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Remote entanglement of distant, noninteracting quantum entities is a key primitive for quantum information
processing. We present a protocol to remotely entangle two stationary qubits by first entangling them with
propagating ancilla qubits and then performing a joint two-qubit measurement on the ancillas. Subsequently,
single-qubit measurements are performed on each of the ancillas. We describe two continuous variable
implementations of the protocol using propagating microwave modes. The first implementation uses propagating
Schro dinger cat states as the flying ancilla qubits, a joint-photon-number-modulo-2 measurement of the
propagating modes for the two-qubit measurement, and homodyne detections as the final single-qubit
measurements. The presence of inefficiencies in realistic quantum systems limit the success rate of generating
high fidelity Bell states. This motivates us to propose a second continuous variable implementation, where
we use quantum error correction to suppress the decoherence due to photon loss to first order. To that end,
we encode the ancilla qubits in superpositions of Schrodinger cat states of a given photon-number parity, use a
joint-photon-number-modulo-4 measurement as the two-qubit measurement, and homodyne detections as the final
single-qubit measurements. We demonstrate the resilience of our quantum-error-correcting remote entanglement
scheme to imperfections. Further, we describe a modification of our error-correcting scheme by incorporating
additional individual photon-number-modulo-2 measurements of the ancilla modes to improve the success rate
of generating high-fidelity Bell states. Our protocols can be straightforwardly implemented in state-of-the-art

superconducting circuit-QED systems.
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I. INTRODUCTION

Generation of entangled states between spatially separated
noninteracting quantum systems is crucial for large-scale
quantum information processing. For instance, it is necessary
for implementation of quantum cryptography using the Ekert
protocol [1], teleportation of unknown quantum states [2], and
efficient quantum communication over a distributed quantum
network [3,4]. At the same time, it is also valuable for
performing a loophole-free test of Bell’s inequalities [5-8].
In particular, a concurrent remote entanglement scheme, in
which no signal propagates from one qubit to the other, is a
desirable feature of a scalable, module-based architecture of
quantum computing [9-12].

The inevitable presence of imperfections in current experi-
mentally accessible quantum systems have stimulated a search
for remote entanglement protocols that are resilient to these
imperfections. Heralded remote entanglement schemes based
on interference of single photons from distant excited atoms or
atomic ensembles using beam splitters and subsequent photon
detection have been proposed [13—-16] and demonstrated
[17-21]. These protocols make use of the inherent resilience
of Fock states to photon loss arising out of imperfections.
As a consequence, when a successful event happens, it
leads to a very high fidelity entangled state. However,
the collection and detection efficiencies limit the success
probability of generating entangled states. Alternate protocols
using continuous variables of microwave light, in particular
superpositions of coherent states, have been proposed that
have a high success rate [22,23]. However, in the presence
of imperfections, the success rates of these protocols diminish
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drastically for generating high fidelity entangled states. This
is because superpositions of coherent states are extremely
susceptible to decoherence due to photon loss. The goal of this
paper is to propose a concurrent, continuous-variable, remote
entanglement protocol, which is amenable to quantum error
correction to suppress the decoherence due to photon loss.

The protocol can be summarized as follows. In order to
generate entanglement between two distant, stationary qubits,
we use a propagating ancilla qubit for each of the stationary
qubits. In the first step, each of the stationary qubits is
entangled with its associated propagating ancilla qubit. In the
next step, a two-qubit measurement (ZZ2) is performed on the
propagating ancillas. This nonlinear measurement erases
the “which stationary qubit is entangled to which flying qubit”
information and gives rise to four-qubit entangled states. The
final step is comprised of a single qubit measurement on each
ancilla qubit, to disentangle them from the stationary qubits,
and finally preparing the desired entangled states between the
two stationary qubits.

We describe two continuous-variable implementations of
the aforementioned protocol. In the first implementation,
we encode the ancilla qubits in Schrodinger cat states of
propagating modes of microwave light [24-27]. The logical
basis states of each of the ancilla qubits are mapped to even and
odd Schrodinger cat states, denoted by |Cj), defined below:

IC) = Ni(la) £ | —a)), (1)

where Ny = 1/4/2(1 & e=2#l*), The two-qubit measurement
(ZZ) on the ancillas is a joint-photon-number-modulo-2 mea-
surement, while the single-qubit measurements are homodyne
detections. In the absence of imperfections, this protocol gives
rise to maximally entangled Bell states with unit probability.
However, in the presence of imperfections, photon loss leads
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to decoherence of the propagating (ancilla qubit) microwave
modes which are entangled with the stationary qubits. This
limits the success rate of generating high fidelity Bell states.

To remedy this effect, we propose a second implementation
of our protocol. In this implementation, we use a different
encoding of the ancilla qubits, where the logical basis states
are mapped to the states |CO-2m°44) hereafter referred to as
“mod 4 cat states” [26-28], of a propagating temporal mode,
defined below:

1
2{1 + cos(lalz)}

cosh(|a|?)

camdt) = (ICH +ICh)),

|c2moddy — aChH—1Cctn. ()

2{1 _ cos(la|?) }

cosh(|a|?)

The state |CO@™°44) has photon-number populations in the
Fock states 4n(4n + 2),n € N, which is indicated by the
notation 0(2)mod4. For this encoding, the two-qubit ZZ
measurement is a joint-photon-number-modulo-4 measure-
ment, while the single-qubit measurements are homodyne
detections. In the absence of imperfections, the joint-photon-
number-modulo-4 outcome can be either 0 or 2. Now consider
the case when there are imperfections. Photon loss due to
these imperfections takes the populations of the propagating
temporal mode from the even photon-number-parity manifold
to the odd-photon-number-parity manifold. This change in
photon-number-parity changes the outcome of the joint-
photon-modulo-4 measurement. By detecting this change of
the joint-photon-number-modulo-4 measurement outcome, we
correct for the decoherence of the entangled qubit-photon
states due to loss of a photon in either of the ancillas.
Furthermore, additional individual photon-number-modulo-
2 measurements of the ancillas, in addition to the joint-
photon-number-modulo-4 measurement, suppress the loss of
coherence due to loss of a single-photon in both ancillas.

Superconducting circuit-QED systems have access to a
tunable, strong, and dispersive nonlinearity, in the form of the
Josephson nonlinearity. Moreover, the collection and detection
efficiency of microwave photons are significantly better than
their optical counterparts. Further, the dominant source of
imperfection in these systems is photon loss. Therefore, our
scheme is ideally suited for these systems. In fact, sequential
interaction of a propagating microwave photon mode with two
distant qubits, using linear signal processing techniques, have
successfully entangled the two qubits [29-32]. Furthermore,
measurement of joint-photon-number-modulo-2 of two cavity
modes has already been demonstrated in circuit-QED systems
[33].

The paper is organized as follows. Section II describes
our protocol using propagating ancilla qubits. Section III
describes two continuous variable implementations of this
protocol for the two different encodings of the ancilla qubits
mentioned above. Sections IV A and IV B incorporate the
effect of imperfections like undesired photon loss and detector
inefficiencies for the two implementations. Section IV C
compares the resilience of the two implementations to these
imperfections. Section IV D discusses the improvement to
our protocol by incorporating additional, individual, photon-
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number-modulo-2 measurements. Our results are summarized
and future directions are outlined in Sec. V.

II. PROTOCOL USING PROPAGATING ANCILLA QUBITS

In this section, we present a concise description of our
protocol to entangle two stationary, mutually noninteracting
qubits, Alice (A) and Bob (B), using two propagating ancilla
qubits, arnie (a) and bert (b) (cf. Fig. 1). Each qubit s initialized
toits |[+) = (|g) + |e))/\/§ state. Local entanglement is gen-
erated between Alice (Bob) and arnie (bert), by first applying a
CPHASE gate between Alice (Bob) and arnie (bert), followed by
aHadamard gate on Alice (Bob). After this step, the state of Al-
ice (Bob) and arnie (bert)is (|g,g) + le,e))/ V2. Subsequently,
a quantum nondemolition two-qubit measurement, Z,Z,, is
performed on arnie and bert, whose outcome is denoted by
p = *£1. This measurement gives rise to one of the two four-
qubit entangled states: (W= = (|g,8,8.8) + |e,e,e,e>)/«/§
and |WP="1) = (|g,e,g.e) + Ie,g,e,g))/\/z. Here, the first,
second, third, and fourth positions in the kets belong to the
states of Alice, Bob, arnie, and bert respectively. Since the
final aim is to generate an entangled state of just Alice and
Bob, arnie and bert must be disentangled from Alice and Bob,
while preserving the entanglement between the latter two.
This is the task of the final step. It is comprised of making
X measurements on arnie and bert, whose outcomes are
denoted by p,(= 1) and p,(= %1) respectively. Conditioned
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CPHASE |
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- 1
92 yens) = (1 )+l )
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FIG. 1. Remote entanglement protocol schematic. The first step
of the protocol is comprised of local entanglement generation between
two stationary, mutually noninteracting qubits, Alice (in red) and
Bob (in green), with propagating ancilla qubits, arnie (in dark
red) and bert (in dark green). To that end, the four qubits are
initialized to their respective |+) states. Subsequently, a CPHASE
gate is applied between Alice (Bob) and arnie (bert), followed by
a Hadamard rotation on Alice (Bob). After this step, the entangled
state of Alice (Bob) and arnie (bert) is (|g,g) + |e,e))/+/2. Next,
a two-qubit measurement, Z,Z,, is performed on arnie and bert.
Conditioned on the measurement outcome p = %1, a four-qubit en-
tangled state is generated: |¥"=!) = (|g,2.2.8) + |e,e,e,e))/\/§ or
|[wr==1y = (|g,e,g.¢) + |e,g,e,8))//2. Subsequently, single-qubit
measurements (X) are performed on arnie and bert, denoted by
X4, Xp, with measurement outcomes p,,p, = 1. Conditioned on
the three measurement outcomes p,p.,p», Alice and Bob are
projected onto a particular entangled state [W? _ ) = (| +,+) +

Papp=1
pl—=D/V2or W0 ) =(+.,=)+pl =, +)/V2.
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on the three measurement outcomes p,p,,pp, Alice and
Bob get entangled with each other, with the final state

being [  _ ) =(+.4) + pl——))/v2 or |W’ ) =

Papp=1 PapPr=—1
(I+,=) + pl—.4))/v2. Here, |—) = (Ig) — le))/+/2.

In what follows, we describe proposals for the continuous
variable implementations that realize the aforementioned
protocol.

III. IMPLEMENTATION USING PROPAGATING
SUPERPOSITIONS OF COHERENT STATES

The first implementation uses the mapping of the ground
(excited) state of the ancilla qubits to even (odd) Schrodinger
cat states |C. )y (cf. Fig. 2). Consequently, the states |+)
are approximately mapped to coherent states | + «). The ZZ
measurement is performed by a joint-photon-number-modulo-
2 measurement, while the X measurements are performed by
homodyne detections. In the second implementation, we map
the ground (excited) states of the ancillas to the mod 4 cat states
|CO@moddy '\whence the | + (—)) are approximately mapped to
even cat states |C;’(ia)). In this case, the ZZ measurement is
achieved by a joint-photon-number-modulo-4 measurement,
while the X measurements are performed by homodyne
detections. As will be shown later, the use of continuous
measurements in the final step allows us to postselect on
outcomes that give rise to high-fidelity Bell states. In this
section, we treat the case of perfect quantum efficiency,
and incorporate imperfections in our computational model in
Sec. IV.

A. Implementation using Schrodinger cat states

In the first step of the protocol, local entanglement is
generated between a stationary transmon qubit, Alice (Bob),
and a propagating microwave mode, arnie (bert), giving rise
to the following states: (|g,C\) + |e,C;))/\/§ [(|g,C;r) +

le) = |Cq) le) = |c2mod4)
=) = |—a) a [+) = |a) =) = |Ch) [+) = [CF)
lgy =1¢3) lg) = |cg™od)

2.7 =(n_+n,) mod 2 Z.Z =(n,+n,) mod 4

FIG. 2. Cat-qubit mapping schematic. Left: The ground (excited)
state of each of the ancilla qubits is mapped to even (odd) Schrodinger
cat states [CF7)) [see Eq. (1)]. Consequently, the states |+) are
mapped to coherent states | £ «). In this mapping, Z,Z, on the
propagating ancilla qubits corresponds to a joint photon-number-
modulo-2 measurement of the propagating microwave modes. Right:
The ground (excited) state of each of the ancilla qubits is mapped
to mod 4 cat states |C2P™%) [see Eq. (2)]. Consequently, |+) are
mapped to even cat states |C;’(m)). In this mapping, Z,Z, on the
propagating ancilla qubits corresponds to a joint photon-number-
modulo-4 measurement of the propagating microwave modes. For
both encodings, the single-qubit measurements (X) can be imple-
mented by homodyne detections (not shown in the figure for brevity).
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le,Cg))/ V/2]. This specific entangled state can be generated
by first generating this entangled state inside a qubit-cavity
system using the protocol proposed in [34] and experimentally
demonstrated in [35]. Without loss of generality, we choose
a,B ereal,a = B > 0. We require the temporal profile of
the modes of arnie and bert as they fly away from Alice
and Bob to be €'/ cos(w,t)O(—t) and e*'/? cos(wpt)O(—t)
respectively, where w, ;,k, , are defined below. The specific
temporal mode profile can be implemented using a Q switch
[36,37] and is necessary for these modes to be subsequently
captured in resonators for the joint-photon-number-modulo-2
measurement. The total state of the system, comprised of Alice,
Bob, arnie, and bert, can be written as

|Wapa) = 3(18.8,CS.CH) + le.e,C, ,C,)
+1g.¢,.CS.C.) +1e.8.C,.C).  (3)

Next, a joint-photon-number-modulo-2 measurement is
performed on these propagating microwave modes as follows.
The propagating microwave modes, entangled with the station-
ary qubits, pass through transmission lines and are resonantly
incident on two cavities, exciting their fundamental modes
with frequencies (decay rates) w,(k,) and w,(k}), respectively.
Due to the specific form of the chosen mode profile, at
t = 0, these propagating modes get perfectly captured in these
cavities. Subsequently, their joint-photon-number-modulo-2
is measured by coupling a transmon qubit to these modes
[33]. An even (odd) joint-photon-number-modulo-2 outcome
corresponds to a measurement result p = +1 (p = —1) and
the four-mode state, in absence of transmission losses and
measurement imperfections, can be written as

p=l ! + ot - C-
Vi) = 7508:8.C0C) +leeCoCO) @)
1
V2

After this measurement, the ancilla qubits, arnie and
bert, are entangled to Alice and Bob. The last step of the
protocol performs the crucial function of disentangling Alice
and Bob from the propagating ancillas, while preserving
the entanglement between Alice and Bob. This is done by
performing homodyne measurement along the direction arg(c)
of each of the outgoing microwave modes. Since we have
chosen « € real, the X quadratures of the microwave modes
need to be measured. From Egs. (4) and (5), it follows
that the pair of outcomes of the integrated homodyne signal
(xa4,xp) = (@,&) or = (—a, — ) projects Alice and Bob to
(+,+)+pl— ,—})/«/5. Similarly, an outcome (¢, — @) or
(—a,a) projects Alice and Bob to (| +,—) + p| — ,+))/~/2.

For a given p, after the homodyne detections of arnie and
bert, the density matrix pip, = [WXp ) (Whp 1 | evolves to

W)=

ABab (Ig.6,C5.C) + le.g,Cr,.CH). ()

M pRsa My
Tr[MXpﬁBabM];(]

Pipab = s My = |Xa,%5) (XarXp ], (6)

The probability distribution of the outcomes P7?(x,,xp) =

1Tr[M XpXBabMJ;(]' The factor of 1/2 arises because each
of the outcomes given by p = %1 occurs with 1/2 probability.
The resulting state of Alice and Bob is obtained by tracing
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FIG. 3. Probability distribution P”(x,,x;) of outcomes of the
homodyne measurements of arnie and bert and resulting overlaps
of Alice and Bob’s joint density matrix psp to the Bell states |¢+) =
(lg,g) = le,e))/ /2 are shown for the case when the joint-photon-
number-modulo-2 measurement yields p = 1. We choose « = 1 and
assume absence of measurement imperfections and photon loss. Left:
Probability distribution showing four Gaussian distributions centered
atx, = +o,x, = a. Center and right: Corresponding overlap to the
Bell state |¢™) tends to 1 for (x,,x;) in the vicinity of («,«) and
(—a, — o). Similarly, overlap to the Bell state |¢~) tends to 1 for
(x4,Xp) in the vicinity of (—«,«) and (o, — ). For an outcome on
one of the lines, x, = 0 or x;, = 0, the resultant state of Alice and Bob
is an equal superposition of |¢*) and |¢~) and is not an entangled
state. For p = —1, identical results are obtained with the substitution

=) — 1Y)

out the states of arnie and bert. We evaluate P?(x,,xp)
and the corresponding overlap to the Bell states |¢pF) =
(Ig.8) % le,e))/v2and [ *) = (Ig.e) + |e,g))/v/2 to be (see
Appendix B 1)

2 >
PP(xq.xp) = —e 20t De 40N, (7)
4
1+ I+p 1 sinh(4x,a) sinh(4x,a)
(" |prpld™) = 7 . (8
2 (2 4N, (1 — e4a*)
1—p[1  sinh(4x,o)sinh(4x,a)
+, P +
=—|_+ , 9
(U= lpasl¥™) 7 [2 4N, (I — e ) ©)
where
N |:cosh2(2xaa) cosh?(2xpcx)
=1 =
! (1 + e—z"‘z)2
sinh?(2x,) sinh?>(2x,«
. Sinh(2xger) sinh (2 )}, (10)
(1 — 6—2"‘2)
Np—_y = = [cosh®(2x,0) sinh?(2xpcx)
+ sinh®(2x,0) cosh?>(2x,a)]. (11)

Figure 3 shows the probability distribution P?(x,,x;) of the
outcomes of the integrated homodyne currents x,,x;, together
with the overlap to the Bell states |¢T),|¢ ™) for the case when
the joint-photon-number-modulo-2-measurement outcome is
p=1. We choose o« =1 in absence of transmission loss
and measurement inefficiency. The probability distribution
[Eq. (7)] contains four Gaussian distributions centered around
X, = £a,x, = *a. For (x,,xp) in the vicinity of («,«) and
(—a, — @), the overlap to the Bell state |¢*) approaches 1,
while for (x,,x;) in the vicinity of (¢, — ) and (—«,«), the
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overlap to the Bell state |¢~) approaches 1. For outcomes
along the lines x, = 0 and x;, = 0, Alice and Bob are projected
onto equal superpositions of |¢*) and |¢~) and thus, are not
entangled. The results for the case p = —1 are identical with
|¢*) is replaced by | *).!

B. Implementation using mod 4 cat states

In this section, we describe the implementation of our
protocol where the ancilla qubits are mapped onto mod 4 cat
states. The first step of the protocol again involves generating
entanglement between the stationary qubit of Alice (Bob)
and the propagating microwave mode arnie (bert) giving
rise to the following states: (|g,COmM) 4 |e,C2mod4y) /2
[(1g,Cy™*™) + |e,C§m°d4))/\/§]. This set of entangled states
can be obtained in an analogous manner using the method
described in the previous subsection. We will again choose,
without loss of generality, o, € real,a = 8 > 0. The total
state of the system, comprised of Alice, Bob, arnie, and bert,
can be written as

(|g g, C2m0d4’C2mod4)

+ |€,€,C§m°d4’cim0d4) + |g7e7cgmod4’c‘)2tmod4>
+ |e,g, C§m0d4,C2mod4>).

[WaBab) =

By suitably engineering the temporal mode profiles of the
propagating modes as in the previous subsection, these
propagating entangled qubit-photon states are then captured
in resonators. Subsequently, a joint-photon-number-modulo-4
measurement is performed on these captured modes (see
Appendix A for details of the measurement protocol). In
absence of measurement imperfections and losses, the joint-
photon-number-modulo-4 has two possible outcomes: A = 0,2
(the two-qubit measurement outcome p of Sec. II can be
written as p = i*), corresponding to which the four-mode state
can be written as

|wigh) = 12(|g,g,00mod4,cgmod4>
) (12)

W) = 5 e cim cam
+e.g.CAmM.Cm)). (13)

"For p = land o < 1, the overlaps to the Bell states |¢*) vary non-
monotonically along x, = =£x,. This can be understood as follows.
For @ — 0, the state of the four modes after the joint-photon-number-
modulo-2 measurement can be written as %(Ig,g,0,0) + le,e,1,1))
[see Eq. (4)]. Following homodyne detection with outcomes x,,x;,
the unnormalized state of Alice and Bob is |g,g) + x,x,|e,e). Thus,
for |x,| = |xp| > 1, Alice and Bob’s states are unentangled. On
the other hand, this effect is absent for p = —1. In this case, the
state of the four modes, following the joint photon-number-modulo-2
measurement, is given by %(|g,e,0,l) + le,g,1,0)). This results in
the unnormalized state x,|g,e) + x,|e,g) for Alice and Bob. Thus,
Alice and Bob remain entangled for |x,| = |x;,| > 1. This difference
in behavior for p = %1 is washed away for o > 1.
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FIG. 4. Probability distribution P*(x,,x;) of outcomes of the
homodyne measurements of arnie and bert and resulting overlaps
of Alice and Bob’s joint density matrix pag with the Bell states
16%) = (I8.8) £ le.e))/V2.|¥*) = (Ig.€) £ |e.g))/~/2 are shown.
We choose o =1 in absence of measurement imperfections and
photon loss. The top (bottom) left panel shows the probability of
outcomes for the joint-photon-number-modulo-4 outcome A = 0(2).
Corresponding overlaps to the Bell states |¢*)(|y*)) are plotted in the
top (bottom) center and top (bottom) right panels. The overlaps to the
odd (even) Bell states for A = 0(2) are zero and not shown for brevity.
Forboth A = 0 and A = 2, one gets entangled Bell states for Alice and
Bob for majority of outcomes in the (x,,x;) space. The alternating
bright and dark fringes in plots are due to the measurement of X
quadrature of both arnie and bert, both of which are in superpositions
of |CF) and |C;h). The size of the fringes decreases with increasing
values of «.

The final step of the protocol comprises of making homodyne
detections of arnie and bert and here we choose the X
quadrature of both these modes. Similar calculations can
be done for other choices. Consider the case when A = 0.
From Eq. (12), it follows that each homodyne detector will
have Gaussian distributions centered around x,,x;, = 0, & «.
It also follows from Eq. (12) that for events (x,,x;) in the five
vicinity regions of (£, £ «) and (0,0), the resulting state of
Alice and Bob approaches |¢*), while for outcomes in the
vicinity of (0, & &) and (%«,0), the resulting state of Alice
and Bob approaches |¢ ). Similar set of reasoning holds for
A =2, when the states |/*) are generated. Since the state
of Alice and Bob depend only on (|x,[,|xp|), the resulting
overlap distributions respect a fourfold rotational symmetry in
the (x,,xp) space (see Fig. 4).

After the homodyne detection, the density matrix of Alice,
Bob, arnie, and bert evolves to

M pipa M
Tr[MXP/AxBabM;]

PABab — , My = [Xa,20) (Xarxp]. (14)

The probability distribution of the outcomes is given by

PM(x,,xp) = %Tr[/\/l X p*/\/l}]. The subsequent state of Alice
and Bob can again be obtained by tracing out the modes arnie
and bert. Note again the factor of 1/2 in the expression for the

PHYSICAL REVIEW A 94, 032333 (2016)

probability distribution due to the probability 1/2 of occurrence
of either A =0or A =2.

Computing the probability of outcomes and the overlap to
the Bell states (see Appendix B 2 for details), we arrive at

. 1 e 20t
P*(x4,xp) = — —— N,
(Xa>Xp) e +e*2°‘2)2 A

e 11 Tien B B |
<¢ |10AB|¢ ) - 2 2 + ]\7}\[1 _ { cos(a?) }2]

cosh(a?)

—i* l n I—[(;:()’z Fs5(xa) F5(xp)
N ER Ty

1
(YElprsly™) =

cosh(a?)
(15)
where
_ Fo(x,) Fo(x, 2 Fr(x,)F(x 2
Ny = [—0( )COS‘Ziz)b)} +[—2( )mfiz)b)} . (16)
1+ cosh(a?) 1 - cosh(a?)
N 1
Ny= = W[Fo(xa)ze(xb)z
- {cosh(az)}
+ Fa(xa)* Fo(xp)’1, (17)

and F,(x) = e~ cosh(2ax) + i* cos(2ax).

Figure 4 shows the probability of success and the overlap
to the Bell states |¢*),|y*) for this implementation of
our protocol. We choose o = 1, and plot the results for
the two possible joint-photon-number-modulo-4 measurement
outcomes: A = 0,2, in absence of imperfections and photon
loss. For a majority of outcomes in the (x,,x;) space, we
get one of the four aforementioned Bell states. The existence
of fringes in the plots is due to the measurement of the X
quadratures of both arnie and bert, each of which are in
superpositions of |C;}) and |C;;). The size of the fringes
decreases with increasing «. In the absence of imperfections,
for small values of «, these fringes lower the total success rate
for generation of Bell states for the mod 4 implementation
compared to the mod 2 implementation (more on this in
Sec. IV C). However, in the presence of imperfections, as will
be shown in Sec. IV C, the total success rate for generating high
fidelity Bell states is higher for the mod 4 implementation. Note
that in the absence of imperfections, the overlaps to the odd
(even) Bell states for the case A = 0(2) are identically equal to
Zero.

So far, we have described our protocol in the absence
of measurement imperfections and propagation losses. In
what follows, we incorporate measurement inefficiencies and
propagating losses in our computational model and investigate
the resilience of the two different implementations of our
protocol to these imperfections.

IV. FINITE QUANTUM EFFICIENCY AND NON-ZERO
PHOTON LOSS

The dominant source of imperfections in current circuit-
QED systems that affect our protocol is undesired photon
loss. These losses occur due to photon attenuation on the
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transmission lines and other lossy devices like circulators and
isolators which are necessary for an actual experimental imple-
mentation. These lead to decoherence of the entangled states
of Alice (Bob) and arnie (bert) as arnie and bert propagate from
the stationary qubits to the joint-photon-number-modulo-2/4
measurement apparatus and from there on to the homodyne
detectors. For simplicity, we assume the losses to be equal for
both arnie and bert (the case of unequal losses can be calculated
easily using the method described below). Thus, for each of
arnie and bert, we define two efficiency parameters 7, and 7.
Here, n; models the losses before the joint-photon-number-
modulo-2/4 measurement apparatus and 1, models the losses
thereafter and before homodyne detection setup. These losses
are modeled as photons lost by each of arnie and bert as they
pass through beam splitters with transmission probabilities
n1 and n; in otherwise perfect transmission lines [38]. Finite
qubit lifetimes, with current circuit-QED system parameters,
are a much less dominant source of imperfection compared to
photon loss and are thus neglected in the subsequent analysis.

First, we qualitatively describe the effect of photon loss
for the two implementations. Consider the case when the
ancilla qubits are encoded in even and odd Schrodinger
cat states. Loss of a photon is a bit-flip error on the ancilla
qubit since a|C Ojf) =~ |C;), where a is the annihilation operator
of the propagating temporal mode. This bit-flip error occurs
randomly as the entangled qubit-photon states of Alice (Bob)
and arnie (bert) propagate from the stationary qubits to the
joint-photon-number-modulo-2 measurement apparatus and
from thereon to the homodyne detectors. This results in
decoherence of the entangled states of Alice (Bob) and
arnie (bert). Therefore, the probability of generating a high
fidelity Bell-state of Alice and Bob diminishes drastically (see
Sec. IV A).

Now, consider the case when the ancillas are encoded in the
mod 4 cat states. To lowest order in photon loss, either arnie or
bert can lose a photon. On losing a photon, the state of arnie or
bert goes from |CO2mod4) (o the state |C2(V™med) [see Eq. (B7)
and [27] for the definition of |CL3m°d*)]. Therefore, when
either arnie or bert loses a photon, the joint-photon-number-
modulo-4 measurement now yields the values A =1 or 3,
unlike the perfect case outcomes A = 0 or 2 [see Egs. (12) and
(13) and Sec. IV B]. Thus, measurement of the joint-photon-
number-modulo-4 allows us to keep track of loss of a photon
in arnie or bert. This tracking of a single-photon loss error is
equivalent to correcting this error since it allows the knowledge
of the exact state of the four qubits after the error has happened.
As will be shown below, this enables generation of high fidelity
entangled states of Alice and Bob with higher success rates
than the mod 2 implementation.

In the next order in photon loss, either both arnie and bert
lose one photon each or arnie loses two photons, or bert loses
two photons. Consider the case in the mod 4 encoding when
arnie and bert each lose a photon. Now, the measurement
outcome A can be 0 or 2 as in the perfect case and just
a measurement of A does not reveal if arnie and bert have
indeed lost a photon each. However, these events of loss of
one photon each in the ancillas can be tracked by individual
photon-number-modulo-2 measurements of the ancillas. In
this way, we can suppress the loss of coherence due to the
loss of a photon in both arnie and bert. Note that the other
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second-order or higher-order losses cannot be suppressed by
this encoding (more on this in Sec. V). In the next two
subsections, we describe the effect of photon loss on the
two implementations of our protocol. This is followed by a
comparison of the two. Last, we describe the protocol with
added individual photon-number-modulo-2 measurements of
arnie and bert.

A. Implementation using Schrodinger cat states

Consider the case when the ancilla qubits are encoded in
Schrodinger cat states (see Sec. I A). First, we describe the
calculation of the state of Alice and arnie after the propagation
of arnie through the transmission line in the presence of
imperfections. The state of Bob and bert can be computed in an
analogous manner. Following local entanglement generation
between Alice and arnie, their states can be written as

1
Wa,) = —(g,Cr ,Co
[Waa) ﬁ(lg « ) +1e.Cy))

ZN( D (D), (18)

Jin=0

f

where N; = 1/y/2(1 + (=1)ie=2eF) = Nyy = Ny, and
|j = 0(1)) = |g(e)). To compute the decoherence due to prop-
agation losses, without loss of generality, one can introduce
an auxiliary propagating mode a’, initialized in vacuum, and
pass the joint states of Alice, arnie, and a’ through a beam
splitter with transmission probability n;. Subsequent tracing
out of the auxiliary mode yields the reduced density matrix
for Alice and arnie after the entangled states of Alice and
arnie propagated along the transmission line and arrived at the
joint-photon-number-modulo-2 apparatus.

Therefore, just prior to making the joint-photon-number-
modulo-2 measurement, we can write the total state of the four
modes to be (cf. Appendix C 1 for details of the calculation) :

15 NN
PABab = 64 Nk/\/k’ /\/'/

Aa,Bb

( I)IL (j+Kk)+v-(14+m)

x =R D gy
x| e e e, (19)

1 1 1
where ZAa = Zj,j’:o Zk,k’:o Zu,w:o’ ZBb Zl =

1 1 I l
Zm,m’:o Zu,u’zo » = {I’La/’L }9 V= {U,V }9 .] = {]v.] }a k=
{k,k'},1 = {I,I'},m = {m,m’}. Furthermore, we have defined
N; =1/2[1 +(=1)ie=2F]  where &= ./ma,e=
V1 —na.

Note that Eq. (19) is expressed in the eigenbasis of the
joint-photon-number-modulo-2 measurement. An outcome of
p = 1(—1) results in the state of Alice, Bob, arnie, and bert to
be in php. = Pagay/Tr[Ahp.p], Where the postmeasurement
unnormalized density matrix phg,, is given by

. 1 & NNNNG
PABab = 64 M(Mc’j\/;"'/\/;”

( l)lt (j+k)+v-(1+m)

Aa,Bb
X e~ RV =D Gy G
% o 4 _yn’
x et e e e, 20

032333-6



CONCURRENT REMOTE ENTANGLEMENT WITH QUANTUM ...

pp: 1

-2-10 1 2

| ——
0.00 0.03 0.06 0.2

0.4 0.6 0.2

0.4 0.6

FIG. 5. Probability distribution I_”’(qa ,q») of outcomes of the
homodyne measurements of arnie and bert and resulting overlaps
of Alice and Bob’s joint density matrix p4p to the Bell states |¢*)
are shown for the case when the joint-photon-number-modulo-2
measurement yields p = 1. We chose « = 1 and n; = 1, = 0.8. Left:
Probability distribution showing four Gaussian distributions centered
at g, = +£&,g, = £a&. Center and right: The corresponding overlap
to the Bell state |¢*) is substantial for (g,,q) in the vicinity of (@,&)
and (—a, — @), while the overlap to the Bell state |¢~) is substantial
for (q,,qp) in the vicinity of (&, — @) and (—&,&). We note that the
maximum fidelity Bell state that can be obtained for outcomes with
non-negligible occurrence probability is ~0.7 instead of 1.0 that was
obtained for perfect efficiency (compare Fig. 3). Outcomes along the
lines g, = 0 and g, = 0 do not yield entangled states for reasons
similar to that given for perfect efficiency. Similar results hold for the
case p = —1.

Here the prime in ), p,, indicates that the summation has to
be performed while keeping k +m = 0(1) mod 2,k +m’ =
0(1) mod 2 for an outcome of p = 1(—1).

Next, we treat the photon losses after the joint-photon-
number-modulo-2 measurement setup and before the ho-
modyne detectors. We model the measurement operator for
the imperfect homodyne detection with efficiency 7, as a
superposition of projectors |x,,xp)(x,,Xp| With a Gaussian
envelope [38,39]:

Qp = b /Oo dx, foo dxy e~ (1/207Ga/\T2=x0)?
O/TN2 J—c0 —00
x =TGN ) (X, %,
1 —

o2 = ’72' @1

2m

Here g, denote the imperfect measurement outcome which,
in principle, can arise out of the possible perfect measurement
outcomes X, With a Gaussian probability distribution shown
above. For p = =£1, the system density matrix due to this mea-
surement evolves as php.. — SZQpﬁBubQTQ/Tr[QQpKBabQE],
where the product Tr[p4p,,] X Tr[S_?Q,oXBabQTQ] is the prob-
ability distribution of outcomes PP?(q,,q»). These can be
evaluated analytically following the method outlined in Ap-
pendix B 1, along with the overlap to the Bell states |¢T), [y*).
The explicit forms of these quantities are not provided for the
sake of brevity.

Figure 5 shows the probability distribution of outcomes for
the imperfect measurement P?(q,,q,) and the overlaps to the
Bell states |¢*) for the case when the joint-photon-number-
modulo-2 measurement yields p = 1. We choose o = 1 and
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the measurement inefficiencies to be 1, = 1, = 0.8.2 The
probability distribution shows four Gaussian distributions
centered at g, = +&,qg, = +&. The corresponding overlap to
the Bell state |¢*) is substantial for (g,,qp) in the vicinity
of (&,&) and (—&, — &), while the overlap to the Bell state
|¢~) is substantial for (g,,qp) in the vicinity of (&, — &) and
(—a,@). Note that in the presence of imperfections, the max-
imum fidelity for outcomes with non-negligible occurrence
probability is ~0.7 instead of 1.0 computed earlier for the case
of perfect efficiency (compare Fig. 3). For outcomes along the
lines g, = 0 and g, = 0, one does not generate entangled states
for reasons similar to the case of perfect efficiency. A similar
set of results hold for p = —1.

B. Implementation using mod 4 cat states

In this section, we consider the case when the ancilla qubits
are encoded in the mod 4 cat states discussed in Sec. III B.
The computation for this case is, in principle, similar to that
outlined in the previous subsection. We begin by considering
the entangled qubit-photon state of Alice and arnie, which, in
this case, is given by

1
|Waa) = —=(|g.Co™™) +

V2

e, C 2mod4 ))

1

V2

where N, ; and the states [j =0,1) for Alice are de-
fined as before. The definition of A, ; 1is obtained by
setting A = 2 in the following: Ny = [2 + 2(—i)*{e/*" +
(—DremilePy/felel 4 (—1)re~lePy72 4 =10,1,2,3}. To
compute the state of Alice and arnie after their entangled
qubit-photon state encounter propagation losses, we follow
a similar approach as in the previous section: introducing
an auxiliary mode «’, looking at the resultant state after
passage through a beam splitter with transmission probability
n; and subsequently, tracing out the mode a’. A similar set
of calculations can be done for Bob and bert. Performing this
computation results in (cf. Appendix C 2 for details)

1
Y NNy (=1 (=1 iva), (22)

Jou,v=0

PABab = i Z 1_[1 A@lNZZ (_ 1)u~y+v~j+¢~6+1ﬁ-kl—vyfv’y’
10 Yy
2 Aa,Bb l_[;“ MM

X (VO g R P gy
x (j’k’l)|C§m°d4,Cgm"d4)(Cg mod4’CgrmOd4" (23)

where [T =Tletjjnir Tle =Tleesopyn» 2ona =
1 1 1 3 1 1
D=0 2o p=0 2w =0 Dy =05 DBb = Dok k=0 Dip$'=0

leb,lb'=0 22,8’:0 and j = {jﬂj/}7 n = {M,M/},V = {U,\),}

2We chose the inefficiencies to be 0.8 primarily to illustrate the
detailed structure of the phase-space distribution for ¢ = 1. Similar
values of overlap to the Bell states may be obtained for smaller values
of o and the inefficiency parameters. The detailed dependence of the
total success rate on the efficiency parameters is given in Figs. 8 and
10. There, we also point out the estimated total success rate that can
be achieved with efficiencies present in current circuit-QED systems.
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FIG. 6. Probability distribution F*(qa,qb) of outcomes of the
homodyne measurements of arnie and bert and resulting overlaps
of Alice and Bob’s joint density matrix pap with the Bell states
16%) = (Ig.8) = le.e))/V2, 1Y) = (Ig.€) £ |e.g))/v/2 are shown.
We choose @ = 1.0 and n; = 1, = 0.8 and show the cases A = 0,2
(see Fig. 11 in Appendix C3 for A = 1,3). The top (bottom) left
panel shows the probability of outcomes for the joint-photon-number-
modulo-4 outcome to be A = 0(2). Corresponding overlaps to the
Bell states |¢*)(|¥*)) are plotted in the top (bottom) center and
top (bottom) right panels. Note that the maximum fidelity obtained
for outcomes with non-negligible occurrence probability is lowered
compared to the perfect case (compare Fig. 4). The overlap to the odd
(even) Bell states for A = 0(2) is not shown for brevity.

and y ={y,y'}k={kk}¢=(0.¢'} ¥ ={y.¥'} and
8 = {58,8'}. The definitions of N, ,./\_/y can obtained from the
definitions of NV, V, (cf. Secs. IV A and IV B) by making the
substitution « — & and &,€ have been defined in the previous
subsection.

Noting that Eq. (23) expresses the density matrix in the
eigenbasis of the joint-photon-number-modulo-4 measure-
ment of arnie and bert, an outcome A € {0,1,2,3} projects
the state of the four modes to pip.p = Prpan/ Tt Frpas]s Where
Pgap 1S the unnormalized density matrix obtained from papap
by restricting the summation of y,y’,8,8' to be such that
Yy +38 =X mod 4,y’ + 8 = A mod 4. The inefficiencies in
the final homodyne detection of arnie and bert can be done
similarly to the method described in Sec. IV A, using Eq. (21).
The probability of outcomes and the overlap to the Bell states
|¢*),|¥*) can be evaluated analytically, whose explicit forms
are not shown here for brevity.

Figure 6 shows the probability of outcomes and the overlap
to the Bell states [¢T)(|v*)) when the joint-photon-number-
modulo-4 measurement outcome A = 0(2). For brevity, the
results for the outcomes A = 1,3 (the cases where the loss
of a single photon in either arnie or bert was tracked) are
shown in Fig. 11 in Appendix C 3. We have chosen o = 1.0
and n; =n, = 0.8 (see footnote in Sec. IV A). The top
(bottom) left panel shows the probability of outcomes for
A = 0 (2), while the top (bottom) center and right panels show
the corresponding overlaps to the Bell-states |¢p¥) (Jy)).
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We see that including inefficiencies lowers the maximum
fidelity obtained for outcomes with non-negligible occur-
rence probability compared to the perfect case (compare
Fig. 4).

C. Comparison of the mod 2 and mod 4 implementations in
presence and absence of imperfections

In the previous subsections, we described the probability
of outcomes for the two different implementations of our
protocol. In this section, we discuss the total and optimized
success rates of generating entangled states for the two
implementations, comparing the cases of perfect and imperfect
quantum efficiencies.

First, consider the mod 2 implementation of our protocol for
perfect and imperfect quantum efficiencies. The probability of
success and the overlaps to the Bell states are given in Fig. 3
(Fig. 5) for the perfect (imperfect) case. The total success rate
for generation of entangled states can be computed for different
cutoff fidelities by integrating the appropriate region of (x,,x;)
or (q4,qp) space of outcomes. In the perfect (imperfect) case,
the majority of the outcomes, occurring around +o (&),
give rise to entangled states, while the events along the lines
Xa(g2) = 0 and x3(gp) = 0 do not. Thus, in order to have
a high total success rate of generating entangled states, the
number of outcomes along the lines x,(g,) = 0 and x,(g,) = 0
should be minimized. This can be done by increasing the size
of a because the probability of obtaining an outcome along
these lines goes down exponentially with a?(&@?). While in
the perfect case o can be made arbitrarily large giving rise to
deterministic generation of entangled states, in the imperfect
case, too large a value of o lowers the success rate. This
is because large values of « are more susceptible to photon
losses.

Next, consider the mod 4 implementation of our protocol.
The relevant probability of outcomes and overlap to the Bell
states are given in Fig. 4 (Fig. 6) for the perfect (imperfect)
case. Similar considerations, as in the mod 2 implementation,
lead to the conclusion that in the absence of imperfections,
increasing «, in general, increases the success rate for the
different cutoff fidelities. Note that the increase, however,
is not monotonic (see below). However, in the presence
of imperfections, arbitrarily increasing « does not increase
the success rate of generating high fidelity entangled states.
This happens again because large values of o are more
susceptible to photon losses. However, for large values of «,
when photon loss dominates, tracking the loss of photons and
thereby correcting the errors enables a higher success rate of
generating a better entangled state compared to the mod 2
implementation.

Figure 7 shows the total probability of generation of
entangled states as a function of different cutoff fidelities
and different choices of the parameter « for the perfect case
(left panels, indicated by n; = 1, = 1) and the imperfect case
(right panels, for which, we have chosen 1 = 1, = 0.8).
The top (bottom) panels correspond to the mod 2 (mod 4)
implementation. For the mod 2 implementation, for the perfect
case, for o < 1, the probability of generation of entangled
states with an overlap >0.9 to a Bell state is ~0.5 while
for @ > 1 for which we generate entangled states with unit
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FIG. 7. Total success probability (Pyy) for different cutoff
fidelities and different choices of « are plotted for the case of
perfect quantum efficiency (left panels, indicated by n; =1, = 1)
and the imperfect case (right panels, where we have chosen n, =
1, = 0.8). The top (bottom) panels correspond to the mod 2 (mod 4)
implementation. Top left: For « < 1, the probability of generation
of entangled states with overlap >0.9 is around 0.5. Increasing « to
>>1 generates perfect entangled states with near-unit probability. Top
right: In presence of imperfections, for < 1, we generate entangled
states with overlap >0.7 to Bell states with probability in excess of
0.3. However, increasing o does not lead to a higher success rate for
generating better entangled states. This is because larger values of «
are more susceptible to photon loss. Depending on the desired cutoff
fidelity and the efficiency of an experimental setup, there is an optimal
choice of « that leads to the maximal success rate. For instance, in
the case shown, for a desired cutoff fidelity of 0.75, the optimal
choice is @ ~ 0.7. Bottom left: The total probability of generating
entangled states with overlap >0.9 is ~0.3 and increasing « increases
the success rate to near unity. The increase is nonmonotonic because
the size of the fringes in the overlap (Figs. 4 and 6) depend on the
value of «. Bottom right: In presence of imperfections, increasing o
to >>1 no longer increases the success rate. As in the mod 2 case, there
is an optimal choice for «: e.g., for a cutoff fidelity of 0.75 for this
choice of inefficiency, o« ~ 1.5. Further, for relatively large values of
o > 1.5, it is more advantageous to use the mod 4 implementation
over the mod 2 implementation. This is because the mod 4 protocol
corrects for the decoherence of the entangled qubit-photon states due
to photon loss to first order.

probability. On the other hand, in the imperfect case, for the
choice of efficiency parameters 7, = 1, = 0.8, small values
of o (0 < 1) give rise to entangled states with overlaps to
Bell states >0.7 with a success rate in excess of 0.3. However,
unlike the perfect case, larger values of & do not help in getting
a better success rate for similar or better entangled states
because of photon loss. Thus, for different cutoff fidelities
and measurement efficiencies, there is an optimal choice of
a, e.g., in the case shown, for a cutoff fidelity of 0.75, the
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FIG. 8. Optimized total success probability P* in logarithmic
scale for different cutoff fidelities and different choices of 1,1,
for the mod 2 and the mod 4 implementations. The optimization
is done numerically for the value of the parameter oz. We choose, for
simplicity, n; = n,. The left (right) panel corresponds to the joint-
photon-number-modulo-2(4) implementation. For both protocols, for
an efficiency of n; = n, = 0.8, entangled states with overlaps to
the Bell states ~0.75 are generated with near-unity success rate.
The probability of generating high fidelity Bell states diminishes
rapidly. However, the rate of decrease of success rate for the mod
2 and mod 4 implementations is different. The white curves in the
right panel enclose the region for which the mod 4 implementation
has a higher success rate than the mod 2 implementation. For
instance, for inefficiency values ~0.9, the success rate for the mod 2
implementation is less than 107" for generating states with overlap
to Bell states of ~0.95 (white rectangle in left panel). However,
the mod 4 implementation, due to its ability to correct for photon
loss errors to first order, can, in fact, generate states with overlap
~0.95 to Bell states with a success rate of 10~ (white rectangle in
right panel). However, the error correcting mod 4 protocol ceases
to be advantageous to generate high fidelity Bell states for low
enough efficiencies and high enough cutoff fidelities. This is because
for such low efficiency, higher-order photon loss becomes more
dominant.

optimal choice for « is ~0.7. For the mod 4 implementation,
the success rates are ~0.3 for generating entangled states
with overlap >0.9 in the absence of imperfections for o < 1.
Increasing « increases the success rate to near unity. Note
that the increase is nonmonotonic, unlike the case of mod 2
implementation. This is because the size of the fringes, which
are regions of unentangled states, present in the overlap to
the Bell states (see Figs. 4 and 6) depends on the value of
«. In the presence of imperfections, increasing o does not
necessarily increase the success rate because of decoherence
due to photon loss. Just as in the mod 2 implementation, there
is an optimal choice for «: e.g., for a cutoff fidelity of 0.75
for this choice of inefficiency, « ~ 1.5. Note that for relatively
larger values of o > 1.5, it is more advantageous to use the
mod 4 implementation over the mod 2 implementation since it
corrects for the decoherence of the propagating qubit-photon
states due to photon loss to first order.

Next, we optimize the success rate with respect to the
parameter « for the two implementations. This optimization
is done numerically for the different values of the efficiency
parameters 7,7, and the different cutoff fidelities. This is
shown below in Fig. 8. We take n; = n, for simplicity. For
n = n = 0.8, one is able to generate entangled states with
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overlap to Bell states ~0.75 with a near-unity success rate
by both mod 2 and mod 4 implementation. Although the
probability of generation of higher fidelity Bell states decreases
for both the implementations, the rate of decrease is different
for the two. Enclosed by the white curves in the right panel
is the region where the mod 4 implementation has a higher
success rate than the mod 2 implementation. For instance, for
n = n2 = 0.9, the probability of generating a Bell state with
overlap of 0.95 or greater is less than 10~'° for the mod 2
implementation (white rectangle in left panel). On the other
hand, the mod 4 implementation is able to generate these states
with a success rate of 10~* (white rectangle in right panel).
This is because of its ability to correct for photon loss errors
to first order. Note, however, that for low enough efficiency
and high enough cutoff fidelity, the error correcting mod 4
protocol ceases to be advantageous. This is because for such
low efficiency, higher than first-order photon loss becomes
more dominant.

D. Adding individual photon-number-modulo-2 measurements
to the mod 4 implementation

In the previous subsections, we have shown that in the
presence of finite quantum efficiency, it is more advantageous
to use the mod 4 implementation of our protocol, because
this implementation corrects for decoherence due to loss
of a photon in either arnie or bert. In this section, we
describe an improvement of the mod 4 implementation. The
improvement consists of measurement of individual photon-
number-modulo-2 of each of arnie and bert, in addition to
the joint-photon-number-modulo-4 measurement. Thus, this
improved mod 4 implementation is referred to as the (mod
4) +P, + P, implementation, where P,, denote the indi-
vidual photon-number-modulo-2 measurements of arnie, bert.
As explained in the previous subsection, this improvement
suppresses decoherence due to the loss of one photon in both
arnie and bert and increases the success rate of generating
high fidelity entangled Bell states compared to the mod 4
implementation. Note that in the absence of imperfections, the
measurement of the individual parity of arnie and bert provides
no additional information and advantage.

Incorporating this improvement in an experimental im-
plementation poses no additional challenge compared to the
mod 4 implementation as demonstrated in [33]. Further, the
time required to make these additional measurements, with
current circuit-QED parameters, is negligible compared to
the typical qubit coherence times. This justifies neglecting
the qubit decoherence for this part of the analysis. The
theoretical calculations can be done in an analogous manner
to that described in Sec. IV B. The only difference comes
in while computing the resultant state of Alice, Bob, arnie,
and bert after the individual photon-number-modulo-2 and
the joint- photon number-modulo-4 measurements, given by
ORBab = IOABdb /Tr[pABdb] As before, the unnormalized density
matrix pABab is obtained from pABdb [given in Eq. (23)]
by restricting the summation of y,y’,§,8" to be such that
y +38 = A mod 4,y’ + 8’ = A mod 4. The only difference is
that depending on the individual parity of arnie (bert) to be
even or odd, the values of y,y’(8,8") are restricted to 0,2 or
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FIG. 9. Total success rate for the mod 4 (left panel) and the (mod
4) +P, + Py, (right panel) implementations are shown for the case of
finite quantum efficiency, where we choose n; = n, = 0.8. While for
o < 1, both the mod 4 and the (mod 4) + P, + P, implementation
perform similarly, for larger values of «, the latter performs better
than the other. This is because the mod 4 implementation corrects
loss of a single photon loss in either arnie or bert, while the (mod 4)
+ P, + P, implementation corrects for the loss of single photons in
each of arnie and bert.
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1,3. The computation of the homodyne detection can also be
done as before.

The results of the computation for the optimized total
success rate is plotted in Fig. 9. We show total success rate
for the (mod 4) +P, + P, implementation in the case of
imperfect quantum efficiency, where we choose n; =, =
0.8. For comparison purposes, we show the left the same
for the mod 4 implementation (also shown in Fig. 7, bottom
right panel). While for @ « 1, both implementations perform
similarly, for larger values of o when photon loss becomes
more dominant, it is more advantageous to use the (mod 4)
+ P, + P, implementation over the mod 4 implementation.
This is because unlike the mod 4 implementation which
corrects for loss of single photons to first order, the (mod
4) +P, + P, implementation corrects for the loss of single
photons in each of arnie and bert.

As before, for each value of cutoff fidelity and inefficiency,
an optimal choice of @ can be obtained. This optimization is
done numerically. The optimized success rate as a function of
inefficiency and cutoff fidelity is shown below (Fig. 10). We
again chose n; = n, for simplicity. For comparison purposes,
we show the optimized probability of success for the mod 2
implementation (also shown in Fig. 8, left panel). The white
curves in the right panel enclose the region where the (mod
4) +P, + P, implementation has a higher success rate than
the mod 2 implementation. In particular, for n; = 1, = 0.9,
only the (mod 4) +P, + P, implementation is able to give
rise to Bell states with overlap >0.95 with a success rate of
~1072, whereas the mod 2 implementation has a success rate
less than 1071 (the white rectangles in the plots). Even with
efficiency values achievable in current circuit-QED systems of
n = n2 = 0.6, with the (mod 4) +P, + P, implementation,
one can generate entangled states with overlaps to Bell states
>0.8 with a success rate of 10~* (the white circles in the
plots). This shows that on one hand, our protocol is useful
for high efficiency quantum systems, where by performing
error correction, one can give rise to really high fidelity Bell
states. On the other hand, with current system parameters, our
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FIG. 10. Optimized total success probability P* for different
cutoff fidelities and different choices of n,n, for the mod 2 (left
panel) and the (mod 4) + P, + P, (right panel) implementations. The
optimization is done for the value of the parameter «. We chose, for
simplicity, n; = n,. In contrast to the mod 2 implementation, the (mod
4) +P, + P, implementation shows substantially more resilience to
lower efficiency. The white curves in the right panel enclose the region
where the (mod 4) + P, + P, implementation has a higher success rate
than the mod 2 implementation. For instance, the (mod 4) +P, + P,
implementation gives rise to Bell states with fidelity >0.95 with a
success rate of 1072 for an efficiency of n; = 1, = 0.9 (the white
rectangle in each plot). This should be compared with a success rate
of less than 10~'° for the mod 2 implementation (left panel) and that
of 107 for the mod 4 implementation (right panel of Fig. 8). Even
with efficiency values achievable in current circuit-QED systems of
n = n, = 0.6, one can generate entangled states with overlaps to
Bell states >0.8 with a success rate of 10™* (the white circle in
each plot). However, for low enough efficiencies, the error correcting
protocol ceases to be advantageous since higher-order photon loss
become more important. For higher-order protection, one will have
to resort to different encodings [26,40—42].

protocol can generate Bell states with fidelity high enough to
violate CHSH inequalities. Note, however, that this protocol
is not able to generate perfect fidelity Bell states for efficiency
parameters of around 0.6. This is because the mod 4 encoding
protects against photon loss to first order. For higher-order
protection, one will have to resort to different encodings
[26,40-42].

V. CONCLUSION

To summarize, we have presented in this paper a protocol
to remotely entangle two distant, mutually noninteracting,
stationary qubits. To that end, we have used a propagating
ancilla qubit for each of the stationary qubits. In the first
step, local entanglement is generated between each stationary
qubit and its associated ancilla. Subsequently, a joint two-qubit
measurement is performed on the propagating ancilla qubits,
followed by individual single-qubit measurements on the
same. Depending on the three measurement outcomes, the
two stationary qubits are projected onto an entangled state.
We have discussed two continuous variable implementations
of our protocol. In the first implementation, the ancilla qubits
were encoded in even and odd Schrodinger cat states. For
this encoding, the two-qubit measurement was done by a
joint-photon-number-modulo-2 measurement and the single-
qubit measurements were performed by homodyne detections.

PHYSICAL REVIEW A 94, 032333 (2016)

Subsequently, we described a second implementation, where
the ancilla qubits were encoded in mod 4 cat states. For this
encoding, the two-qubit measurement was performed by a
joint-photon-number-modulo-4 measurement and the single
qubit measurements were performed by homodyne detections.
We analyzed the resilience of the two implementations to
finite quantum efficiency arising out of imperfections in
realistic quantum systems. We described how with the mod
4 implementation it is possible to suppress loss of coherence
due to loss of a photon in either of the ancilla qubits. Last, we
presented an improvement of the mod 4 implementation, where
we made individual photon-number-modulo-2 measurements
of the ancilla qubits, together with the joint-photon-number-
modulo-4 measurement, by virtue of which we suppressed the
decoherence due to loss of a photon in both the ancilla qubits.
We demonstrated that it is indeed possible to trade off a higher
success rate, present in the mod 2 implementation, for a higher
fidelity of the generated entangled state, present in the (mod
4) 4+ P, + P, implementation, using error correction.

Next, we point out several future directions of research
that this work leads to. First, the use of homodyne detection
as the single-qubit measurement in the final step of the
mod 4 or the (mod 4) +P, + P, implementation of our
protocol lowers the success rate of generating entangled states.
This is because both arnie and bert are in superpositions of
|C) and |C;;), and thus, irrespective of the choice of the
quadrature, the homodyne measurement is always made on
the complementary quadrature of the modes for one of the
cat states. This gives rise to fringes in the resultant overlap to
the Bell states and lowers the success rate of generating these
Bell states. It will be worthwhile to explore alternatives for
the homodyne detection to boost the success rate of the error
correcting protocol. Second, the error correcting encoding we
used is designed to protect against losses of single photons
to first order. This is why mod 4 implementation protects
against the loss of a photon in either of the ancilla qubits. By
including individual parity measurements, in addition to the
joint-photon-number-modulo-4 measurement, we corrected
for the decoherence due to loss of a photon in both of the
ancillas. However, with this encoding, higher-order photon
loss errors cannot be corrected. It will be interesting to explore
different encodings of the ancilla qubits for protection against
higher-order photon loss [26,40—42]. Finally, while in our work
we have addressed the question of correcting the dominant
photon loss error, it should be possible to correct for the photon
addition and photon dephasing errors using the binomial codes
[41]. Also, the possibility of repumping photons in the mod 4
encoding opens the possibility of correcting photon dephasing
errors [27].
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APPENDIX A: PROTOCOL TO REALIZE A
JOINT-PHOTON-NUMBER-MODULO-4 MEASUREMENT

Here, we describe the protocol to perform the joint-photon-
number-modulo-4 measurement of two resonator modes.
Consider two resonator modes (with annihilation operators
a,b), which are dispersively coupled to a transmon qubit
(whose ground, excited states are denoted by |g),|e)). We
require the dispersive coupling strength to be equal® for each
of the modes a,b. The resultant Hamiltonian describing the
two cavity modes and the transmon qubit is given by

Hinous = wgle) (] + wqa'a + wpb'b

— x(a'a + b'b)e) (el (A1)

where x is the cross-Kerr coupling of the transmon qubit to the
cavity modes. A joint-photon-number-modulo-4 measurement
can be performed in the following way. First, a joint-photon-
number-modulo-2 measurement is performed [33]. This can be
done by exciting the transmon qubit at frequencies w, — 2k x
where k € Z, followed by a Z measurement of the transmon.
A Z measurement result of ; = 1(—1) corresponds to a joint-
photon number of the modes a,b being 2k(2k + 1). Second,
a measurement is performed that reveals if the joint-photon
number of the arnie and bert modes € {4k,4k + 1} or not,
where k € Z. This can be done by using the procedure as
making the joint-photon-number-modulo-2 measurement. The
only difference is that the transmon qubit is now excited
with frequencies w, — 4k ,w, — (4k + 1)x, k € Z. In this
case, a Z measurement outcome of p, =1 corresponds to
the joint-photon number of the modes a,b € {4k,4k + 1},
while p, = —1 corresponds to the same € {4k + 2,4k + 3}.
From these two measurement outcomes pi, p,, we can infer
the joint-photon-number-modulo-4 outcome. For instance,
p1 = p» = 1, the joint-photon-numer-modulo-4 outcome A =
0.Similarly, py = —1,pp=1=Ar=1,p=1,pp=—-1=
A=2 and p; =—1,p, = —1 = A =3. Obviously, in an
actual experiment, one does not need to send an infinite set of
frequencies to make these measurements. The actual number
of frequencies depends on the photon-number distributions of
the two resonator modes.

APPENDIX B: COMPUTATION OF PROBABILITY OF
OUTCOMES AND OVERLAP TO THE BELL STATES IN
ABSENCE OF IMPERFECTIONS

1. Implementation using Schrodinger cat states

In this section, we outline the computation of the probability
of success and overlaps to the different Bell states. To that end,

*Equal coupling of the transmon qubit to two different cavity modes
is challenging to realize experimentally and is not a prerequisite for
making these joint-photon-number measurements. It can be avoided
by using higher excited states of the transmon as was demonstrated
in the joint-photon-number-modulo-2 measurements of [33].
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we start with the state of the four modes: Alice, Bob, arnie,
and bert:

(whel) = fqg 8.CH.CH) +]e.e.C;.C;)), (Bl)

LZewaE 72(|g,e,c;,c;> +le.g.Cp.Co)). (B2)
The homodyne detection can be modeled as a projection of
arnie and bert on x eigenstates, described by the projection
operator: My = |x4,Xp){x,,Xp|. Consider the case p = 1. Af-
ter the homodyne detection, the unnormalized wave function
for the modes of Alice, Bob, arnie, and bert is given by

1
ﬁ(<xa|c;><xblcj>|g,g>

+(xalCy ) (x| Cy ) e e))|xaxp).  (B3)

My | q”ABab)

Using the wave function in the position basis of an even (odd)
Schrodinger cat state,

2\ 2
(xlc;—L) = (;) Nie ™7« (ezm :befzm),

we arrive at
=1
MX |\p£Bab>
2 (2xd) —2e2 | COSh(Q2xaa) cosh(2xpa)
ﬁe e T g:8)

sinh(2x,«) sinh(2x, o
+ ( 1_)6—20(2( ’ )|€,€):||xa,_xb).

The probability distribution of outcomes P(x,,x;) and the
resultant state of Alice and Bob pap are then given by

PP=!(xz,xp) = 3T [MX|qJABab)(\I]APBa]b|MT] (B4)

1
p=1 _ Trab [MX | wABab)(\y/l\)Bab |'/\/lJr ]
AB 1
Tr[ My }‘pABab)(‘I’KBab |/\/lT ]
giving rise to Egs. (7)—(9). Note the factor of 1/2, which arises
in the total probability of outcomes due to the fact that the p =

1 outcome happens with a probability 1/2. The calculation for
p = —1 can be done in an analogous fashion.

, (BS)

2. Implementation using mod 4 cat states

In this section, we outline the calculation for the probability
of success and the overlap to the Bell states when the ancilla
qubits are encoded in mod 4 cat states. The state of Alice, Bob,
arnie, and Bert following the joint-photon-number-modulo-4
measurement can be written as [Eqgs. (12) and (13)]

| quBab) Jz ( 2.8, C0m0d4 C0m0d4>
),
‘ \IIABab> \}i ( g.e ’C0m0d4 C2m0d4>

). (B6)
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To compute resultant states of Alice and Bob after the
subsequent homodyne detection of arnie and bert, we use the
following definitions of the mod 4 cats:

R (e )+ (=0Hel)).

where N = [2 4+ 2=’ 4 (—1)reilal’} /{elo 4
(—Dre @712 % €{0,1,2,3} and (—)* = +(—) for even
(odd) A. This leads to

(x|Cam) = Nou((xIC3) + i (xICiE)), A = 0.2,

where (x|C;\) and (x|C i’;) are given by

2 1/4 2 2
(x|CHy = 2(;) Nie™ ™ coshRax), (B8)

2\ 4 )
<x|c;)=2(;) Nie™ cos(2ax). (B9)

Thus, we arrive at

MX |\y£§gb) — C0m0d4 C0m0d4)

1
E«xa’xb‘ o

2 4 ~2 4
+ <-xasxb|cam0d 1Cam0d )|€,e>)|xa,Xb)

lg.8)

4 2DV T
= ﬁNie (rah ”)[N(/)ZFO(xa)FO(xh)lgag)

+ N3 Fo(xa)Fa(xp)le.e) ]1xa,xp),  (B10)

where F;(x) = e cosh(2ax) + i* cos(2aex). This leads to
the probability distribution and the resultant density matrix for
Alice and Bob through the relations

P00x0,05) = ST My [ WigS (Wiss, ML, B11)

Trab[./\/lx|‘1"\:0 (‘PXESbWU
Te[ Mo [ W50 wr=0|ME ]

A=0 _
Pap =

(B12)

A similar set of calculations can be done for the outcome
A =2

APPENDIX C: COMPUTATION OF PROPAGATING
QUBIT-PHOTON STATES IN PRESENCE OF
IMPERFECTIONS

1. Implementation using Schrodinger cat states

First, we describe the computation of the state of Alice
and arnie after their entangled qubit-photon states decohere as
they propagate through the transmission line. The initial state
of Alice and arnie is given by [Eq. (18)]

|wAa>=7 M(—l)]‘“u,(—l)“a). (C1)

HM”
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To compute the final state after attenuation losses, first we
introduce an auxiliary mode «’, initialized to vacuum. Then,
we model the losses by passing the joint system of Alice, arnie,
and o’ through a beam splitter with transmission probability
n1. Thus, the state evolves according to

|\I}Aa> & |0> g |qua)»

1
Wa) = —= Y Ni(=D¥lj.(=D!a,(=1)e), (C2)
J:u=0

<
/2

where @ = ./« and € = /1 — n «. Thus, the density matrix
for the modes Alice, arnie, and a’ can be written as

_ 1
PAa = 5

1
> NN (=DM (=1 @)

JoJ' s '=0

x (' (=1 alll(=1*e) (=) e,

1
S A

JiJ' =0

x [17,(=D*a) (j' (=" all,

1
= PAa = 5
(C3)

{w,'},j =1{j,j’} and in the last line, we have
1—(-1yy

where u =

traced out the auxiliary mode a’. Here, e~ shows
explicitly the loss of coherence due to the loss of information
to the environment. At this point, we need to re-express the
|(—1)*a&) in the eigenbasis of the measurement operator: joint-
photon-number-modulo-2. To that end, we use

(—1y'a) =

(C4)

where Nj = 1/y/2[1 + (—1)ie~2d"]. Using Egs. (C3) and
(C4), we arrive at the density matrix for Alice and arnie:

J( i+ === 1yr'y

Z -/V}c-/\/;d

< |5.cML e,

(C5)

where 3, = Z;‘,j/:o le(,k’:o ZL,M’:O k= {k,k'}.
Similar calculations can be done for the entangled states of
Bob and bert, yielding

__ZNN,

e

_q)rm) = 1=

(Co)

where D By = 211,1':0 Zrln,m’:() Zl,w:o’ v={v'} I =
{1,I'}, and m = {m,m’}. The tensor product of pa, and pgy
gives Eq. (19).
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2. Implementation using mod 4 cat states

First, we describe the computation of the qubit-photon
states of Alice and arnie after propagation through the
transmission line. The starting point is Eq. (22):

1
D NN (=1 (= 1)) (CT)

Jiit,v=0

1
I\IJAa> \/E
To compute the entangled qubit-photon state when it arrives
at the joint-photon-number-modulo-4 measurement apparatus,
we use the approach outlined in Appendix C 1, introducing an
auxiliary mode @’ in vacuum, computing the resultant state
of Alice, arnie, and a’ as it passes through a beam splitter of

transmission probability 1, and subsequently, tracing out the
mode a’. Following the notation in Appendix C 1, we find that

[Waa) = Z NojNoj (=1 1j, (=D i" @, (—1)iv€),

ﬁ Jst,v=0
wherea = /njo and € = /1 — nj«. Thus, the density matrix
for the modes Alice, arnie, and a’ can be written as

1 o~ .
Pra =5 ;/\fzj/\fzj//vzﬂvz_,/(—1)“'/<|j,<—1>“i“a>

x (j (=DM aD(—= 1) ive) (= D" iV e,

1 I ,
= PAa = 5 Z/\/szzj'szN'zj/(—l)v'J
{}
UL G a) G (— D i al,

where Z{] = Z},./”:O ZL,M:O Z\l;,u’:O’ v= {V,U/},j =
{j,j'} and in the last line, we have traced out the auxiliary
mode a’. In the next step, we express the above equation
in the eigenbasis of the joint-photon-number-modulo-4
measurement. To that end, we use

ymod4
(=Dmiv or)

1 3
|<—1>”i“a>=ZZNN

3 ( 1)/41/1

|Cymod4)’ (CS)

_1
T4
y=0 }’

where NV, ,J\_/y can be obtained from the definitions of N,,, N, v
(cf. Secs. IV A and IV B) by making the substitution « — &
and the last line follows from the definition of mod 4 cats (see
Sec. 2.2 of [27]). Combining the last two equations results in

N2/-/\[21-/\[21~/\/2/
. Pty vy
oA 252 NN, NN, b

—e2{1— (=Dt jv=v"1 . ~ymoddy) . y'mod4
e{I—(=Drri }],C& )</C&

X e

3
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(" |paple ™) (9
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FIG. 11. Probability distribution P*(qa,qb) of outcomes of the
homodyne measurements of arnie and bert and resulting overlap of
Alice and Bob’s joint density matrix pap with the Bell states |pt) =
(lg,g) = |€,€>)/x/§,|1/fi) =(lg,e) £ |e,g))/\/§ is shown. We chose
o = 1 and n; = n, = 0.8 and show the cases A = 1,3 (see Appendix
C2 for A = 1,3). The top (bottom) left panel shows the probability
of outcomes for the joint-photon-number-modulo-4 outcome to be
A =1 (3). Corresponding overlaps to the Bell states [*)(|¢T)) are
plotted in the top (bottom) center and top (bottom) right panels. The
overlaps to the even (odd) Bell states for A = 1(3) are not shown for
brevity.

where ZAa = Z},j’:O Z;]/.,;L’:O le),v’:O Zf/,y’:()’ Here’ we
have used, as before, the following definitions: j = {j,j'},u =
{w,p1'},v = {v,v'}andy = {y,y’}. Similar calculations can be
done for Bob and bert, yielding

oo — Z NNy Nszzk’( [yt sy
25 Bb -/\/SA[B/-/V:?-A/S’

—€ V)| . ~8modd\/ 1 ~8'modd
X e J,Cg )(],C&

’

where ) g, = le,k’:o quﬁ,¢>’:() Z:/I,l/f’:() Zg,afzo and k=
(k,k'}, ¢ ={0,9'}, ¥ = {¥,¥'}, and § = {§,8'}. The tensor
product of pa, and pg;, gives us Eq. (23).

3. Probability distribution and overlaps to Bell
states for A = 1,3

After the homodyne detection of arnie and bert, corre-
sponding to the joint-photon-number-modulo-4 measurement
outcomes A = 1,3, the probability of success and the overlap
to the Bell states |¢*),|*) is shown in Fig. 11.
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