
PHYSICAL REVIEW A 94, 032332 (2016)
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We compare the standard 50%-efficient single beam splitter method for Bell-state measurement to a proposed
75%-efficient auxiliary-photon-enhanced scheme [W. P. Grice, Phys. Rev. A 84, 042331 (2011)] in light of realistic
conditions. The two schemes are compared with consideration for high input state photon loss, auxiliary state
photon loss, detector inefficiency and coupling loss, detector dark counts, and non-number-resolving detectors. We
also analyze the two schemes when multiplexed arrays of non-number-resolving detectors are used. Furthermore,
we explore the possibility of utilizing spontaneous parametric down-conversion as the auxiliary photon pair source
required by the enhanced scheme. In these different cases, we determine the bounds on the detector parameters
at which the enhanced scheme becomes superior to the standard scheme and describe the impact of the different
imperfections on measurement success rate and discrimination fidelity. This is done using a combination of
numeric and analytic techniques. For many of the cases discussed, the size of the Hilbert space and the number
of measurement outcomes can be very large, which makes direct numerical solutions computationally costly. To
alleviate this problem, all of our numerical computations are performed using pure states. This requires tracking
the loss modes until measurement and treating dark counts as variations on measurement outcomes rather than
modifications to the state itself. In addition, we provide approximate analytic expressions that illustrate the effect
of different imperfections on the Bell-state analyzer quality.
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I. INTRODUCTION

Bell-state measurements are a key component of quantum
information processing protocols such as quantum telepor-
tation [1], entanglement swapping [2], and dense coding
[3]. They are particularly critical in the context of quantum
communication. The implementation of large-scale quantum
networks for long-distance quantum cryptography [4] and
a future quantum Internet [5] requires the distribution of
photon entanglement over long distances. Unfortunately, direct
photon transmission through fibers suffers from exponential
loss over distance causing rates to decrease below acceptable
levels [4,6,7]. In classical communication this problem is
circumvented by signal amplification. However in the quantum
world, this cannot be accomplished due to the no-cloning
theorem for quantum states [8,9].

Many promising methods that overcome the direct trans-
mission loss-rate tradeoff use quantum repeaters [10–17].
These methods rely on generating entanglement over multiple
shorter distances, and then connecting the links by entan-
glement swapping [2], to extend the entanglement over the
entire distance. Free-space-based proposals using satellites
take advantage of reduced photon absorption outside the
atmosphere, allowing further distances [18–22]. However,
global entanglement distribution using satellites would also
require entanglement swapping due to earth curvature [22]. An
ideal distribution network may comprise a combination of fiber
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and free-space solutions, using fibers for regional distribution
and satellites for intercontinental distribution.

A shared requirement among all practical entanglement
distribution protocols is successful entanglement swapping
between neighboring nodes to create links. This is done by
applying a projective Bell-state measurement (BSM) on two
photons, one from each node [4]. The measurement result
would then indicate the entangled state of the link. Ideally,
each measurement outcome should unambiguously indicate
projection onto one of the four Bell states. Unfortunately,
a perfect Bell-state analyzer cannot be constructed using
only linear optical elements [23,24] and cannot exceed 50%
success rate without the addition of auxiliary photons [25].
The simplest Bell-state analyzer can resolve at most two of
the four states resulting in a maximum 50% success rate for
entanglement swapping [26]. This is a source of inefficiency
in all repeater schemes and compounds with an increase in the
number of swapping events.

A perfectly complete Bell-state analyzer cannot be realized
by simple means; however, efficiency can be increased arbitrar-
ily close to unity at the cost of increased apparatus complexity
and added auxiliary photons [27]. As a consequence of increas-
ing complexity, the design can become more susceptible to
component flaws that reduce efficiency and fidelity, offsetting
initial gains. Hence it is necessary to compare BSM schemes in
light of imperfections such as non-number-resolving detectors,
detector inefficiencies, dark counts, and photon loss rates.

To approach the problem of quantifying the analyzer
quality, we use a combination of numeric and analytic tech-
niques. Determining the exact quality of a Bell-state analyzer,
when accounting for different imperfections or auxiliary
sources, can be analytically difficult and computationally
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costly. This is because the size of the Hilbert space and the
number of measurement outcomes increases quickly when
additional parameters, detectors, and photons are considered.
Our approach to this problem is to use only pure states
when performing numerical computations, which reduces the
required computational resources. This is accomplished by
tracking all loss modes until the measurement is performed and
by treating dark counts as variations on measurement outcomes
rather than altering the output state. We also perform analytic
approximations to derive expressions that give insight into the
influence of imperfections on the Bell-state analyzer quality
and use our numerical results to verify the accuracy of these
expressions.

This paper is organized as follows. Section II introduces
the Bell measurement schemes, detector-type models, loss
considerations, and the alternative auxiliary photon source
used in our analysis. Section III outlines the methods used
to analyze the schemes under realistic conditions, including
simple examples using the standard scheme as a case study.
Numeric and analytic results are reported in Sec. IV, which is
divided into three parts. The first part explores replacing de-
tectors with imperfect ones, the second considers multiplexed
arrays of non-number-resolving detectors, and the third deals
with an alternative auxiliary source. Finally, we summarize
our conclusions in Sec. V.

II. BACKGROUND AND DEFINITIONS

A. Bell-state measurement schemes

A Bell-state analyzer is a device that performs a (partial)
Bell-state measurement. It is characterized by its success rate
for projecting an entangled state onto one of the four Bell states
and identifying the result, assuming a uniform distribution of
all four Bell states as input. These Bell states can be written as

|ψ±〉12 = 1√
2

(â†
1b̂

†
2 ± b̂

†
1â

†
2)|0〉12,
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†
2)|0〉12, (1)

where â† and b̂† are photon creation operators for the qubit
mode and the subscript denotes the spatial mode.

The most standard 50%-efficient scheme for conducting
a BSM is composed of a single nonpolarizing beam splitter
and two detectors [26], also referred to as a Hong-Ou-Mandel
interferometer, as illustrated in Fig. 1 (left). This is described
by the beam splitter transformation,(
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where ĉ† is replaced by â† or b̂† as appropriate. This Bell-state
analyzer has at most a 50% success rate since only |ψ+〉
and |ψ−〉 of the four Bell states are distinguishable by
measurement outcomes. The other two Bell states |φ±〉 cannot
be distinguished from each other but can be distinguished from
|ψ±〉. The simple design and lack of auxiliary photons makes
this method attractive for practical implementations. However,
a limited success rate is undesirable especially when many
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FIG. 1. (Left) A schematic of the standard method for perform-
ing a Bell-state measurement. (Right) Grice’s proposed first-order
extension for Bell-state measurement. The spatial modes 1 and 2
represent the input pair while the spatial modes 3 and 4 represent
the auxiliary pair. Gray bars represent nonpolarizing beam splitters.
Diagrams are shown assuming measurement of time-bin encoded
qubits. For polarization encoded qubits, each detector in the above
diagrams is replaced with a polarizing beam splitter and two detectors.
For dual-rail encoded qubits, the above diagrams are duplicated, one
for each rail.

measurements are required to generate entanglement over long
distances.

We compare this standard scheme Bell-state analyzer to an
extension proposed by Grice [27]. In his paper, Grice defined
a series of enhanced Bell-state analyzers using increasingly
complicated entangled auxiliary states that, in the series limit,
show an arbitrarily complete Bell measurement. The auxiliary
states required to approach a perfect Bell-state analyzer are
impractical to construct; however, the first-order extension
only requires an auxiliary |φ+〉34 Bell state to achieve a 75%-
efficient Bell measurement, which is the enhanced scheme
studied in this paper. This first-order extension utilizes four
beam splitters and four detectors, as illustrated in Fig. 1 (right),
and is described by the transformation,⎛
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ĉ
†
2

ĉ
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where spatial modes 1 and 2 contain the input state to be
measured and spatial modes 3 and 4 contain the required
auxiliary state.

B. Detector types

Driven by the rapid expansion of quantum information
science, single-photon detectors (SPDs) have seen significant
improvements over the past few decades [28,29]. In partic-
ular, photon-number-resolving detectors (PNRDs) that use
transition-edge sensors (TESs) have reached excellent effi-
ciencies of 95% at telecommunication wavelengths [30,31].
Unfortunately TES-based detectors operate at temperatures
of 0.1 K and also have recovery time on the order of
microseconds [29]. Long detector recovery time or “dead time”
is particularly undesired for applications that use time-bin
encoded qubits, which are popular in quantum communication
[15,32–36]. Faster detectors such as single-photon avalanche
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diode (SPAD) detectors and recently developed superconduct-
ing nanowire SPDs (SNSPDs) have recovery times on the order
of nanoseconds [28,29,37], which are more suited for use with
time-bin qubits. Although they operate at higher temperatures
(77–250 K), SPAD detectors are relatively inefficient for
telecommunication wavelengths (∼ 10%) and cannot natively
resolve photon number [28,29]. On the other hand, SNSPDs
show impressive efficiencies of 93% for telecommunication
wavelengths [38] but, like SPADs, they cannot resolve photon
number and, like TESs, require significant cooling (� 3 K)
[29]. Currently there does not exist a detector type that satisfies
all desired criteria for quantum communication applications;
therefore careful analysis of the tradeoffs is required on a
per-application basis. In this paper we discuss and analyze
some of these tradeoffs in the context of a Bell-state analyzer.

We consider four different types of abstract detector models,
two of which are relevant to time-bin encoded applications
only. The first and most ideal detector model is a PNRD. In
addition to resolving photon number, we assume a PNRD has
negligible dead time. Secondly we consider a non-number-
resolving SPD that cannot indicate photon number but again
has negligible dead time. That is, it is a binary detector (BD)
that clicks when photons are incident and does not click
when photons are not incident, similar to a SPAD detector
or an SNSPD [28,29]. We assume for simplicity that both the
PNRD and BD can perfectly resolve qubit modes. This can
be implemented, for example, by placing a polarizing beam
splitter prior to the detectors (for polarization encoded qubits),
by placing a detector on each spatial rail (for dual-rail encoded
qubits), or recording two time-separated events (for time-bin
encoded qubits).

The last two detectors we considered are similar to the
PNRD and BD described above but have the additional flaw
of long dead time. This flaw is only relevant to time-bin-
encoded qubits provided the temporal modes are restricted to
a maximum temporal separation. We describe a slow PNRD
that can indicate photon number but has a dead time longer than
the time separation between qubit modes, which could occur
with a TES detector [30,31]. As a result, if one or more early
photons are detected, the detector is unable to count possible
late photons in the same spatial mode. A slow BD would
be similar to a slow PNRD but again cannot resolve photon
number, similar to a gated SPAD [28,29]. To give an example,
a slow PNRD measuring a state with two early photons and
two late photons would indicate the presence of two early
photons whereas a slow BD measuring the same state would
indicate only one early photon. In addition to number-resolving
imperfections and long recovery times, each detector model is
assumed to also suffer from detection inefficiencies and dark
counts.

Alongside the development of PNRDs such as the TES,
detectors that attempt to resolve photon number by multiplex-
ing many non-PNRDs in either space [39,40] or time [41] are
also being pursued. These methods attempt to combine the
benefits of non-PNRDs such as warmer operation temperature
or short dead times with number-resolving capabilities. These
multiplexed detectors can be modeled by arrays of imperfect
detectors; however, undesirable effects caused by inefficiency
and dark counts can be amplified by large detector arrays. We
discuss regimes in which detector arrays of BDs and slow BDs

can increase Bell-state analyzer success rates closer to those
obtainable with PNRDs.

C. Photon loss channels

The input state that is to be measured can suffer from photon
loss. In particular, when utilizing the Bell-state analyzer in
repeater elementary links, the input photons must first travel
large distances. As a consequence, the input state to the Bell-
state analyzer can have poor transmission rates [17]. Aside
from a reduction in total efficiency of the measurement, this
input loss can affect the fidelity of the scheme when considered
along with detector dark counts.

For the enhanced scheme, the auxiliary state can also
suffer from photon loss. This loss channel represents a
contribution from propagation absorption, coupling losses, and
pair generation inefficiency. For bright auxiliary pair sources,
this loss rate is expected to be small as compared to the input
state photon loss rate. However, auxiliary state photon loss
only affects the quality of the enhanced scheme, and not the
standard scheme since it does not require auxiliary photons,
and so this parameter is expected to directly affect the bounds
on the regime where the enhanced scheme is superior to the
standard scheme.

Finally, both schemes are also subject to photon loss
between the beam splitters and the detectors. This loss rate
can be accounted for as combined with detector efficiency to
form an effective scheme loss or inefficiency parameter.

D. Alternative auxiliary source

Schemes that improve success rates beyond 50% require
auxiliary photon states. These states are susceptible to realistic
imperfections. In some cases, using approximations for these
auxiliary states may also be necessary for implementation to
remain practical. The enhanced scheme studied in this paper
requires an auxiliary photon pair in a maximally entangled Bell
state to achieve 75% success rate [27]. Although methods for
producing single entangled pairs, such as biexciton decay in
quantum dots [42], are becoming more efficient, spontaneous
parametric down-conversion (SPDC) remains the most widely
available source of photon entanglement.

In addition to studying accurate auxiliary states, we also
analyze the case where the auxiliary state is produced by a
SPDC source. In this case, the |φ+〉 auxiliary Bell state can
be approximated by pumping a nonlinear crystal to produce a
multiphoton entangled state [43–45]. The auxiliary state would
then be given by

|�+〉34 =
∞∑

n=0

w(n,τ )|φ+
n 〉34,

w(n,τ ) = √
n + 1 sech2τ tanhnτ,

|φ+
n 〉34 = 1

n!
√

n + 1
(â†

3â
†
4 + b̂

†
3b̂

†
4)n|0〉34,

(4)

where the parameter τ is the SPDC interaction parameter and
is related to mean photon number of the states being generated.
The index n here represents the pair number so that terms |φ+

n 〉
are entangled photon states with 2n photons.
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III. METHODS

A. Scheme quality: definitions and analysis

An ideal destructive BSM scheme must unambiguously
distinguish each of the Bell states without prior information
on the state. The quality of a BSM scheme is described by the
measurement success rate and fidelity.

The maximum total success rate of a Bell-state analyzer
is defined as the unweighted average of the probabilities
of unambiguously identifying each Bell state individually
[27,46]. This standard definition for the Bell-state analyzer
success rate requires the input to be in the span of the four Bell
states, which form a complete basis for the bi-photon Hilbert
space. That is, by standard definitions, a Bell-state analyzer
performs a measurement on a bi-photon state. Therefore,
this method gives an accurate representation of a Bell-state
analyzer’s performance if the input is well approximated by
a bi-photon state; otherwise the input is not in the span of
the Bell basis and the Bell-state analyzer would no longer be
projecting states onto just the Bell basis. We aim to provide a
comparison of the two Bell-state analyzers that is relatively
independent of the exact input photon state; hence, input
states containing more than two photons are not treated in
this work. These cases complicate the standard definitions
of a Bell-state analyzer, often requiring application-specific
analysis to compute success rates.

The maximum total success rate represents a quantum-
limited upper bound on the efficiency of a Bell-state analyzer.
The actual success rate of the measurement is less than the
maximum because it depends on the choice of measurement
outcomes used to identify the state and includes effects caused
by imperfections in equipment. To illustrate this point, we
consider the standard scheme. Applying the beam-splitter
transformation given by Eq. (2) to each Bell state results in
the output states,

|ψ+〉 → i√
2
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1b̂

†
1 + â

†
2b̂

†
2)|0〉,
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where ĉ† was replaced with â† or b̂† appropriately. For a
perfect PNRD detector model, each output state is faithfully
reported by the detector and so we are able to distinguish
outputs of |ψ±〉 from each other and from the outputs of |φ±〉.
However, both the |φ±〉 outputs are identical but for phase,
thus the detector cannot distinguish between them. Since only
half of the Bell states are uniquely identified by measurement
outcomes, we have a scheme maximum success rate of 50%.

The BD model cannot resolve photon number and reports
states â

†2
i |0〉 and b̂

†2
i |0〉 as â

†
i |0〉 and b̂

†
i |0〉, respectively.

Fortunately these are still distinguishable from the |ψ±〉
outputs, again giving 50%.

Our slow PNRD model reports states â
†
i b̂

†
i |0〉 as â

†
i |0〉 due to

photons created by b̂
†
i arriving during detector dead time. This

change only affects the outputs of |ψ+〉, causing them to appear
as one-photon events. Luckily, number resolution allows the

detector to faithfully represent the two-photon outputs of |φ±〉
and thus |ψ+〉 can still be distinguished from |φ±〉 based on
photon count. Since the outputs of |ψ−〉 are also unaffected,
this detector model still allows for a 50% maximum success
rate.

The slow BD model, however, cannot faithfully resolve
two-photon states and hence cannot distinguish between output
states of |ψ+〉 and |φ±〉, resulting in a detector-limited 25%
maximum success rate. This 25%-efficient Bell measurement
is often performed using time-bin-encoded photons if fast
detectors are unavailable [47–49].

The enhanced scheme can be analyzed in a similar manner
as the standard scheme but, for brevity, this will not be shown
since the |ψ±〉 Bell states have 80 possible outputs each, |φ+〉
has 42, and |φ−〉 has 38. The unambiguous output states of the
enhanced scheme include four-mode, three-mode, and two-
mode occupied states. All single-mode states, where all four
photons occupy the same mode, are ambiguous and must be
rejected. Since there exists four-mode output states, where all
photons occupy different modes, the success rate is nonzero
when using non-number-resolving detectors. The success rates
for the enhanced scheme are given in Sec. IV A.

In addition to reduced success rates, including imperfec-
tions in the analysis can lead to a reduction in the measurement
discrimination fidelity of the scheme. To quantify this, we orga-
nize the measurements into two mutually exclusive categories:
the positive (post-selected) measurements, and the negative
(rejected) measurements. Within the positive measurements, a
result can either be true (successful) or false (unsuccessful).
Hence, true positive measurements are those that collapse the
state into a Bell state and correctly identify which Bell state
it collapsed into. False positive measurements are those that
are post-selected but either do not collapse the state into a Bell
state or falsely identify which Bell state it collapsed into. In
this way, the true success rate of a BSM can be described by
the true-positive rate, denoted here by pt . If we denote the
false-positive rate by pf , the total probability of a positive
measurement is pt + pf and the fidelity f of a BSM can then
be computed by

f = pt

pt + pf

. (6)

B. Dealing with large system sizes

For a small apparatus like the standard scheme, measure-
ment outcomes and probabilities can be computed by hand.
However, when enhanced schemes with additional auxiliary
states are analyzed, the Hilbert space can become very large
and numerical methods become necessary. The size of an
n-photon Hilbert space with k states per photon is

NH =
(

k + n − 1

n

)
= (k + n − 1)!

(k − 1)!n!
. (7)

For example, the size of the Hilbert space for the standard
scheme (n = 2 and k = 4) is 10. However, the 4-detector
enhanced scheme (n = 4 and k = 8) has a Hilbert space size
330. Furthermore, if input and auxiliary loss is accounted for,
then the incident states can consist of zero, one, or two photons.
In this case the size of the Hilbert space for the standard scheme
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increases to 15 whereas for the enhanced scheme, it increases
to 495.

For number-resolving detector types, the number of mea-
surement outcomes can be much larger than the Hilbert space
size when including dark counts. For the enhanced scheme
with PNRDs including detector inefficiencies, dark counts, and
two auxiliary photons, the number of measurement outcomes
is already 23 392. The size of the Hilbert space exponentially
increases when additional resources are added, with SPDC
cases and some detector array numerical calculations in this
study reaching Hilbert space sizes on the order of millions. For
example, the largest auxiliary state we compute contains 20
photons, resulting in a Hilbert space size of NH = 1 560 780
as determined using Eq. (7) with k = 8 and n = 22.

Approaching these large computations using standard
positive-operator valued measure (POVM) methods with the
density operator formalism would require numerical arrays
of sizes N2

H that can reach magnitudes of ∼ 1012 in some
cases, which is impractically large for numerical methods.
In addition, since the number of measurement outcomes can
exceed the Hilbert space size, POVM operators can contain
more than N2

H elements. For this reason, we approach the
numerical problem by representing states as pure states rather
than mixed states. This requires tracking the loss modes
until measurement and treating dark counts as variations on
measurement outcomes rather than modifications to the state
itself. We expand our discussion on these methods in the
following section.

C. Loss, detector inefficiency, and dark counts

To account for input photon loss prior to BSM, each Bell
state was first passed through a beam splitter with weight

√
ηi

for input state transmission rate ηi . This transformation is given
by

ĉ† → √
ηi ĉ† +

√
1 − ηi l̂†, (8)

where l̂† is the photon creation operator for the loss mode. For
the enhanced scheme, we applied an identical transformation
on the auxiliary state using transmission rate parameter ηa .
This causes the output state probabilities to become dependent
on ηi and also ηa for the enhanced scheme.

To account for detector inefficiency, dark counts, and
different detector models, we determined the conditional prob-
abilities P (mi |ϕj ) that a measurement outcome mi is triggered
by a state |ϕj 〉, where |ϕj 〉 form a basis for the scheme output
Hilbert space. The total probability that measurement outcome
mi occurs is then given by P (mi) = ∑

j P (mi |ϕj )P (ϕj ). This

definition is consistent with a POVM {F̂i}, defined by F̂i =∑
j P (mi |ϕj )|ϕj 〉〈ϕj | so that the probability of measurement

outcome mi is P (mi) = Tr(F̂i ρ̂) where ρ̂ = ∑
j,k ρjk|ϕj 〉〈ϕk|

and ρjj = P (ϕj ). Since by definition
∑

i P (mi |ϕj ) = 1, we
have

∑
i F̂i = Î . By describing the measurement using con-

ditional probabilities directly, we avoid the density operator
formalism, which saves computational resources.

Summing P (mi) over all post-selected measurements and
averaging over each Bell state input gives the total probability
of a positive measurement, pt + pf . The true success rate pt

is determined in the same way with the exception that the sum

is limited to unambiguous output states only, as determined
using ηi = 1. The fidelity is then determined by the ratio of
these sums.

To calculate the conditional probabilities P (mi |ϕj ), each
mode of each |ϕj 〉 of the output Hilbert space was first passed
through a beam splitter with weight

√
ηd for subunity detector

efficiency ηd . This transformation is given by Eq. (8) where ηi

is replaced by ηd . By modeling detector inefficiency using a
beam-splitter model, we can consider the parameter ηd as an
effective efficiency or transmission parameter that implicitly
accounts for any photon loss experienced between the scheme
and the detectors, such as coupling loss.

We then computed the probabilities associated with each
outcome. At this point the loss modes were safely discarded.
To include dark counts, we then allowed each mode to gain
one photon with probability ξ or remain unchanged with
probability 1 − ξ . Here we assume that ξ � 1 so that the
probability of multiple dark counts occurring simultaneously
in a single mode is negligible.

If detectors other than PNRDs were being analyzed, each
measurement outcome was modified according to the detector
model, either by eliminating photon count information, elimi-
nating the late mode if the early mode is detected, or both. This
can be done only at the level of the probabilities; otherwise
undesired interference can occur and lead to incorrect results.
This method allowed us to simultaneously obtain probabilities
P (mi |ϕj ) and identify the subset of relevant measurement
outcomes.

D. Detector array analysis

We now proceed to describe the method we used to calculate
analytic expressions for success rates using arrays of BDs. The
BD-type models that we considered can be assumed to perform
ideally if a single photon is incident when ignoring detector
inefficiencies and dark counts. Therefore by splitting output
modes using beam splitters we can on average reduce the
multiphoton detection events that occur and recapture success
rate lost by nonideal detector types. The method we outline
here to determine success rates is similar to the analysis method
proposed by Kok and Braunstein [50].

We first give an example for the standard scheme and then
extend this to include the enhanced scheme. To compute the
success rate with increasing numbers of detectors, it is benefi-
cial to first categorize output states based on the exponents of
their photon creation operators. For the standard scheme the
two possible categories are {1,1} and {2}, which, for example,
would include states such as â

†
1b̂

†
1 and â

†2
1 , respectively.

For the beam-splitter detector array model, we always
assume that one input mode of the beam splitter is the vacuum
state with the other input being an output mode of the scheme.
In this case, no interference can occur and so we can treat the
array problem using classical statistics.

Let P {1,1} and P {2} denote the probabilities that an output
of type {1,1} and {2} occur, respectively. These probabilities
are computed assuming the input state is an equal distribution
of each Bell state so that P represents the average probability
over the four Bell states. Similarly, let Pt {1,1} and Pt {2} denote
the probabilities that output states of those types also cause
collapse into a Bell state, hence give rise to true-positive events.
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In this sense P {1,1} + P {2} = 1 and Pt {1,1} + Pt {2} = 1
2 .

Although these sums always remain constant, in general the
probabilities P and Pt can change with increasing detector
number per array, denoted as N . In particular, since adding
beam splitters can only ever convert type {2} into type {1,1}
states, probability must always flow from P {2} to P {1,1} and
from Pt {2} to Pt {1,1}.

To simplify notation, we introduce the probability vectors
	P = (P {1,1},P {2})T and 	Pt = (Pt {1,1},Pt {2})T. For exam-

ple, the standard scheme with BDs gives vectors 	P = ( 1
2 , 1

2 )T

and 	Pt = ( 1
2 ,0)T since all outputs of |ψ±〉 are of type {1,1}

and unambiguous, whereas outputs of |φ±〉 are of type {2} and
ambiguous [see Eq. (5)].

The linear transformation that governs the probability flow
for the standard scheme after log2(N ) beam splitters is given
in the {{1,1},{2}} basis as

A(N ) =
(

1 1
2

0 1
2

)log2(N)

=
(

1 N−1
N

0 1
N

)
, (9)

which can be obtained by analyzing the beam splitter
transformation ĉ† → (ĉ†1 + iĉ

†
2)/

√
2 applied to each mode

of archetype states representing {1,1} and {2}. Since BDs
can only discriminate terms of type {1,1}, the probability
Pt {1,1} after applying A(N ) is the true success rate. For
example, for 	Pt = ( 1

2 ,0)T, we have that the true success
rate pt (N ) = (A(N ) 	Pt ){1,1} = 1

2 is constant and equal to the
scheme maximum rate, as expected for the standard scheme
with BDs.

To extend this idea to the enhanced scheme, we
considered probabilities associated with five categories,
namely {1,1,1,1}, {1,1,2}, {1,3}, {2,2}, and {4}. The trans-
formation A(N ) governing the probability flow in the
{{1,1,1,1},{1,1,2},{1,3},{2,2},{4}} basis is given by⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 N−1
N

(N−2)(N−1)
N2

(N−1)2

N2
(N−3)(N−2)(N−1)

N3

0 1
N

3(N−1)
N2

2(N−1)
N2

6(N−2)(N−1)
N3

0 0 1
N2 0 4(N−1)

N3

0 0 0 1
N2

3(N−1)
N3

0 0 0 0 1
N3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(10)

The true success rate is then given by (A(N ) 	Pt ){1,1,1,1}
where 	Pt is obtained from the enhanced scheme outputs.

If photon loss is taken into account, the number of categories
for both schemes increases. For the standard scheme we must
consider the additional two categories: {0} and {1}. Likewise,
the enhanced scheme has seven additional categories: {0}, {1},
{1,1}, {1,1,1}, {1,2}, {2}, and {3}.

IV. RESULTS

A. Scheme efficiency and fidelity

In this section, we report success rates and fidelity for
both schemes. For the enhanced scheme, we assume that
the auxiliary state is produced by a single pair source that

TABLE I. A comparison of the maximum success rates pt,max

obtainable with unity fidelity for four different detector models and
two different schemes. These success rates are computed under the
ideal case; with unity detector efficiency and photon transmission
ηd = ηi = ηa = 1, and zero dark count probability ξ = 0. Note that
the slow-prefixed detector models are relevant to time-bin encoded
applications only.

Success rate PNRD BD Slow PNRD Slow BD

Standard scheme 1/2 1/2 1/2 1/4
Enhanced scheme 3/4 3/16 39/64 1/16

is subject to loss, representing pair generation inefficiency or
propagation and coupling loss.

1. Numerical results

First, without including loss, inefficiencies, or dark counts,
we found that each detector type provides enough information
to obtain a nonzero success rate with unity fidelity (Table I).
For BD-type models, the optimal measurements to post-select
are unambiguous measurements that indicate each photon hit
a different detector. The probability of this occurring was
found to be less in the enhanced scheme than in the standard
scheme. Thus, although the enhanced scheme outperformed
the standard scheme when PNRD-type models were used, it
was inferior to the standard scheme for BD-type models.

For realistic detector parameters [28,29], the dark count
probability can be between 10−4 and 10−8. For these proba-
bilities, dark counts have negligible impact on success rates
and fidelity for both Bell analyzers unless detector efficiency
is very small (ηd < 0.01). For the purposes of our numerics,
we select a dark count probability of ξ = 10−5.

In repeater schemes, Bell-state analyzers are used to
measure photons that must first travel over long distances
[17]. This can cause photon losses around 99% before
Bell-state analysis, effectively enhancing the infidelity caused
by dark counts. When including input state loss, acceptable
measurement fidelity can only be obtained when ξ � ηi,ηd .
For this reason, we only explore the regime where first-order
dark counts dominate the false-positive rate. For the purposes
of our numerics, we select an input state transmission of
ηi = 0.01, which is a realistic value in the context of quantum
repeaters. Since a successful Bell-state measurement only
occurs when both input photons arrive at the analyzer, the true
success rate scales as pt ∝ η2

i . This scaling is independent
of the analyzer scheme and is divided out for a more direct
scheme comparison (Fig. 2).

Under dark count and loss conditions, our numerical results
showed that the enhanced scheme with PNRDs provided
higher success rates than the standard scheme when ηd > 0.82,
assuming ηa = 1.0, or when ηa > 0.82, assuming ηd = 1.0
(Fig. 3). For slow PNRDs, the enhanced scheme can be
superior when ηd > 0.94, assuming ηa = 1.0, or when ηa >

0.94, assuming ηd = 1.0. For BD types, the enhanced scheme
showed no advantage over the standard scheme for all effi-
ciency values. In addition, the standard scheme was found to
have better fidelity scaling with detector efficiency in all cases.

It is important to note that all but the slow PNRD cases ap-
proach the scheme maximum rates given in Table I as ηd →1.
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FIG. 2. The effect of detector efficiency on the true success rate
and fidelity for both the standard and enhanced Bell-state analyzers.
Dashed and solid curves represent analytic approximations to the
standard and enhanced scheme solutions, respectively. Circle and
diamond points represent numerically exact values for the standard
and enhanced schemes, respectively. All plots are calculated with a
dark count probability of ξ = 10−5, an auxiliary state transmission of
ηa = 1.0, and an input state transmission of ηi = 0.01. The success
rates are plotted after dividing out the scheme-independent quantity
η2

i . The slow detector models are relevant to time-bin encoded
applications only.

We explain this discrepancy now. For the detector models
labeled PNRD, BD, and slow BD, the ideal post-selected
measurements do not become ambiguous when only loss and
detector inefficiency are introduced. For these three detector
types, it is possible to always identify and reject measurements
that indicate fewer photons than expected. For PNRDs, this
is possible due to ideal number-resolving capabilities. For
BD types, this is possible because the ideal post-selected
measurements all already indicate photons arriving at different
detectors. Therefore false-positive events cannot occur unless a
false state has lost photons that are replaced by an equal number
of dark counts during detection, which could then result in a
positive measurement. Since dark counts are considered rare,
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FIG. 3. A closer view of the success rate intersection points
between the standard and enhanced schemes for PNRDs and slow
PNRDs for different auxiliary state transmission values ηa . Dashed
and solid curves represent analytic approximations to the standard and
enhanced scheme solutions, respectively. Circle and diamond points
represent numerically exact values for the standard and enhanced
schemes, respectively. All numerical points are calculated with a
dark count probability of ξ = 10−5 and an input transmission of
ηi = 0.01. The success rates are plotted after dividing out the
scheme-independent quantity η2

i . The fidelity plots for different ηa are
not shown since, for ηa � ηi , they are nearly indistinguishable from
those shown in Fig. 2. The slow PNRD detector model is relevant to
time-bin encoded applications only.

the fidelity is already very good when detector efficiency is
large for PNRD, BD, and slow BD models and so we need not
reject additional measurements to improve fidelity.

The slow PNRDs main advantage over the slow BD is its
ability to distinguish states based on the photon count in the
early mode. As shown in Sec. III A with the standard scheme,
the slow PNRD allowed for a success rate of 50%, as opposed
to the 25% maximum using a slow BD, by distinguishing |ψ+〉
from |φ±〉 based only photon count information. As a conse-
quence, when using slow PNRDs, the fidelity is extremely
susceptible to detector inefficiency and photon loss, even
without the presence of dark counts. In the standard scheme,
for example, detector inefficiency or photon loss can cause the
two-photon states from |φ±〉 to often appear as a single early
photon, which are then falsely post-selected as indicating the
|ψ+〉 Bell state. Thus, when using photon count information
from slow PNRDs, photon loss or detector inefficiency can
cause false-positive events even in the absence of dark counts,
if these specific types of measurements are post-selected.

In order to maintain acceptable fidelity when using slow
PNRDs, it is necessary to further reject measurements that
become ambiguous when losses are introduced. This is
accomplished by only accepting measurements that preserve
the expected total photon count. For the standard scheme, this
is equivalent to completely ignoring photon count information,
effectively treating the slow PNRD as a slow BD, giving a
maximum success rate of 1/4. For the enhanced scheme, this
resulted in an improved success rate over the corresponding
slow BD case with a maximum success rate of 9/32. These
two values are the success rates for ηd = 1.0 illustrated in the
slow PNRD case in Fig. 2.

2. Analytic approximations

Once the maximum success rates pt,max are determined for
a given detector model and scheme, understanding the effect of
losses and inefficiencies on the success rate is uncomplicated.
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The vast majority of true-positive measurements occur when
detectors operate correctly and no photons are lost. For the
standard scheme, the two possible loss channels are input
loss and detector inefficiency, represented by parameters ηi

and ηd , respectively. Since the standard scheme utilizes two
incident photons, two detectors, and has four modes that
experience dark counts, the total success rate is given by
pt = η2

dη
2
i (1 − ξ )4pt,max + pξ , where pt,max is 1/2 in the

PNRD and BD cases and 1/4 for the slow-type models.
The small correction pξ is a positive contribution to the
success rate caused by true-positive cases resulting from
inefficiencies and dark counts effectively canceling each other,
leaving the measurement conclusion unaffected. For dark
count probability ξ � 1, we have (1 − ξ )4 � 1 and pξ � 0
leaving pt � η2

dη
2
i pt,max.

The enhanced scheme can be analyzed in a similar
manner. In addition to the two loss channels listed above,
the enhanced scheme can suffer from auxiliary state photon
loss, parametrized by ηa . When the enhanced scheme has
no auxiliary input, the scheme resorts to behaving like the
standard scheme, with a maximum success rate of 50% [27].
Hence, when ηa 
= 1, some success rate could be recovered
by post-selecting some measurements where both auxiliary
photons are lost, in addition to post-selecting measurements
where the auxiliary state is unaffected. Unfortunately, if this is
done, false-positive measurements can arise from input state
photon loss directly, similar to the slow PNRD case discussed
previously. With large input loss, the reduction in fidelity
caused by including measurements resulting from a vacuum
auxiliary state will not justify the gain in success rate, so
we only consider post-selecting η2

a terms. Since the enhanced
scheme utilizes four incident photons, four detectors, and has
eight modes that can experience a dark count, the total success
rate is given by pt = η4

dη
2
aη

2
i (1 − ξ )8pt,max + pξ , where pt,max

is 3/4, 3/16, 9/32, and 1/16 for the PNRD, BD, slow PNRD,
and slow BD cases, respectively. Again, for ξ � 1 we have
(1 − ξ )8 � 1 and pξ � 0 so that pt � η4

dη
2
aη

2
i pt,max. These

zero-order terms in ξ well approximate the numerical results
in Figs. 2 and 3.

With these results, it is straightforward to predict the
bounds where the enhanced scheme is superior to the
standard scheme. For PNRDs we have 3η2

i η
4
dη

2
a/4 > η2

i η
2
d/2

implying ηdηa >
√

2/3 � 0.82. For slow PNRDs we have
9η2

i η
4
dη

2
a/32 > η2

i η
2
d/4 implying ηdηa > 2

√
2/3 � 0.94. Both

of these expressions agree with our numerical results. These
results imply that the enhanced scheme is superior to the
standard scheme in terms of success rate if efficient detectors
with at least some number-resolving capabilities are utilized
and bright pair sources are available to produce the auxiliary
state.

Understanding the effect of loss and dark counts on fidelity
can be done in a similar manner. Since only measurements
that preserve the expected photon count are post-selected, all
false-positive measurements must arise from at least one dark
count event. In this work we assume ξ � ηi � 1 so that only
terms first order in dark count probability dominate the false-
positive rate. This assumption is justified in any regime where
the fidelity is acceptable. It also provides an upper bound
on the fidelity even in the regime ξ � ηi . In addition, if we
further assume that ηi � ηd,ηa , the dominant term will also

correspond to the case where a single input photon is lost
before arriving at the analyzer, and no other photons are lost.
This assumption is reasonable for a repeater scheme, where
input state transmission is poor.

Knowing that, in the regime ξ � ηi � ηd,ηa , the false-
positive rate is dominated by one-photon input loss and single
dark count events, the false-positive rates are of the form
pf � C1ηdηi(1 − ηi)ξ (1 − ξ )3 for the standard scheme and
pf � C2η

2
aη

3
dηi(1 − ηi)ξ (1 − ξ )7 for the enhanced scheme.

The constant prefactors, C1 and C2, depend on detector
model and can be solved by directly counting the probability
that single-photon inputs are post-selected, given the output
states and post-selected measurements of each scheme. For
example, for the standard scheme with PNRD detectors, the
post-selected measurements indicate either â

†
1b̂

†
2|0〉, â

†
2b̂

†
1|0〉,

â
†
1b̂

†
1|0〉, or â

†
2b̂

†
2|0〉 (see Sec. III A). The probability of

obtaining a single photon output is 2ηi(1 − ηi) for each mode.
This single photon can only become post-selected if a dark
count occurs in two of three possible modes. For example,
â
†
1|0〉 would require a dark count in either b̂

†
2 or b̂

†
1 to give rise to

a false positive measurement. Hence, in this case, the prefactor
is C1 = 4. Likewise, for the slow BD case, only measurements
indicating â

†
1b̂

†
2|0〉 or â

†
2b̂

†
1|0〉 are post-selected. Here, a single

photon can only become post-selected if a dark count occurs
in one of three possible modes. Hence the prefactor is C1 = 2,
where the 2 arises from the probability of obtaining a single
photon output.

The prefactors C1 for the standard scheme were found
to be 4 for PNRD and BD models and 2 for the slow
detectors. The enhanced scheme prefactors C2 were found
to be 10, 5/2, 8/3, and 3/4 for PNRD, BD, slow PNRD, and
slow BD models, respectively. These false positive rates were
used along with the analytic success rate approximations to
determine the fidelity. The resulting fidelity well approximates
the numerically exact results in Figs. 2 and 3.

An interesting consequence of the result that both pt ∝ η2
a

and pf ∝ η2
a is that the fidelity, pt/(pt + pf ), is independent

of the auxiliary state photon loss rate. In addition, pf ∝ ξ for
ξ � ηi � 1 indicates that any difference in fidelity between
the standard and enhanced schemes can be made negligible
with a small enough detector noise. Decreasing the dark count
probability below 10−6 would show significant improvements
to fidelity with inefficient detectors for both schemes.

B. Detector arrays

In this section, we report success rates and fidelity for
both schemes assuming the detectors are replaced by arrays
of BD or slow BD detectors. For the enhanced scheme, we
still assume that the auxiliary state is produced by a single
pair source that is subject to loss, representing pair generation
inefficiency or propagation and coupling loss.

1. Numerical results

First, with high detector efficiency and a very bright
auxiliary pair source, we found that arrays of BD or slow BD
types can allow the enhanced scheme success rate to exceed
that of the standard scheme (Fig. 4). Note that the success rate
for the standard scheme using BDs is already optimal without
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FIG. 4. Increase in true success rates using arrays of imperfect
detectors to approximate photon number-resolving detectors. Dashed
and solid curves represent analytic approximations to the standard and
enhanced scheme solutions, respectively. Circle and diamond points
represent numerically exact values computed for computationally
reasonable N . The fidelity curves for the enhanced scheme (solid)
are lower bound approximations obtained from upper bound false-
positive rates. The fidelity curves and data points were computed
using input state transmission ηi = 0.01, detector efficiency ηd = 1.0,
two different dark count probabilities, ξ = 10−5 or ξ = 10−6, and an
auxiliary state transmission ηa = 1.0 when relevant. The success rates
are plotted after dividing out the scheme-independent quantity η2

i . The
dashed lines for the BD case show the N = 1 values for the standard
scheme since arrays of BDs cannot improve the standard scheme
success rate. The slow BD detector model is relevant to time-bin
encoded applications only.

using detector arrays and adding arrays of BDs to the standard
scheme would only decrease the fidelity. For this reason, we
compare the enhanced scheme BD case to the optimal N = 1
values for the standard scheme BD case. In this case, the
enhanced scheme becomes superior to the standard scheme
when four detectors are used per output (16 total).

For slow BDs, using detector arrays improves the success
rate for both the standard and enhanced schemes. However,
due to a larger maximum success rate, the enhanced scheme
can surpass the standard scheme with arrays of at least five
detectors per output (20 total). Note that a uniform array of
size other than a power of two cannot be implemented using
just 50/50 beam splitters but could be implemented using
multiport beam splitters or uneven (non-50/50) beam splitters.
This model also gives upper bound rates for other spatial
multiplexing methods such as beam-shaping optics [40].

Adding arrays of non-number-resolving detectors will only
ever recover the success rate up to the success rate achievable
with PNRDs. For the enhanced scheme to become superior
to the standard scheme using either BDs or slow BDs
with increasing array size, we still require ηaηd > 0.82 (see
Sec. IV A). Decreasing the detector efficiency or the auxiliary
state transmission decreases the success rate, as expected,
and moves the intersection point between the standard and
enhanced scheme success rate to larger array sizes.

When using large arrays, the detector dark counts have a
large impact on the fidelity when input state photon loss is
high, even if detector efficiency is high (Fig. 4). In the array
size regime where the enhanced scheme overtakes the standard
scheme in success rate (N > 4), a dark count probability
of ξ � 10−6 is required for acceptable fidelity. Numerically
computing the fidelity and success rate becomes computation-
ally difficult for array sizes N � 8 for the enhanced scheme.
This is partially due to the large Hilbert space size, which is
814 385 for N = 8 when including photon loss, but also due
to the very large number of measurement outcomes, which
could be up to

∑5
i=0

(64
i

) = 8 303 633 in the BD case for four
photons and one dark count in 64 modes. Monte Carlo methods
might prove a better method to compute numerical values for
larger array sizes [40]. In the following section, we determine
analytic approximations that give insight into the impact of
imperfections on the success rate and fidelity for larger array
sizes.

2. Analytic approximations

To make analytic predictions for the success rate and the
fidelity, we use the methods described in Sec. III D. Recall
that, as an example, in Sec. III D we showed that the standard
scheme with BDs is associated with probability vectors 	P =
( 1

2 , 1
2 )T and 	Pt = ( 1

2 ,0)T in the {{1,1}, {2}} basis. This resulted
in the constant success rate pt (N ) = 1/2. Now, we use the
same reasoning to solve the standard scheme with slow BDs
as well as the enhanced scheme with BDs and slow BDs.

To determine the success rate expression for the standard
scheme with slow BDs, we first found the effective probability
vectors for the slow BD model. These vectors are different
from the regular BD case and, at the level of the probabilities,
can be computed from the scheme outputs by combining
early and late time-bin modes of the same spatial mode if
the early mode is occupied. Notice that in this case we do
not wish to eliminate the photons in the late mode since for
this method to work correctly the total photon count must be
preserved. That is, we need only capture the behavior of the
“slow” flaw since the non-number-resolving flaw of the slow
BD is automatically captured by only allowing probability
of {1,1} types to contribute to success rate. Performing this
modification to the output states of the standard scheme gives
the vectors 	P = ( 1

4 , 3
4 )T and 	Pt = ( 1

4 , 1
4 )T. By applying the

array transformation A(N ) to 	Pt we get the success rate,

pt (N ) = (A(N ) 	Pt ){1,1} = 1

2
− 1

4N
. (11)

The enhanced scheme output gives probability vectors
describing the initial distribution over the categories in the
basis {{1,1,1,1}, {1,1,2}, {1,3}, {2,2}, {4}} as

	P =
(

1

4
,

5

16
,

3

16
,

5

32
,

3

32

)T
	Pt =

(
3

16
,

5

16
,

3

16
,

1

16
,0

)T

(12)

for the BD model. Applying the transformation A(N ) for the
enhanced scheme gives the success rate,

pt (N ) = (A(N ) 	Pt ){1,1,1,1} = 3

4
− 1

N
+ 7

16N2
. (13)

032332-9



STEPHEN WEIN et al. PHYSICAL REVIEW A 94, 032332 (2016)

Likewise, for the slow BD model we have

	P =
(

1

8
,
1

4
,
1

4
,

7

32
,

5

32

)T
	Pt =

(
1

16
,
1

4
,
1

4
,
1

8
,

1

16

)T

, (14)

which results in

pt (N ) = 3

4
− 13

8N
+ 21

16N2
− 3

8N3
. (15)

Taking N → ∞ we see that pt (N ) approaches the scheme
maximum rates in all cases, as expected.

To include dark counts, detector inefficiency, and photon
loss, we again assumed that the vast majority of true-positive
events occur when detectors operate correctly and all photons
arrive at the analyzer. This gives pt � η2

dη
2
i (1 − ξ )4Npt (N ) for

the standard scheme and pt � η4
dη

2
aη

2
i (1 − ξ )8Npt (N ) for the

enhanced scheme. The term 4N and 8N are the total number
of modes after applying an N -sized beam-splitter model for
the standard and enhanced schemes, respectively.

To estimate the false-positive rate while including imper-
fections, we use the same arguments as in the N = 1 case
in Sec. IV A. However, for detector arrays, the prefactors C1

and C2 become dependent on N in a nontrivial way. For the
standard scheme, the prefactor is uncomplicated because most
false-positive measurements arise from states of type {1}, and
P {1} = 2ηi(1 − ηi) is independent of N . For slow BDs, by
inspection, the number of false-positive combinations was
determined to be (2N − 1), and so C1(N ) = 2(2N − 1). Hence
the false-positive rate for the standard scheme with arrays of
N slow BDs is approximately

pf � 2(2N − 1)ηdηi(1 − ηi)ξ (1 − ξ )4N−1. (16)

The enhanced scheme false-positive rates are more difficult
to determine because most false-positive measurements arise
from states of type {1,1,1}, and P {1,1,1} increases with N due
to contribution from states of type {1,2} and {3} splitting. Using
A(N ) with input state and auxiliary state loss considerations,
the N -dependent P {1,1,1} is

P {1,1,1} � η2
aηi(1 − ηi)

(
2 − 2

N
+ 3

4N2

)
(17)

for the BD model, assuming ηi � ηa . Likewise, for the slow
BD model we have

P {1,1,1} � η2
aηi(1 − ηi)

(
2 − 5

2N
+ 1

N2

)
. (18)

An approximate upper bound for the false-positive rate
is given by the probability that a state of type {1,1,1}
is measured to be of type {1,1,1,1}. For BD detectors,
{1,1,1}-type states have three of the 8N modes occupied
and so 8N − 3 modes could suffer a dark count to be-
come a {1,1,1,1} type. This gives an upper bound pf �
(8N − 3)η3

dξ (1 − ξ )8N−1P {1,1,1}. This is an upper bound
because a fraction of the {1,1,1,1} measurements are actually
rejected during post-selection. For the N = 1 BD case, the
fraction of rejected states can be directly counted to be 2/3
by inspection of the scheme output states. This fraction was
found to have a very slight decreasing trend with increasing
N , implying 2/3 can provide a more accurate upper bound
false-positive rate. Thus the false-positive rate for the enhanced

scheme with arrays of N BDs is approximated by

pf � 2

3
(8N − 3)η3

dξ (1 − ξ )8N−1P {1,1,1}, (19)

where P {1,1,1} is given by Eq. (17). Note that when N = 1,
we recover the result from Sec. IV A for BDs. That is,
(2/3)(8N − 3)(2 − 2/N + 3/4N2) = 5/2 for N = 1. Since
the 2/3 factor is an upper bound, the fidelity derived from
this false-positive approximation will slightly underestimate
the numerical values for fidelity at higher N (Fig. 4).

For slow BD detectors, {1,1,1}-type states have 8N − 6
modes that could suffer a dark count to become a {1,1,1,1}
type. This is because a dark count must occur in a different
spatial mode than those already occupied to change the total
measured photon count, as a consequence of the slow recovery
property. This gives an upper bound pf � (8N − 6)η3

dξ (1 −
ξ )8N−1P {1,1,1}. For the N = 1 slow BD case, the fraction
of rejected states can be directly counted to be 3/4, again by
inspection of the scheme output states. This fraction was again
found to have a decreasing trend, slightly more significant than
in the BD case. Thus the false-positive rate for the enhanced
scheme with arrays of N slow BDs is approximately

pf � 3
4 (8N − 6)η3

dξ (1 − ξ )8N−1P {1,1,1}, (20)

where P {1,1,1} is given by Eq. (18). With N = 1, we
again recover the result from Sec. IV A for slow BDs. That
is, (3/4)(8N − 6)(2 − 5/2N + 1/N2) = 3/4 for N = 1. The
fidelity derived from this false-positive approximation will
underestimate the numerical values for fidelity at higher N

more so than the corresponding BD fidelity (Fig. 4).

C. Alternative auxiliary source

We now briefly discuss the case where the enhanced scheme
auxiliary state is generated by a SPDC source. In this section
we still consider the input state |
〉12 to be a bi-photon state
so that the state being measured is in the span of the Bell basis
(see Sec. III A). In this case, |
〉12|φ+

n 〉34 has constant photon
number equal to 2n + 2. This implies that states with different
n are orthogonal and will not interfere when passing through
the analyzer. Hence it suffices to analyze the performance
of the scheme using auxiliary states |φ+

n 〉34 separately and
average the resulting rates using the weight function w2(n,τ )
[see Eq. (4)].

If the input is a superposition of states with different photon
numbers (such as produced by another SPDC source), then
this analysis method fails. However, the input state need not
be a true bi-photon state to test the Bell-state analyzer. Two
high-quality single photons could be heralded from weakly
pumped SPDC sources [51] and then projected onto a Bell
state by the measurement. The efficiency and fidelity of the
measurement can be inferred using a decoy state protocol, as
if the input was a true bi-photon state [36].

To analyze the enhanced scheme using a SPDC auxiliary
source, we begin by determining the maximum success rate
for each detector type, in the absence of dark counts, detector
inefficiencies, and loss rates. To do this, we consider each
|φ+

n 〉 for 0 � n � 10 as an auxiliary state separately. For
each n, the true-positive measurements were determined
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FIG. 5. (Left) Success rates and fidelity for the enhanced scheme
with different multiphoton auxiliary states from a SPDC source.
(Right) True success rates and fidelity, assuming a SPDC-based
auxiliary source, after a weighted average of the true-positive and
false-positive rates using weighting function w2(n,τ ). Curves on
the right correspond to PNRD (solid), slow PNRD (dashed), BD
(dotted), and slow BD (dot-dashed) detector types. All plots were
computed in the ideal case; with unity detector efficiency and photon
transmission ηd = ηi = ηa = 1, and zero dark count probability
ξ = 0. The slow-prefixed detector models are relevant to time-bin
encoded applications only.

and then combined to form four mutually exclusive sets of
measurements that are used to identify each of the four Bell
states. These combined sets of post-selected measurements
were then used to determine the true-positive and false-positive
rates for each auxiliary state |φ+

n 〉 along with the associated
fidelity. This was done for each detector type, the results of
which are summarized in Fig. 5.

Interestingly, the maximum success rate for the PNRD case
remains above 50% regardless of the auxiliary pair number.
This implies that the enhanced scheme with a SPDC auxiliary
source still has an upper bound rate greater than that of the ideal
standard scheme. The maximum success rate for the enhanced
scheme using a SPDC source is 58%, which occurs with an
interaction parameter value of τ = 0.67, corresponding to a
mean photon pair number n = 1 for the auxiliary source.
Values for mean photon pair numbers when generating Bell
pairs using SPDC are generally chosen to be small (∼ 0.1)
[4], since the multiphoton states are undesired. However, even
though the enhanced scheme operates ideally with a single Bell
pair, Fig. 5 suggests that the optimal mean photon pair number
is much larger than 0.1 since it is possible to utilize both
the empty pulses and the n > 1 entangled states generated by
SPDC to perform a successful BSM. If the distribution of pair
numbers can be focused nearer to n = 1, it may be possible to
raise the success rate higher than 58%. Perhaps this could be
achieved by antibunching emission of photon pairs from the

SPDC source using a quantum Zeno blockade [52], although
this could never increase the rate above the 75% maximum.

Since PNRDs can indicate photon number, each mea-
surement can be attributed directly to one of the terms in
the auxiliary state. For this reason combining unambiguous
measurements from each n results in a set of measurements that
give perfect fidelity for any interaction parameter. Similarly,
the partial number-resolving capability of the slow PNRD
model allows a set of unambiguous measurements to exist,
which allows measurements with perfect fidelity, albeit at an
inferior rate to the standard scheme. On the other hand, BD
types cannot indicate photon count and so measurements from
one pair number can be confused with those from another,
leading to unavoidable false positive events.

Computing success rates and fidelity for large auxiliary
states is computationally difficult even without including
losses, inefficiencies, and detector dark counts. For n = 10, the
computation involves 22 photons, leading to an output Hilbert
space of size NH = 1 560 780 (see Sec. III B). Including all
photon losses increases the size to 5 852 925. Since the number
of measurement outcomes can be even larger than the Hilbert
space size when using PNRDs with detector dark counts, we
do not attempt numerical computations accounting for these
additional imperfections. Instead, we make some observations
for small n to make a definitive comparison between the two
schemes when using an SPDC auxiliary source.

For the enhanced scheme to be superior to the standard
scheme when using PNRDs with an SPDC auxiliary source,
it is necessary to accept many measurements that indicate
different n. As a consequence, the probability of losing two
photons can directly contribute to infidelity in the absence
of dark counts, similar to the slow PNRD case discussed
in Sec. IV A. Consider the incident states |00〉12|φ+

2 〉34 and
|φ+〉12|φ+

1 〉34. Due to the symmetry of the apparatus, these
two states produce many identical outputs. Unsurprisingly, we
found that |00〉12|φ+

2 〉34 can produce all of the measurement
results that are post-selected to indicate a |φ+〉12|φ+

1 〉 input.
This implies that pf ∝ (1 − ηi)2, assuming ηi � ηd,ηa and
ξ � 1. Thus for small ηi , the fidelity is likely also small, unlike
previous cases where the false-positive measurements were
dominated by single detector dark count cases. For this reason,
SPDC sources are not a suitable replacement for the auxiliary
source in the enhanced scheme when ηi � 1. This alternative
auxiliary source could still be used in a local application with
very efficient number-resolving detectors and low photon loss
rates. In this case, the results shown in Fig. 5 become relevant.
Regardless, an increase of 0.08 in maximum success rate over
the standard scheme is likely not enough to justify the required
increase in apparatus quality and complexity.

V. CONCLUSIONS

In this paper, we determined realistic success rates and
measurement discrimination fidelities expected when imple-
menting an enhanced linear-optic Bell measurement scheme
using nonideal detectors and incident states. This enhanced
scheme was compared to the standard scheme for implement-
ing a Bell-state analyzer. We described the numeric methods
that we used to quantify the quality of the Bell-state analyzers
in light of the challenges caused by large Hilbert space sizes
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when detector arrays and complicated auxiliary states are
considered. In addition, we used analytic methods to determine
approximate expressions that give insight into the effect of
different imperfections on the scheme quality.

When detector inefficiencies, dark counts, input photon
losses, and auxiliary photon losses were accounted for, the
enhanced scheme using PNRDs was found to be superior to the
standard scheme when detector and auxiliary source efficiency
was high, ηdηa > 0.82. When using single non-PNRDs, the
enhanced scheme showed no advantage over the standard
scheme. However, the enhanced scheme’s 75% maximum rate
allowed it to surpass the standard method when used with
efficient non-PNRDs in array configurations.

Both schemes that were analyzed suffered decreases in
success rate when used with time-bin qubits and detectors
with long dead time. In this case, arrays of highly efficient
detectors again improved success rates arbitrarily close to
scheme maximums in the large array limit. However, detector
arrays are significantly susceptible to detector dark counts
since the chance of misfire during a detection window is much
higher with more active detectors. This effect is compounded
by input loss, causing a reducing fidelity with increasing
array sizes. If detectors composing the arrays have dark count
probabilities smaller than 10−6, the measurement fidelity can
be made acceptable even with large input loss.

We analyzed whether a parametric down-conversion source
can be used to produce the auxiliary photon state required for
the enhanced scheme. With this alternative auxiliary source

and number-resolving detectors, the enhanced scheme had a
maximum success rate of 58%, still greater than that of the
standard scheme. However, the measurement discrimination
fidelity is very low when input loss is large. Hence, using
a SPDC source with the enhanced scheme would only be
advantageous for local applications with small loss rates and
efficient number-resolving detectors.

Although the regime where this enhanced scheme surpasses
the standard scheme is narrow, the advent of accurate, bright
pair sources and improved detectors might allow an auxiliary
photon-assisted Bell-state analyzer to become viable in the
near future. Furthermore, the methods and results detailed
in this paper may prove useful for the analysis of the
performance of other linear optical quantum information
processing protocols under realistic conditions.
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