because they are not eigenstates of L̂2, the modes in Eq. (69)
with the same m are not orthogonal, and so the T-matrix does
not have the usual symmetry and unitarity properties in this
basis. The asymmetry is particularly pronounced for the case
where n �= 0 and n0 = m = 0: these matrix elements begin at
higher order in γ than the corresponding ones with n = m = 0
and n0 �= 0. This discrepancy can be traced to the behavior of
the b1 coefficient in Eq. (29). Although it appears to be O(γ ),
as we discuss below, an expansion in γ yields an expansion
of the angular spheroidal in terms of Legendre functions; their
orthogonality properties in turn lead to a cancellation of the
leading orders in γ . The true behavior is given by the exact
expression for the integral in the case where m = 0, given in
Eq. (A1), which is O(γ 2n+1).

As a result, it is helpful to convert the T-matrix to the basis
of spherical vector waves. There exist several normalization
conventions; we use those of Emig et al. [21]. The vector
spherical wave functions then read, for an imaginary wave
number k = iκ (which is useful for the Casimir energy
computation below),

M(reg)
lm (κ,r) = 1√

l(l + 1)
∇ × (

φ
(reg)
lm (κ,r)r

)
, (80)

M(out)
lm (κ,r) = 1√

l(l + 1)
∇ × (

φ
(out)
lm (κ,r)r

)
, (81)

N(reg)
lm (κ,r) = 1

κ
√

l(l + 1)
∇ × ∇ × (

φ
(reg)
lm (κ,r)r

)
, (82)

N(out)
lm (κ,r) = 1

κ
√

l(l + 1)
∇ × ∇ × (

φ
(out)
lm (κ,r)r

)
, (83)

where the modified spherical wave functions are

φ
(reg)
lm (κ,r) = il(κ|r|)Ylm(r̂), (84)

φ
(out)
lm (κ,r) = kl(κ|r|)Ylm(r̂). (85)

Here, il(z) =
√

π
2z

Il+1/2(z) is the modified spherical Bessel

function of the first kind, and kl(z) =
√

2
πz

Kl+1/2(z) is the
modified spherical Bessel function of the third kind.

It is important to note three differences between the
definition of the spherical basis and that of the spheroidal
basis, one of which is nontrivial:

(1) The spherical basis has been written in terms of
modified radial functions, the conventions for which introduce
powers of i relative to the ordinary functions with imaginary
wave number.

(2) The spherical waves have been written in terms of

spherical harmonics, which include a factor of
√

Nl,m

2π
com-

pared to the corresponding expression in terms of Legendre
functions, the analog of which is used in the spheroidal waves.
[For the definition of the factor Nl,m, see Eq. (32)].

(3) The nontrivial difference is the normalization factor of
1√

l(l+1)
. Because the spheroidal functions are not eigenstates

of L̂2, no direct analog of this quantity exists in the spheroidal
case. (The spheroidal eigenvalue plays a similar role in
separation of variables for the scalar wave equation, but
that quantity does not yield a corresponding normalization
of the vector spheroidal functions.) It is the introduction of
this quantity in converting to spherical waves that renders
the resulting basis orthonormal. We note also that while the
spheroidal basis starts with n = 0, the spherical basis starts at
l = 1.

To convert to the spherical basis, we begin from the
expansion of the spheroidal angular functions in terms of
Legendre functions,

Spm
n (η; iγ ) =

∞∑
ν�|m|

iν−nAm
n,ν(iγ )P m

ν (η), (86)

where the expansion coefficients Am
n,ν are obtained via recur-

sion relations [37]. If m is even (odd), the summation runs over
even (odd) ν only, and the coefficient Am

n,ν is O(γ ν) for small
γ . Note that the transformation matrix does not depend on any
coordinate. This fact can be used to obtain the transformation
formulas for spheroidal waves. At large ξ , the radial spheroidal
functions simplify to

Sm (1)
n (−iξ ; iγ ) ∼ 1

γ ξ
cos

(
γ ξ − n + 1

2
π

)
, (87)

Sm (3)
n (−iξ ; iγ ) ∼ 1

γ ξ
exp

[
+i

(
γ ξ − n + 1

2
π

)]
. (88)
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Multiplying Eq. (86) by S
m (j )
n (−iξ ; iγ ) eimϕ yields the follow-

ing transformation between scalar waves,

Lm(j )
n (ξ,η,ϕ; iγ ) =

∞∑
ν�|m|

Am
n,ν(iγ )ψ (j )

ν (kr)P m
ν (cos θ )eimϕ,

(89)

where ψν denotes the spherical Hankel function of type j .
To verify Eq. (89), we use the asymptotic expansions of
S

m (j )
n (−iξ ; iγ ) at large ξ . One then immediately realizes that

Eq. (89) holds for large ξ . Since the transformation matrix
Am

n,ν does not depend on any coordinate, the relation obtained
must also hold at any ξ .

The transformation inverse to Eq. (89) can be found again
in the limit of large ξ , in which case the radial functions can
be canceled on both sides. Expanding the Sp functions as in
Eq. (86) and using the orthogonal relations for the Legendre
polynomials similar to those in Eq. (25) for spheroidal angular
functions yields

[A−1]mν,n(iγ ) = Nn,m

Nν,m

Am
n,ν(iγ ). (90)

The inverse matrix is, as expected, the transposed matrix
multiplied by normalization factors.

Since the transformation matrix does not depend on any
coordinate, the same transformation matrix also transforms
between vector waves. We just let the operator ∇ × (r . . .) and
∇ × ∇ × (r . . .) act on Eq. (89), passing through the matrix
Am

n,ν .

D. The T-matrix in the spherical basis

To transform to the spherical basis, we first form a rescaled
T-matrix, denoted T , in which each matrix element found

above is multiplied by a factor of in0−n

√
Nn0 ,m

Nn,m
to address

the first two differences between the bases listed above. This
scaling makes manifest the symmetry in m → −m. We then
use the following matrix that describes the change of basis,

M
PlPn

lmlnmn
= δmlmn

δPlPn

√
l(l + 1)

×
√

Nn,mn

Nl,ml

(−1)(l−n)/2Am
l,n(iγ ), (91)

to convert between the spheroidal basis, indexed by n,mn, and
polarization Pn, and the spherical basis, indexed by l, ml , and
polarization Pl . Note that the spherical index l starts from 1,
while the spheroidal index n starts from 0. The corresponding
inverse transformation is given by

[M−1]PnPl

nmnlml
= δmnml

δPnPl

1√
l(l + 1)

×
√

Nn,mn

Nl,ml

(−1)(l−n)/2Am
l,n(iγ ). (92)

We note that the prefactor [l(l + 1)]±1/2, which addresses the
third difference between the spheroidal basis and the spherical
basis listed above, is implemented via the spherical index l,
which is never 0. We thus obtain the T-matrix in the spherical

basis as T̃ = MT M−1, which has the usual symmetry and
unitarity properties.

III. THE TRANSLATION MATRIX AND THE CASIMIR
ENERGY

Having converted the T-matrix elements to the spherical
basis, we are now prepared to evaluate the Casimir energy of
a disk that is parallel to an infinite plane, using techniques
developed for the sphere-plane problem [21,39,40]. In this
approach, the Casimir energy is given as

E = �c

2π

∫ ∞

0
dκ ln det(1 − T̃ Ũ), (93)

where T̃ is the T-matrix of the disk in spherical coordinates
and Ũ combines the reflection coefficient r for the plane (see
below) and the conversion matrix D, which expresses spherical
vector waves centered at the origin of the disk in terms of planar
vector waves centered at the plane. The matrix elements of Ũ
are given by

ŨPP ′
lml′m′ =

∫ ∞

0

k⊥dk⊥
2π

e−2dκ‖

2κκ‖
δmm′

×
∑
Q

DlmP,k⊥Q rQ(κ,κ‖) χP ′χQDl′−m′P ′,k⊥Q, (94)

where d is the distance from the center of the disk to the plane,
Q is the polarization of the plane wave, χP is +1 for electric
modes and −1 for magnetic modes, κ‖ =

√
k2
⊥ + κ2, rQ(κ,κ‖)

is the Fresnel reflection coefficient for scattering from the
plane, and

DlmP,k⊥Q =
√

4πNl,m

l(l + 1)

{
k⊥
κ

P m
l

′( κ‖
κ

)
for P = Q,

imκ
k⊥

χP P m
l

( κ‖
κ

)
for P �= Q

(95)

gives the conversion between vector spherical waves and vec-
tor plane waves in terms of the associated Legendre functions
P m

l and its derivative P m
l

′ with respect to its argument. For a
perfectly conducting plane, rQ(κ,κ‖) = χQ = ±1 for electric
and magnetic modes, respectively.

This expression is now suitable for numerical evaluation,
which we carry out in Mathematica, using routines for
computing spheroidal functions [35,41] based on the package
created by Falloon [42]. This code provides all the necessary
spheroidal functions, as well as the expansion coefficients
Am

ν,n(iγ ). Since we are carrying out this calculation via
a conversion to the spherical basis, we are restricted to
configurations with d > R, so that a sphere enclosing the disk
does not intersect the plane [21]. Our calculation shows the
corresponding numerical instabilities for d < R.

A. Rotated disk

The translation matrix elements in Eq. (94) are obtained
from the expansion of a plane wave constructed with “pilot
vector” ẑ in terms of transverse spherical vector modes, which
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FIG. 1. Geometry of the disk for separation d , radius R, and
orientation angle θ .

are plane waves with wave vector

k =iκ(sin θk cos φk, sin θk sin φk, cos θk)

=(k⊥ cos φk, k⊥ sin φk, iκ‖). (96)

By rotating the z axis of the spherical modes to an angle θ from
the normal to the plane, we can obtain the Casimir energy for
a disk whose normal is tilted by that angle θ away from the
normal to the plane, allowing us to extend the results found
previously for scalar fields [35]. We choose to rotate around
the y axis, as shown in Fig. 1. In these coordinates, the pilot
vector becomes (sin θ,0, cos θ ), and

k = iκ(sin θq cos φq, sin θq sin φq, cos θq), (97)

where

θq = arccos
iκ‖ cos θ − k⊥ cos φk sin θ

iκ
, (98)

φq = arctan
k⊥ sin φk

k⊥ cos φk cos θ + iκ‖ sin θ
. (99)

The only change to the calculation is that we now have

ŨPP ′
lml′m′(θ ) =

∫ ∞

0

d2k⊥
(2π )2

e−2dκ‖

2κκ‖

∑
Q

DlmP,k⊥Q(θ ) rQ(κ,κ‖)χP ′χQDl′−m′P ′,k⊥Q(−θ ), (100)

where

DlmP,k⊥Q(θ ) = eimφq

√
4πNl,m

l(l + 1)

κ

k⊥

[
imP m

l (cos θq)
sin θ sin φq

sin θq

+ P m
l

′(cos θq) sin θq(cos θq cos φq sin θ − cos θ sin θq)

⎤
⎦ (101)

for P = Q, and

DlmP,k⊥Q(θ ) = eimφq

√
4πNl,m

l(l + 1)

κ

k⊥
χP

[
imP m

l (cos θq)

(
cos θ − cos φq cos θq sin θ

sin θq

)
+ P m

l
′(cos θq) sin θ sin θq sin φq

]
(102)

for P �= Q. As in the case of θ = 0, these expressions are
obtained as the dot product of the spherical wave and the
corresponding vector spherical harmonic of k̂ in the expansion
of a plane wave [43,44]. For any angle θ , the calculation still
requires d < R, so that a sphere enclosing the disk does not
intersect the plane. As a result, for θ = π/2, we could consider
a disk whose edge is arbitrarily close to the plane. However, as
the edge approaches the plane, more partial waves and larger
values of κ are required to accurately compute the infinite
sums and integrals.

We note that for θ �= 0, careful attention is needed to avoid
problems arising from branch cuts. In particular, Eqs. (101)
and (102) can be expressed in terms of k⊥, κ‖, κ , φk , and
θ without the need for any inverse trigonometric functions.
Similarly, one must take care to obtain the appropriate analytic
continuation of the Legendre functions outside the unit circle.

B. Large separations

For d � R, the Casimir energy is dominated by the
contribution from long wavelengths, corresponding to small
γ . The lowest-order contributions to the T-matrix are
O(γ 3), T EE

0,0,2,0 = 4γ 3/45iπ , T EE
1,1,1,1 = T EE

1,−1,1,−1 = 8iγ 3/9π ,
and T MM

1,0,1,0 = 4γ 3/9iπ . However, T EE
0,0,2,0 does not contribute

at lowest order: Since there is no l = 0 mode in the spherical
basis, its effect enters through off-diagonal terms mixing
different values of l and n, which introduce additional

powers of γ . The values of T EE
1,1,1,1 = T EE

1,−1,1,−1 and T MM
1,0,1,0

correspond to the static electric and magnetic dipole responses
respectively, αE = 4R3/3π and αM = −2R3/3π , which agree
with previous results [45]. Using the same approach as in the
sphere-plane geometry [39], we obtain the Casimir energy in
the long-distance limit for θ = 0 as

E = − �c

8πd4
(2αE − αM ) + O

(
1

d6

)
. (103)

Higher-order terms are more difficult to obtain, because they
require resummation of the infinite sums in sam

1 , sbm
1 , sam

2 ,
and sbm

2 at the appropriate order in γ .

IV. RESULTS

Figure 2 shows the Casimir energy for a perfectly conduct-
ing disk of radius R and a perfectly conducting plane, as a
function of the rotation angle for different separations d/R.
To facilitate the comparison between difference separation
distances, the energies have been scaled by a factor of d3, since
a d−3 decay is predicted by the proximity force approximation
(PFA). The plots range from θ = 0, when the disk is parallel
to the plane, to θ = π

2 , when the disk is perpendicular to the
plane, and from d = 1.5 R to d = 4.0 R. We note that at
these separations, the full energy for θ = 0 is still significantly

032509-9



THORSTEN EMIG AND NOAH GRAHAM PHYSICAL REVIEW A 94, 032509 (2016)

FIG. 2. Scaled Casimir energy for a perfectly conducting disk of
radius R opposite a perfectly conducting plane, where the center of
the disk is at a distance d from the plane and the normal to the disk
is at an angle θ relative to the normal to the plane. The energies have
been scaled by d3 to facilitate comparison.

smaller in magnitude than the prediction of the PFA,

EPFA = −�c

d3

π2

720
πR2, (104)

which on this graph would correspond to a value of − π3

720 ≈
−0.043, independent of d. In these calculations, we have
truncated the numerical sums after nmax = lmax = 5 and used
the interval [ 1

128R
, 4
R

] for the integral over κ , and we have
checked that the results are not sensitive to these choices.
(The dimensionless ratio E/EPFA must be a function of the
dimensionless quantities d/R and θ .)

For the case where the disk is parallel to the plane, Fig. 3
shows a comparison of our result for the Casimir energy and
the PFA prediction. We also show numerical results obtained

1.5 2.0 2.5 3.0 3.5 4.0
0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.000

d R

R

c

FIG. 3. Casimir energy for a perfectly conducting disk of radius
R parallel to a perfectly conducting plane, where the center of the
disk is at a distance d from the plane. Black circles represent our
results; crosses represent the fluctuating-surface-current calculation
from Ref. [32]; the dotted line represents the dipole approximation,
given in Eq. (103); and the solid line represents the PFA, given in
Eq. (104).
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0.014
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0.008
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FIG. 4. Casimir energy for a perfectly conducting disk of radius
R perpendicular to a perfectly conducting plane, where the center of
the disk is at a distance d from the plane. Black circles represent our
results and the solid line represents the “edge PFA” from Ref. [25].

by using the fluctuating-surface-current method [32].2 The two
exact methods agree well, demonstrating that the magnitude
of the energy is significantly smaller than the PFA prediction.
For the case when the disk is perpendicular to the plane, the
Casimir energy is shown in Fig. 4. We see that the result is
also smaller than the “edge PFA”, based on the result for a
half-plane with a sharp edge opposite an infinite plane [25],

EePFA = −0.0067415 �cπ

√
R

2(d − R)3
. (105)

V. CONCLUSIONS

Building on Meixner’s analysis of diffraction from a
disk [36], we have constructed the full scattering T-matrix
for the scattering of light from a perfectly conducting disk,
which we have then expressed in a vector spherical wave
basis, a calculation that requires particular attention to finite
contributions arising from singular terms in the m = 0 channel.
This result represents one of the few cases of a nondiagonal
T-matrix that can be computed exactly in closed form. The
scattering approach then allows us to use this information to
obtain Casimir interaction energies for systems such as the
disk-plane geometry we have considered here, for arbitrary
orientations of the disk. This approach is particularly valuable
for configurations where edge effects are important, such
as the case where the disk is perpendicular to the plane,
since there one cannot use a gradient expansion for gently
curved surfaces [46,47]. We have found that the PFA result
significantly overestimates the Casimir energy at intermediate
distances, as does the “edge PFA” based on the result for a
half-plane.

While conversion to the vector spherical basis facilitates
the consideration of different rotation angles, it limits the
calculation to d > R, to ensure that a sphere enclosing the

2This calculation is implemented in the SCUFF-EM package,
available at http://GitHub.com/HomerReid/SCUFF-EM.
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disk does not intersect the plane. In order to allow d < R,
one must consider instead the vector spheroidal basis, which
is not orthonormal. Since the scattering method relies on a
mode expansion of the free Green’s function, it cannot be
applied directly to the spheroidal basis; as a result, an important
direction for future work is to generalize the scattering method
to include this case.
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APPENDIX: USEFUL INTEGRALS

Here we collect useful integrals, obtained from [48–50].
For m = 0, we have the closed-form integrals

∫ 1

−1
Sp0

n(η; iγ )
sin(γ

√
1 − η2)√

1 − η2
dη = 2γ S0 (1)

n (0; iγ )2Am
n (iγ )

(A1)

and ∫ 1

−1
Sp0

n(η; iγ )
cos(γ

√
1 − η2)√

1 − η2
dη

= 2γ S0 (1)
n (0; iγ )S0 (2)

n (0; iγ )Am
n (iγ ), (A2)

where the normalization factor Am
n (iγ ) is given by

Am
n (iγ ) =

∑
ν�|m|

iν−nAm
n,ν(iγ ). (A3)

We can also simplify the leading-order subtractions using
the integrals∫ 1

−1
P m

l (x)dx = (−1)l2m−1m�
(

l
2

)
�

(
l+m+1

2

)
�

(
l+3

2

)(
l−m

2

)
!

(A4)

and ∫ 1

−1

P m
l (x)√
1 − x2

dx = 2mπ (−1)
m−l

2 �
(

l+1
2

)
�

(
1−m−l

2

)
�

(
1 + l

2

)(
l−m

2

)
!
, (A5)

where from these results we can also obtain∫ 1

−1

xP m
l (x)√

1 − x2
dx = 2mπ (−1)

m−l−1
2 �

(
l
2

)
�

(−m
2 − l

2

)
�

(
l+3

2

)
�

(
1−m+l

2

) (A6)

and∫ 1

−1

xP m
l (x)

1 − x2
dx = 2m+1π (−1)

m−l−1
2 �

(
1+l

2

)
m �

(−m
2 − l

2

)
�

(
1 + l

2

)
�

(
1−m+l

2

) (A7)

using integration by parts and recurrence relations for Legen-
dre functions.
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