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Calculations of the static electric-dipole scalar and tensor polarizabilities are presented for two alkali-metal
atoms, Rb and Cs, for the nS, nP1/2, 3/2, and nD3/2, 5/2 states with large principal quantum numbers up to n = 50. The
calculations are performed within an effective one-electron approximation, based on the Dirac-Fock Hamiltonian
with a semiempirical core-polarization potential. The obtained results are compared with those from a simpler
semiempirical approach and with available experimental data.
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I. INTRODUCTION

The term Rydberg atom refers to an atom with one
(or several) valence electron(s) in a state with a large
principal quantum number n. Such states are characterized
by relatively long lifetime and huge polarizabilities (∼n7),
which result in very large responses to electric and magnetic
fields. Such exaggerated properties lead to strong, tunable
interactions among the atoms, which have applications in
various fields of physics. One of the prominent examples is
the effect known as the Rydberg excitation blockade [1,2].
In this effect, the excitation of more than one Rydberg
atom within a blockade volume is suppressed, since such
excited states are shifted out of resonance with a narrow-
band excitation laser by the interaction between the Rydberg
atoms.

The blockade effect relies on the energy level shift that
one Rydberg atom experiences in close proximity to another.
Similar level shifts arise also when a Rydberg atom is brought
into the vicinity of a macroscopic body or surface. With
the constantly increasing experimental abilities to trap and
manipulate atoms close to macroscopic bodies, the effects
of the atom-surface interactions of the van der Waals [3]
and Casimir-Polder [4] type have become a subject of
great interest. When compared to atoms in their ground
or lowest excited states, the Rydberg atoms exhibit various
peculiarities of the atom-surface interactions, such as effects
from the electric quadrupole and higher multipole moments
[5], nonperturbative energy shifts, and surface-induced state
mixing [6].

Theoretical description of the dynamics of Rydberg atoms
in complex environments as well as their interactions with
surfaces can be parameterized in terms of several basic atomic
properties, such as transition energies, dipole matrix elements,
and atomic polarizabilities. Their integral convolution with
the Green’s tensor of the electric field in the macroscopic
environment provides [7,8] expressions for physical ob-
servables (decay rates, environment-induced energy shift,
etc.). A classical example is the Casimir-Polder interac-
tion potential between an atom and a perfectly conducting

wall,

U (z) = − �

(4π )2ε0z3

∫ ∞

0
dω α0(iω)

×
[

1 + 2
ωz

c
+ 2

(
ωz

c

)2
]
e−2ωz/c, (1)

which requires the detailed knowledge of the dynamic dipole
polarizability of the atom at imaginary energies α0(iω).

In order to describe the interaction of the Rydberg atoms
with a complex macroscopic environment, first, we require
a robust numerical approach for calculating energy levels,
dipole transition matrix elements, and atomic polarizabilities.
In the present paper, we develop such a numerical approach
and apply it for computations of static electric polarizabilities,
for which numerous experimental and theoretical results are
available in the literature. A comparison of the results obtained
by different theoretical approaches and the experimental data
helps us to establish the level of accuracy of our treatment.

In the present work we consider the alkali-metal atoms,
with a single highly excited valence electron beyond a
closed-shell core. Their spectrum resembles that of the
hydrogen atom and can be well described by effective
one-electron approximations. The approach used in this work
is based on the Dirac-Fock Hamiltonian with a semiempirical
core polarization potential. By using a finite basis set
representation of the functional space, we obtain the spectrum
of the eigenvalues and eigenfunctions the Hamiltonian, which
allows us to compute various atomic properties, in particular,
polarizabilities. By comparing the results obtained by this
method with those from a simpler semiempirical approach
(the so-called Coulomb approximation), we get an idea about
the uncertainty of our treatment.

The remaining paper is organized as follows. In Sec. II we
give the outline of the theory of the atomic polarizabilities.
The Dirac-Fock Core-Polarization approach is discussed in
Sec. III. In Sec. IV we describe the semiempirical Coulomb
approximation approach to the evaluation of the atomic
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polarizabilities. Our results are presented and discussed in
Sec. V. The paper ends with a short conclusion in Sec. VI.

II. ATOMIC POLARIZABILITIES

A. General theory

Electric polarizabilities most naturally appear when consid-
ering energy shifts of atomic levels induced by the interaction
with a classical external electric field (Stark effect). In the
nonrelativistic theory, the interaction with a static electric field
E is given by the operator

H = −μ · E, (2)

where μ = −e
∑

i r i is the electric dipole operator, e is the
electric charge, and r i is the position vector of the ith electron.
Due to symmetry arguments, the first-order expectation value
of H on any atomic state vanishes but the higher-order
perturbation contributions survive. We are presently interested
in the second-order Stark effect, caused by the effective
interaction of the form

H2Stark = μ · E
1

E0 − H0
μ · E, (3)

where H0 is the Hamiltonian of the atom in the absence of the
electric field and E0 denotes its eigenvalue. The operator (3)
can be conveniently represented as a sum of the scalar and the
tensor parts,

H2Stark = H0 + H2

=
∑

K=0,2

K∑
Q=−K

(−1)Q
{
μ

1

E0 − H0
μ

}K

Q

{E E}K−Q,

(4)

where H0 and H2 correspond to K = 0 and K = 2, respec-
tively, and {. . .}KQ denotes the tensor product of two vectors,

{L M}KQ =
∑
qq ′

C
KQ
1q,1q ′ Lq Mq ′ .

The static electric-dipole scalar and tensor polarizabilities
(α0 and α2, respectively) are defined [9] from the matrix
elements of H0 and H2 between the M = J (so-called
“stretched”) states:

〈JJ |H0|JJ 〉 = − 1
2 α0(J ) E2, (5)

〈JJ |H2|JJ 〉 = − 1
4 α2(J )

(
3E2

z − E2
)
. (6)

The quadratic Start shift of the energy level (J,M) then takes
the form [9]

�E = −1

2
α0(J ) E2

−1

4
α2(J )

3M2 − J (J + 1)

J (2J − 1)

(
3E2

z − E2
)
. (7)

The polarizabilities can be expressed in terms of the reduced
matrix elements of the operator μ as [9]

α0(J ) = − 2

3(2J + 1)

×
∑

n

(−1)Jn−J 〈0J ||μ||nJn〉〈nJn||μ||0J 〉
E0 − En

, (8)

α2(J ) = (−1)2J+1

√
40J (2J − 1)

3(J + 1)(2J + 1)(2J + 3)

×
∑

n

{
1 1 2

J J Jn

} 〈0J ||μ||nJn〉〈nJn||μ||0J 〉
E0 − En

,

(9)

where the sum over n implies the summation over the complete
spectrum of intermediate states of the atomic Hamiltonian. It
follows from the above expression that α2 vanishes for J = 0
and 1/2.

B. Effective one-electron approximation

In the present investigation we are interested in the highly
excited Rydberg states of alkali-metal atoms. Such systems
can be effectively described within an effective one-electron
model, in which the valence electron interacts with the nuclear
charge and the core. The direct contribution from the core
polarizability is small as compared to the valence-electron
polarizability (because of the n7 scaling) and can be neglected.
The indirect core-polarizability contribution, however, is size-
able (as it modifies the valence and intermediate-state electron
energies and wave functions) and accounted for by the core
polarization potential in the Hamiltonian.

In an effective one-electron approximation, the electric-
dipole polarizabilities of a state v can be evaluated as

α0(v) = 2

3(2jv + 1)

∑
n

[
C1(κv,κn) R(1)

vn

]2

εn − εv

, (10)

α2(v) =
√

40jv(2jv − 1)

3(jv + 1)(2jv + 1)(2jv + 3)

×
∑

n

(−1)jv+jn

{
1 1 2

jv jv jn

}[
C1(κv,κn) R(1)

vn

]2

εn − εv

,

(11)

where the sum over n runs over the complete spectrum of
virtual excited states, ε is the energy of the corresponding
state, κ denotes the Dirac angular momentum-parity quantum
number, j is the total angular momentum quantum number,
j = |κ| − 1/2. The radial integrals are given by

R(L)
vn =

∫ ∞

0
dr r2+L Wvn(r), (12)

where

Wvn(r) = gv(r) gn(r) + fv(r) fn(r), (13)

where g(r) and f (r) are the upper and the lower radial
components of the Dirac wave function, respectively. The
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angular coefficients are given by

CJ (κa,κb) = (a||C(J )||b)

= (−1)J
√

2ja + 1 C
jb

1/2

ja
1/2,J 0�(la,lb,J ), (14)

where C(J ) denotes the normalized spherical harmonics, the
symbol �(l1,l2,l3) is unity if l1 + l2 + l3 is even, and zero
otherwise, and l is the orbital angular momentum quantum
number, l = |κ + 1/2| − 1/2.

In the present work, we calculate the polarizabilities α0 and
α2 of highly excited states of alkali-metal atoms within the
effective one-electron approaches, which are discussed in the
next two sections.

III. DIRAC-FOCK–CORE-POLARIZATION
HAMILTONIAN

The radial Dirac-Fock equation with a core-polarization
(CP) potential (termed hereafter as the DFCP equation) is
given by

hDFCP φa(r) = εa φa(r), (15)

where hDFCP is the Hamiltonian, φa(r) is a two-component
radial wave function

φa(r) =
(

ga(r)

fa(r)

)
,

and εa is the energy eigenvalue. The DFCP Hamiltonian is
given by

hDFCP =
(

m + V (r) − 1
r

d
dr

r + κa

r

1
r

d
dr

r + κa

r
−m + V (r)

)
. (16)

The potential V (r) in the above equation is

V (r) = Vnucl(r) + VDF(r) + VCP(r), (17)

where Vnucl is the binding nuclear potential, VDF is the frozen-
core Dirac-Fock potential and VCP is the core-polarization
potential. The Dirac-Fock potential for the case of the
interaction with a closed shell is defined by its matrix elements
(a �∈ c),

〈a|VDF|a〉 = α
∑

c∈core

[
(2jc + 1) R0(acac)

− 1

2ja + 1

∑
L

[CL(κa,κc)]2 RL(acca)

]
, (18)

where index c runs over all different core states, and RL are
the Slater integrals

RL(abcd) =
∫ ∞

0
dr1 dr2 (r1r2)2 rL

<

rL+1
>

Wac(r1) Wbd (r2).

(19)

The semiempirical CP potential partly accounts for the
second- and higher-order interaction of the valence electron
with the core. It is given by (see, e.g., Refs. [10,11])

VCP(r) = − αc

2 r4

(
1 − e−r6/ρ6

κ

)
, (20)

where αc is the static dipole polarizability of the core and ρκ

is the radial cutoff parameter, to be adjusted empirically.
In the present work we are interested in the complete energy

spectrum of hDFCP and the corresponding set of eigenstates.
We obtain these numerically in several steps. In the first step,
we compute the core wave functions c by solving the standard
Dirac-Fock equation for the (closed-shell) core. In the second
step, we solve the DFCP equation with help of the finite basis
set constructed with B splines, using the core wave functions
obtained in the first step for the evaluation of the matrix
elements of the DF potential. The finite basis set method
provides us with (a discrete representation of) the complete
spectrum of the DFCP equation. In the third step, we fix the
empirical value of the CP cutoff parameter ρκ (one for each κ)
by matching the experimental energies in the high-n region.

The solution of the Dirac equation with a finite basis
constructed with B splines was first introduced in Ref. [12]. In
present work, we solve the DFCP equation with a modification
of the B-splines approach, namely, the Dual Kinetic Balance
(DKB) method [13]. Within this method, the two-component
solutions of Eq. (15) are approximated by an expansion over
the finite basis of 2N functions un,

φa =
2N∑
n=1

cn un =
N∑

i=1

ci

(
Bi(r)

1
2m

(
d
dr

+ κa

r

)
Bi(r)

)

+
N∑

i=1

ci+N

(
1

2m

(
d
dr

− κa

r

)
Bi(r)

Bi(r),

)
(21)

where {Bi(r)}Ni=1 is the set of B splines [14] on the interval
r = 0 . . . Rmax, where Rmax is the cavity radius (chosen to be
sufficiently large in order to have no influence on the calculated
properties of the atom). We note that the anzatz (21) assumes
that the potential in the Dirac equation is regular at r → 0.
This means that it can be used for solving the Dirac equation
for an extended-nucleus potential, but not for the point-nucleus
Coulomb potential.

The expansion (21) and the standard action principle lead
to a generalized eigenvalue problem for the coefficients ck ,

[〈ui |hDFCP|uk〉 + 〈uk|hDFCP|ui〉]ck = 2 E 〈ui |uk〉 ck, (22)

where the summation over repeated indices is implied and
i,k = 1 . . . 2N . The equation (22) is solved by the standard
methods of linear algebra. Using the boundary conditions
φ(0) = φ(R) = 0, we obtain a finite basis representation of
the complete spectrum of the DFCP equation.

In the present work we are interested in highly excited
Rydberg states of an atom, with the principal quantum number
up to n = 50. It is nontrivial task to obtain an accurate
representation of such highly excited states by a finite basis
set method. In the original studies [12,13] only the first few
excited states were accurately reproduced. In the present work,
we searched for a way to increase the number of bound states in
the pseudospectrum. We found that the number of bound states
depends, most pronounced, on the cavity radius R and, less
so, on the radial grid and the number of basis functions. In our
calculations for Rb atom, we used the cavity radius of about
R = 4000–5000 a.u. and the radial grid that is equidistant
r ∼ t within the nucleus and polynomial r ∼ t4 outside of the
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TABLE I. Experimental quantum defect parameters for Rb and Cs.

n2S1/2 n2P1/2 n2P3/2 n2D3/2 n2D5/2 n2F5/2 n2F7/2

Rb
Ref. [27,28] [28] [28] [27,28] [27,28] [29] [29]
δ0 3.131 180 6(10) 2.654 884 9(10) 2.641 673 7(10) 1.348 093(2) 1.346 464(2) 0.016 519 2(9) 0.016 543 7(7)
δ2 0.178 6 (6) 0.290 0 (6) 0.295 0 (7) −0.604 2 (13) −0.595 0 (11) −0.085 (9) −0.086 (7)

Cs
Ref. [30] [30] [30] [31] [30] [32]
δ0 4.049 353 2(4) 3.591 587 1(3) 3.559 067 6(3) 2.475 45 (2) 2.466 314 4(6) 0.033 414(1)
δ2 0.239 1 (5) 0.362 73 (16) 0.374 69 (14) 0.009 9 (40) 0.013 81 (15) −0.198 674
δ4 0.06 (10) −0.433 24 −0.392 (12) 0.289 53
δ6 11(7) −0.965 55 −1.9(3) −0.260 1
δ8 −209(150) −16.946 4

nucleus (where t denotes the equidistant grid). With the basis
set of N = 150–250 B splines, we obtained a pseudospectrum
with typically 60–70 bound states. We checked that, for the
standard frozen-core Dirac-Fock potential, our results for
the energies of the valence excited states agree very well
with those obtained by the direct solution of the Dirac-Fock
equation [15].

After reproducing the Dirac-Fock energies, we included
the CP potential. For the core polarizability αc we used the
calculated results from the literature [16]. The cutoff parameter
ρκ was adjusted empirically to match the experimental energies
of nlj Rydberg states for high n. More specifically, for each
angular momentum quantum number κ , we chose the value of
ρκ that minimized the deviation of the DFCP energies from
the experimental energies [as given by Eq. (23)] for the states
with n from 20 to 50.

After we obtained the DFCP pseudospectrum, it is relatively
straightforward to compute the α0 and α2 polarizabilities
according to Eqs. (10) and (11). We would like to stress that
in the DFCP approach, we take into account the complete
spectrum of the DFCP equation, both the discrete and the
continuum parts. The contribution of the continuum part of the
spectrum was found to be rather small, which justifies the usage
of the so-called “sum-over-states” method for calculating the
atomic polarizabilities [17,18].

IV. COULOMB APPROXIMATION

A. Quantum defect energies

The term “quantum defect” was introduced nearly a century
ago by Schrödinger [19] (see Ref. [20] for a historical account).
Since then the concept of the quantum defects was extensively

TABLE II. Energies of the valence-excited states of Rb and Cs, for the infinitely heavy nucleus, in a.u. For each n, the upper line displays
the calculated DFCP energies, whereas the lower line presents the experimental energies as obtained from Eq. (23) with the quantum defect
parameters taken from Table I. The parameters of the DFCP potential are [16] αc(Rb) = 9.076a3

0 , αc(Cs) = 15.81a3
0 and ρκ as specified in the

table.

n2S1/2 n2P1/2 n2P3/2 n2D3/2 n2D5/2 n2F5/2 n2F7/2

Rb
ρκ 2.4 33 2.3 58 2.3 54 2.7 99 2.8 17 2.8 17 2.8 17
n = 20 0.001 757 247 0.001 662 127 0.001 659 599 0.001 436 956 0.001 436 707 0.001 252 040 0.001 252 045

0.001 757 248 0.001 662 126 0.001 659 600 0.001 436 953 0.001 436 706 0.001 252 041 0.001 252 044
n = 30 0.000 692 597 0.000 668 687 0.000 668 042 0.000 609 027 0.000 608 958 0.000 556 165 0.000 556 166

0.000 692 597 0.000 668 687 0.000 668 042 0.000 609 033 0.000 608 964 0.000 556 164 0.000 556 165
n = 40 0.000 367 837 0.000 358 515 0.000 358 262 0.000 334 669 0.000 334 640 0.000 312 758 0.000 312 758

0.000 367 836 0.000 358 515 0.000 358 261 0.000 334 672 0.000 334 644 0.000 312 757 0.000 312 758
n = 50 0.000 227 616 0.000 223 059 0.000 222 934 0.000 211 233 0.000 211 219 0.000 200 131 0.000 200 131

0.000 227 616 0.000 223 060 0.000 222 936 0.000 211 235 0.000 211 221 0.000 200 132 0.000 200 132
Cs

ρκ 2.7 82 2.6 66 2.6 77 3.1 42 3.1 81 2.9 4 2.9 4
n = 20 0.001 965 468 0.001 857 419 0.001 850 080 0.001 628 123 0.001 626 428 0.001 254 125 0.001 254 163

0.001 965 462 0.001 857 412 0.001 850 079 0.001 628 088 0.001 626 393 0.001 254 125
n = 30 0.000 742 480 0.000 716 972 0.000 715 209 0.000 659 978 0.000 659 539 0.000 556 787 0.000 556 798

0.000 742 481 0.000 716 973 0.000 715 211 0.000 659 979 0.000 659 541 0.000 556 787
n = 40 0.000 386 866 0.000 377 201 0.000 376 528 0.000 355 089 0.000 354 916 0.000 313 021 0.000 313 025

0.000 386 866 0.000 377 201 0.000 376 528 0.000 355 091 0.000 354 918 0.000 313 021
n = 50 0.000 236 804 0.000 232 156 0.000 231 831 0.000 221 377 0.000 221 291 0.000 200 266 0.000 200 268

0.000 236 804 0.000 232 156 0.000 231 831 0.000 221 378 0.000 221 293 0.000 200 267
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used in the atomic physics, mostly (but not only) for the
description of energy levels of Ryberg atoms.

The quantum defect approach suggests the parametrization
of the energy levels of the valence-excited Rydberg states of
alkali-metal atoms in the form similar to that of the hydrogen
atom,

E(nκ) ≡ ε(nκ) − m = − mr α2

2 n∗2 , (23)

where mr is the reduced mass and n∗ is the effective (fractional)
principal quantum number which replaces the true (integer)
principal quantum number n in the nonrelativistic hydrogen
theory. The effective principal quantum number n∗ is usually
parameterized in terms of the quantum defect parameters δi ≡
δi(κ) as

n∗ = n −
∞∑
i=0

δ2i

(n − δ0)2i
. (24)

In practice, the expansion over i is terminated after a few first
terms (usually two).

The quantum defect parameters can be calculated by ab
initio methods or, alternatively, extracted from experimental
data. It should be noted that for high Rydberg states (typically,
n > 30), the experimental data follow the parametrization
(23)–(24) with a very high accuracy. For the two atoms con-
sidered here, Rb and Cs, the Rydberg spectra are extensively
studied experimentally, and highly accurate results for the
quantum defect parameters are available. The literature values
of quantum defect expansion coefficients used in this paper for
Rb and Cs are collected in Table I.

B. Polarizabilities

It was demonstrated long ago [21] that the wave functions
of excited atomic states at large distances from the nucleus
can be effectively approximated by the modified Coulomb
solutions with fractional principal quantum numbers that
are obtained from the quantum defect energies (23). This
simple semiempirical approach [often referred to as the
Coulomb approximation (CA)] allows one to evaluate various
transition integrals, providing that their dominant contribution
originates from large radial distances. The CA method was
successively applied for calculating atomic polarizabilities of
alkali-metal atoms [22,23] and was shown to yield results in a
remarkably good (for such a simple approximation) agreement
with experimental data. In the present work, we perform
calculations of polarizabilities by the CA method and compare
the results with those obtained with the more elaborated DFCP
approach, in order to get an idea about the uncertainties of the
theoretical treatment.

In the CA method, we assume the energies of the bound
state of interest to be given by Eq. (23), with the quantum
defect parameters determined from the experimental data. We
now are looking for a solution of the Schrödinger equation that
has a fractional principal quantum number n∗ and is regular at
r → ∞. Naturally, since the corresponding energy is not the
eigenvalue of the Schrödinger-Coulomb Hamiltonian, such a
solution will diverge at r → 0; but it will be of no importance
for us since we are interested only in the large-r region. The
exact solution of the Schrödinger equation with the Coulomb

potential regular at r → ∞ can be written as

Gn∗l(r) = (−1)l n∗ �[n∗ + l − 1]

×
√

�[n∗ − l]

�[n∗ + l + 1]
Wn∗, l+1/2(2r/n∗), (25)

where the W (x) is the Whittaker function, l is the orbital
angular momenta, and n∗ is the effective principal quantum
number, as obtained from Eq. (24). It can be explicitly
checked that for integer values of n∗ = n, the function Gnl(r)
coincides with the well-known nonrelativistic bound-state
wave function.

In order to compute the radial integrals required for α0 and
α2, we made the replacement

R
(L)
ab → R̃

(L)
ab =

∫ ∞

rmin

dr rL Gn∗
a la

(r) Gn∗
blb

(r), (26)

where rmin is a small radial cutoff parameter.
Following Ref. [21], we compute the Whittaker W function

by its asymptotic expansion

Wn∗, l+1/2(2r/n∗) = e−r/n∗
(

2r

n∗

)n∗ [
1 +

∞∑
t=1

at

rk

]
, (27)

TABLE III. Comparison of results obtained by two different
methods, DFCP and CA, for the static dipole polarizabilities α0 of
neutral Rb and Cs atoms, in a3

0 (a0 ≈ 0.052 918 nm is the Bohr
radius). For each principal quantum number n, predictions of the
DFCP method are given in the upper line and those of the CA method,
in the lower line. X[b] means X × 10b.

n n2S n2P1/2 n2P3/2 n2D3/2 n2D5/2

Rb
8 0.133[6] 0.363 [6] 0.395 [6] 0.909 [6] 0.877 [6]

0.132 [6] 0.364 [6] 0.395 [6] 0.937 [6] 0.905 [7]
10 0.109 [7] 0.328 [7] 0.357 [7] 0.479 [7] 0.458 [7]

0.109 [7] 0.327 [7] 0.356 [7] 0.490 [7] 0.469 [7]
12 0.528 [7] 0.171 [8] 0.187 [8] 0.178 [8] 0.169 [8]

0.527 [7] 0.171 [8] 0.186 [8] 0.181 [8] 0.172 [8]
15 0.321 [8] 0.115 [9] 0.126 [9] 0.858 [8] 0.803 [8]

0.321 [8] 0.115 [9] 0.126 [9] 0.867 [8] 0.812 [8]
20 0.289 [9] 0.118 [10] 0.130 [10] 0.629 [9] 0.580 [9]

0.289 [9] 0.118 [10] 0.130 [10] 0.631 [9] 0.582 [9]
30 0.555 [10] 0.269 [11] 0.297 [11] 0.101 [11] 0.909 [10]

0.554 [10] 0.269 [11] 0.297 [11] 0.101 [11] 0.905 [10]
Cs

9 0.154 [6] 0.105 [7] 0.136 [7] − 0.146 [7] − 0.185 [7]
0.152 [6] 0.102 [7] 0.131 [7] − 0.140 [7] − 0.178 [7]

10 0.477 [6] 0.356 [7] 0.463 [7] − 0.436 [7] − 0.548 [7]
0.474 [6] 0.350 [7] 0.452 [7] − 0.423 [7] − 0.531 [7]

12 0.286 [7] 0.246 [8] 0.321 [8] − 0.254 [8] − 0.315 [8]
0.286 [7] 0.243 [8] 0.316 [8] − 0.250 [8] − 0.310 [8]

15 0.211 [8] 0.210 [9] 0.275 [9] − 0.188 [9] − 0.231 [9]
0.211 [8] 0.209 [9] 0.273 [9] − 0.187 [9] − 0.230 [9]

20 0.226 [9] 0.267 [10] 0.350 [10] − 0.212 [10] − 0.258 [10]
0.226 [9] 0.266 [10] 0.349 [10] − 0.211 [10] − 0.257 [10]

30 0.511 [10] 0.740 [11] 0.972 [11] − 0.526 [11] − 0.636 [11]
0.511 [10] 0.740 [11] 0.971 [11] − 0.527 [11] − 0.636 [11]
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TABLE IV. Static electric-dipole scalar polarizabilities α0 (in a3
0 ) in Rb, a comparison with the previous experimental and theoretical

results. The complete tabulation of the DFCP results is available in Table I of the Supplemental Material [24]. The notations are as follows:
X[b] means X × 10b; X(a)[b] means X × 10b with uncertainty a in the last digit of X; “(th)” and “(exp)” refer to the theoretical and the
experimental literature results, correspondingly.

n n2S n2P1/2 n2P3/2 n2D3/2 n2D5/2 Ref.

8 0.133 [6] 0.363 [6] 0.395 [6] 0.909 [6] 0.877 [6]
0.132 [6] 0.360 [6] 0.391 [6] 0.936 [6] 0.904 [7] [23] (th)
0.133(1)[6] [18] (th)

0.927(1)[6] 0.8949(6)[6] [25] (exp)
9 0.417 [6] 0.120 [7] 0.130 [7] 0.221 [7] 0.212 [7]

0.416 [6] 0.119 [7] 0.129 [7] 0.226 [7] 0.217 [7] [23] (th)
0.417(2)[6] [18] (th)
0.4170(4)[6] [25] (exp)

10 0.109 [7] 0.328 [7] 0.357 [7] 0.479 [7] 0.458 [7]
0.110 [7] 0.326 [7] 0.355 [7] − 0.485 [7] − 0.514 [7] [23] (th)
0.1094(6)[7] [18] (th)
0.10953(6)[7] [25] (exp)

11 0.252 [7] 0.787 [7] 0.859 [7] 0.956 [7] 0.909 [7]
0.251 [7] 0.782 [7] 0.854 [7] 0.935 [7] − 0.999 [7] [23] (th)

12 0.528 [7] 0.171 [8] 0.187 [8] 0.178 [8] 0.169 [8]
0.526 [7] 0.137 [8] 0.151 [8] [23] (th)

13 0.102 [8] 0.343 [8] 0.375 [8] 0.314 [8] 0.296 [8]
0.346 [8] 0.370 [8] [23] (th)

0.314(1)[8] 0.283(2)[8] [33,34] (exp)
15 0.321 [8] 0.115 [9] 0.126 [9] 0.858 [8] 0.803 [8]

0.319(2)[8] 0.860(8)[8] 0.796(4)[8] [33,34] (exp)
20 0.289 [9] 0.118 [10] 0.130 [10] 0.629 [9] 0.580 [9]

0.2905(12)[9] 0.643(12)[9] 0.583(8)[9] [33,34] (exp)
25 0.149 [10] 0.670 [10] 0.740 [10] 0.291 [10] 0.264 [10]

0.151(2)[10] 0.297(12)[10] 0.265(4)[10] [33,34] (exp)
30 0.555 [10] 0.269 [11] 0.297 [11] 0.101 [11] 0.909 [10]

0.559(6)[10] 0.104(4)[11] 0.936(8)[10] [33,34] (exp)
35 0.166 [11] 0.856 [11] 0.948 [11] 0.289 [11] 0.258 [11]

0.169(1)[11] 0.297(8)[11] 0.253(8)[11] [33,34] (exp)
40 0.425 [11] 0.231 [12] 0.256 [12] 0.718 [11] 0.636 [11]

0.425(8)[11] 0.74(3)[11] 0.67(2)[11] [33,34] (exp)
45 0.972 [11] 0.551 [12] 0.611 [12] 0.160 [12] 0.141 [12]

1.00(4)[11] 0.169(8)[12] 0.153(8)[12] [33,34] (exp)
50 0.203 [12] 0.119 [13] 0.132 [13] 0.329 [12] 0.288 [12]

0.203(1)[12] 0.341(12)[12] 0.289(16)[12] [33,34] (exp)

with the expansion coefficients at obtained by the recurrence
relation

at = at−1
n∗

2t
[l(l + 1) − (n∗ − t)(n∗ − t + 1)], (28)

a1 = n∗

2
[l(l + 1) − n∗(n∗ − 1)]. (29)

Based on our calculations we found that summation over t

in Eq. (27) can be truncated at about tmax = n∗ + 1 without
losses of accuracy in the evaluation of the radial integrals.

The integration in Eq. (26) was performed numerically
by employing the Gauss-Legendre quadratures. Following
Ref. [21], we defined the lower bound of the radial integration
in Eq. (26) as rmin = s nanb/(na + nb) with s ≈ 1/100. We
have checked that the final results do not depend on the
particular choice of the parameter s.

The sum over n in Eqs. (10) and (11) is performed by
explicitly summing over the virtual excited bound states (the

so-called “sum-over-states” method). The continuum part of
the spectrum yields a very small contribution to polarizabilities
and was neglected. The summation over n is extended until the
convergence is reached (typically, about 20–30 virtual excited
states are included).

V. RESULTS AND DISCUSSION

We start our discussion by analyzing the energy values
delivered by the DFCP method. Our numerical results for
energy levels of Rb and Cs are presented in Table II, in
comparison with the values obtained from the quantum defect
formula (23) and the experimental quantum defect parameters
from Table I. We observe that the DFCP method reproduces
the experimental energies very well, provided that the principal
quantum number n is large enough, typically n � 20. For
smaller n, the deviation of the DFCP energies from the
experimental values gradually increases as n decreases. We
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TABLE V. Static electric-dipole tensor polarizabilities α2 (in a5
0 )

in Rb, a comparison with the previous experimental and theoretical
results. The complete tabulation of the DFCP results is available in
Table II of Supplemental Material [24]. Notations are as in Table IV.

n n2P3/2 n2D3/2 n2D5/2 Ref.

8 − 0.513 [5] 0.113 [6] 0.223 [6]
− 0.508 [5] 0.105 [6] 0.211 [6] [23] (th)

0.109(6)[6] 0.229(12)[6] [35] (exp)
0.1067(4)[6] 0.2086(4)[6] [25] (exp)

9 − 0.161 [6] 0.389 [6] 0.723 [6]
− 0.160 [5] 0.373 [6] 0.701 [6] [23] (th)

10 − 0.427 [6] 0.107 [7] 0.194 [7]
− 0.424 [6] 0.299 [7] 0.470 [7] [23] (th)

11 − 0.996 [6] 0.256 [7] 0.455 [7]
− 0.974 [6] 0.633 [7] 0.998 [7] [23] (th)

13 − 0.414 [7] 0.110 [8] 0.191 [8]
− 0.366 [7] 0.108(2)[8] 0.189(4)[8] [34] (exp)

15 − 0.134 [8] 0.361 [8] 0.620 [8]
0.354(8)[8] 0.607(8)[8] [34] (exp)

20 − 0.130 [9] 0.359 [9] 0.606 [9]
0.358(12)[9] 0.599(20)[9] [34] (exp)

25 − 0.710 [9] 0.200 [10] 0.335 [10]
0.201(8)[10] 0.326(4)[10] [34] (exp)

30 − 0.277 [10] 0.791 [10] 0.132 [11]
0.784(20)[10] 0.129(4)[11] [34] (exp)

35 − 0.865 [10] 0.249 [11] 0.415 [11]
0.249(8)[11] 0.418(8)[11] [34] (exp)

40 − 0.230 [11] 0.668 [11] 0.111 [12]
0.64(3)[11] 0.11(4)[12] [34] (exp)

45 − 0.541 [11] 0.158 [12] 0.263 [12]
0.157(12)[12] 0.257(12)[12] [34] (exp)

50 − 0.116 [12] 0.341 [12] 0.566 [12]
0.329(12)[12] 0.539(20)[12] [34] (exp)

therefore expect that the accuracy of the DFCP results for
the polarizabilities will not depend on n for n � 20 and
will gradually deteriorate as n is decreased from n = 20
downwards.

In order to estimate the uncertainty of our theoretical
description of polarizabilities, we compare the results obtained
by two different methods, the DFCP and the CA ones. We
expect that both methods should become essentially equivalent
in the high-n limit; for smaller n, however, some deviations
are expected. The difference between the results will give us
an idea about the error of the treatment.

The comparison is presented in Table III. We observe that
for n � 15, both methods give results equivalent at a 1% level
for all the states considered. For the lower-n states, the situation
is somewhat different for Rb and Cs. For Rb, the agreement
between the two methods is very good for the S and P states,
whereas for D states there are deviations on a few percent
level. For Cs, we observe larger deviations than for Rb, which
however disappear in the high-n limit.

We now compare our DFCP values of polarizabilities with
previous experimental and theoretical results available in the
literature. The comparison for α0 and α2 in Rb and Cs is
presented in Tables IV–VII. The complete tabulation of our
DFCP results is given in Tables I–IV of the Supplemental

Material [24]. Results are reported for the states with the
principal quantum number n in the region n = 8 – 50 for Rb
and n = 9 – 50 for Cs.

We observe that for the nS states, there is a very good
agreement between different calculations and between theo-
retical and experimental values. In particular, we note excellent
agreement with high-precision experimental results by Walls
et al. [25] for the 9S and 10S states of Rb and those by
Wijngaarden et al. [26] for the 11S, 12S, and 13S states of
Cs. Based on this comparison and on the fact that the DFCP
approach works better with the increase of n, we estimate that
the accuracy of our DFCP results for the nS states should be
better than 1% for all n presented in the tables.

For the P states, there is no experimental data available.
Based on the comparison presented in Table III, we estimate
that the accuracy of our results should be on the 1% level for
n � 15. For the D states, we observe that deviations from the
experimental data are larger than for the S and P states, and
that they decrease more slowly with increase of n. We estimate
that the accuracy of our results for the D states should be on
the 1% level for n � 20 and on the 2% level for n ≈ 15. We
note some discrepancies with the CA results by Wijngaarden
[22] for the 10D and 11D states of Rb (including the overall
sign in the case of α0 and a factor of about two difference for
α2), which probably are due to numerical instabilities for high
n in Ref. [22].

Finally, we analyze the n dependence of the electric
polarizabilities. In Figs. 1 and 2 we plot our results for the α0

and α2 polarizabilities, scaled by their leading n dependence
factor, n−7. We find that for the S states, the polarizability
demonstrates the asymptotic large-n behavior already at n ≈
20, whereas for the P and D states the asymptotic behavior is
generally not reached in the range of n � 50 considered in the
present work.

It might now be interesting to address the question to which
extent the relativistic treatment is necessary in describing
highly excited Rydberg states. In the literature, the behavior of
the high-n electrons is often considered to be nonrelativistic,
or even quasiclassical. From Table II we can deduce that
the relativistic effect of the fine-structure splitting of nPJ ,
nDJ , and even nFJ (in the case of Cs) energy levels is
rather significant on the level of the calculational accuracy.
Theoretical treatment of the atomic polarizabilities is known
to be very sensitive to the (rather small) energy difference of the
reference state and the nearest excited states of the opposite
parity and, therefore, requires energy levels calculated with
inclusion of relativistic effects. Contrary to that, the transition
matrix elements appearing in the expressions for α0 and α2

are essentially nonrelativistic for high n. This is confirmed by
good agreement observed between the DFCP and CA methods
(we recall that in the CA method, the radial integrals are
calculated nonrelativistically, whereas the DFCP approach is
fully relativistic).

VI. CONCLUSION

In this paper we have presented our calculations of the
static electric-dipole scalar and tensor polarizabilities of highly
excited nS, nPj , and nDj states of Rb and Cs. The calculations
are based on the Dirac-Fock Hamiltonian with a semiempirical
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TABLE VI. Static electric-dipole scalar polarizabilities α0 (in a3
0 ) in Cs, a comparison with the previous experimental and theoretical

results. The complete tabulation of the DFCP results is available in Table III of the Supplemental Material [24]. Notations are as in Table IV.

n n2S n2P1/2 n2P3/2 n2D3/2 n2D5/2 Ref.

9 0.154 [6] 0.105 [7] 0.136 [7] − 0.146 [7] − 0.185 [7]
0.153 [6] 0.102 [7] 0.131 [7] − 0.140 [7] − 0.177 [7] [22] (th)

− 0.14(1) [7] − 0.20(1) [7] [36] (exp)
10 0.477 [6] 0.356 [7] 0.463 [7] − 0.436 [7] − 0.548 [7]

0.475 [6] 0.349 [7] 0.451 [7] − 0.422 [7] − 0.530 [7] [22] (th)
− 0.46(7) [7] − 0.54(5) [7] [36] (exp)
− 0.4185(4) [7] − 0.5303(8) [7] [37] (exp)

0.478(1)[6] [26] (exp)
11 0.125 [7] 0.100 [8] 0.131 [8] − 0.111 [8] − 0.139 [8]

0.124 [7] 0.099 [8] 0.128 [8] − 0.109 [8] − 0.136 [8] [22] (th)
− 0.1083(1) [8] − 0.1358(2) [8] [37] (exp)

0.1245(1)[7] [26] (exp)
12 0.286 [7] 0.246 [8] 0.321 [8] − 0.254 [8] − 0.315 [8]

0.284 [7] 0.244 [8] 0.316 [8] − 0.251 [8] − 0.311 [8] [22] (th)
− 0.2484(2) [8] − 0.3078(6) [8] [37] (exp)

0.2867(2)[7] [26] (exp)
13 0.598 [7] 0.543 [8] 0.709 [8] − 0.530 [8] − 0.655 [8]

0.590 [7] 0.540 [8] 0.703 [8] − 0.522 [8] − 0.647 [8] [22] (th)
− 0.5198(7) [8] − 0.643(1) [8] [37] (exp)

0.5993(5)[7] [26] (exp)
14 0.116 [8] 0.110 [9] 0.144 [9] − 0.103 [9] − 0.127 [9]

0.114 [8] 0.110 [9] 0.143 [8] [22] (th)
15 0.211 [8] 0.210 [9] 0.275 [9] − 0.188 [9] − 0.231 [9]

0.206 [8] [22] (th)
16 0.365 [8] 0.378 [9] 0.496 [9] − 0.328 [9] − 0.403 [9]

0.354 [8] [22] (th)
17 0.605 [8] 0.651 [9] 0.853 [9] − 0.550 [9] − 0.672 [9]

0.577 [8] [22] (th)
39 0.355 [11] 0.573 [12] 0.753 [12] − 0.390 [12] − 0.469 [12]

− 0.45(2) [12] − 0.49(2) [12] [38] (exp)
50 0.215 [12] 0.379 [13] 0.498 [13] − 0.249 [13] − 0.300 [13]

− 0.206(6) [13] − 0.28(1) [13] [38] (exp)

core-polarization potential. This approach provides us with a
complete spectrum of the energies and wave functions of the

effective one-particle Hamiltonian and allows us to compute
various atomic properties, in particular, atomic polarizabilities.
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graph) and Cs (right graph).
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TABLE VII. Static electric-dipole tensor polarizabilities α2 (in a5
0 ) in Cs, a comparison with the previous experimental and theoretical

results. The complete tabulation of the DFCP results is available in Table IV of the Supplemental Material [24]. Notations are as in Table IV.

n n2P3/2 n2D3/2 n2D5/2 Ref.

9 − 0.138 [6] 0.121 [7] 0.245 [7]
− 0.134 [6] 0.119 [7] 0.238 [7] [22] (th)

10 − 0.460 [6] 0.347 [7] 0.701 [7]
− 0.449 [6] 0.341 [7] 0.685 [7] [22] (th)

0.3401(4)[7] 0.682(2)[7] [37] (exp)
11 − 0.127 [7] 0.860 [7] 0.174 [8]

− 0.125 [7] 0.852 [7] 0.171 [8] [22] (th)
0.847(1)[7] 0.1705(5)[8] [37] (exp)

12 − 0.308 [7] 0.192 [8] 0.387 [8]
− 0.305 [7] 0.191 [8] 0.383 [8] [22] (th)

13 − 0.673 [7] 0.393 [8] 0.792 [8]
− 0.670 [7] 0.389 [8] 0.785 [8] [22] (th)

0.3866(7)[8] 0.780(2)[8] [37] (exp)
14 − 0.136 [8] 0.753 [8] 0.152 [9]

− 0.136 [8] [22] (th)
0.149(8)[9] [36] (exp)

15 − 0.257 [8] 0.136 [9] 0.274 [9]
0.28(2)[9] [36] (exp)

16 − 0.460 [8] 0.235 [9] 0.474 [9]
0.48(2)[9] [36] (exp)

17 − 0.786 [8] 0.391 [9] 0.786 [9]
0.80(4)[9] [36] (exp)

18 − 0.129 [9] 0.627 [9] 0.126 [10]
0.130(6)[10] [36] (exp)

30 − 0.865 [10] 0.357 [11] 0.714 [11]
0.361(8)[11] 0.70(1)[11] [39] (exp)

35 − 0.288 [11] 0.115 [12] 0.231 [12]
0.125(5) [12] 0.235(4) [12] [39] (exp)

39 − 0.664 [11] 0.261 [12] 0.521 [12]
0.30(2) [12] 0.56(1)[12] [38] (exp)

By comparison with the results obtained by different methods
and with the experimental data, we estimate the accuracy of
the obtained polarizability values to be on a percent level for
sufficiently high values of the principal quantum number n.

In our future investigations we plan to employ this method
for computing dynamic atomic polarizabilities and transition
matrix elements necessary for the theoretical description of the
interaction of Rydberg atoms with a macroscopic environment.
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