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Tunable entanglement resource in elastic electron-exchange collisions out of chaotic spin systems
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Elastic collisions between initially unpolarized electrons and hydrogenlike atoms are discussed aiming to
analyze the entanglement properties of the correlated final spin system. Explicit spin-dependent interactions are
neglected and electron exchange only is taken into account. We show the final spin system to be completely
characterized by a single spin correlation parameter depending on scattering angle and energy. Its numerical value
identifies the final spins of the collision partners to be either in the separable, entangled, or Bell correlated regions.
The symmetry of the scattering process allows for the construction of explicit examples applying methods of
classical communication and local operations for illustrating the concepts of nonlocality versus separability. It is
shown that strong correlations can be produced violating Bell’s inequalities significantly. Furthermore, the degree
of entanglement can be continuously varied simply by changing either the scattering angle and/or energy. This
allows for the generation of tunable spin pairs with any desired degree of entanglement. It is suggested to use
such nonlocally entangled spin pairs as a resource for further experiments, for example in quantum information
processes.
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I. INTRODUCTION

Quantum entanglement and nonlocality are continuously at
the center of intense research activities [1–3]. This involves
the foundations of quantum theory with regard to the Einstein-
Podolsky-Rosen criticism [4] as well as Bell’s theorem [5],
both intended trying to preserve the Newtonian local realistic
picture. Over the decades, violation of Bell’s inequalities [5,6]
have been observed experimentally in a variety of physical
systems, e.g., see [7]. Only recently, considerable progress has
been achieved, almost simultaneously, by Hensen et al. [8],
Giustina et al. [9], and Shalm et al. [10] who have been
able to reject the hypothesis of local realism with remarkable
statistical significance, removing essentially the last serious
doubts on the existence of nonlocal interactions in nature.

A second line of research started with the advent of quantum
information theory, recognizing entanglement, established by
Schrödinger [11] as Verschränkung, as a resource for tasks like
quantum cryptography [12,13], quantum teleportation [14], or
quantum computation [15,16]. This led to a rapidly growing
interest in entanglement theory and quantum nonlocality, both
dealing with different aspects of one of the most intriguing
peculiarities of nature, and many experiments today aim at the
generation of entanglement; e.g., see [1–3].

Most research so far utilized variations of entangled photons
in the experimental setups in order to reject local realism. One
aim of the present paper is to supplement these results by
following different and new paths, opened up in our previous
research [17], by studying the spin-spin correlations created
in elastic electron-atom collisions. It will be shown that strong
correlations can be obtained, violating Bell’s inequalities even
maximally in some cases. This is direct proof of the inherent
nonlocality of the spin-spin system under discussion and is
in support of the results given in [8–10]. Our second aim
is to show that these nonlocally entangled spin pairs of the
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collision partners might be used as a resource in sophisticated
experiments relying on a high degree of entanglement, for
example in quantum computation. As an interesting feature,
the degree of entanglement can be continuously tuned in such
experiments, simply by changing the relevant scattering angle
or energy.

Spin-dependent collisions between electrons and atoms
have been studied for many years with increasing precision
and efficiency, aiming to obtain information on the scattering
dynamics [18,19]. More recently, entanglement properties in
photon-induced ionization have been reported [20]. In the
present paper we will analyze collisions between initially
unpolarized electrons and unpolarized hydrogenlike atoms
(H, Li, Na), both having electronic spin-1/2, and study the
interrelation between scattering dynamics and the creation of
nonlocal correlations, starting from a maximally chaotic initial
spin state. We assume all explicit spin-dependent forces to be
neglected and electron exchange to be taken into account, only.
It will be demonstrated that the final state spin density matrix is
completely expressed in terms of a single dynamical parameter
characterizing the spin-spin correlations, while its numerical
value determines whether the final spin system remains
separable, or becomes entangled, or even Bell correlated, i.e.,
it violates any of the Bell inequalities [5,6]. Such studies
unveil, as fundamental aspects, the completely different nature
of spin correlations for separable and entangled states. As
a consequence, the presence of entangled spin pairs in the
final beams can be verified experimentally on the basis of
one local measurement. By adapting existing experimental
and numerical results we will obtain data for the correlation
parameter and are then able to analyze the entanglement
properties of the final collision system.

The present paper is organized as follows. A general
expression for the spin density matrix of the final scattering
system will be derived in Sec. II, while in Sec. III it will be
shown that, as a main result, the final spin system is completely
characterized in terms of a single spin correlation parameter,
which yields, so to speak, the link between collision dynamics
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and quantum mechanical entanglement. It is shown that spin
correlation data can be obtained from measurements of the spin
asymmetry, thereby avoiding the performance of a difficult
spin-selective coincidence experiment (see the Appendix). In
Sec. IV specific criteria will be applied in order to decide about
the separability or nonseparability of the final state density
matrix. It is demonstrated that the spin correlation parameter
contains the full information on the entanglement properties
and governs separability, entanglement, or Bell correlation
of the final state spin system. The following three sections
are devoted to a discussion of these different properties. The
abstract concept and physical importance of separability will
be illustrated in Sec. V. It will be shown that, in the separable
region, the spin-spin correlations are of classical nature, and
the spin system is indistinguishable from a system prepared
locally in a classical way. Explicit examples for correlated and
anticorrelated spins will illustrate these concepts which will
also be useful for the discussion later on. For predominantly
anticorrelated spins the final state spin density matrix can
be written in form of a Werner state [21]. These states
have high conceptual value in discussing fundamentals of
quantum mechanics. In the entangled region, considered in
Sec. VI, we will introduce the concept of negativity in order
to quantify the amount of entanglement generated during the
scattering process. In Sec. VII we will discuss the relation
between entanglement and Bell correlations. Conditions are
derived required for the production of inherently nonlocal
spin pairs. Section VIII is an essential part of the paper.
The theory, developed in the previous sections, will be
applied for analyzing published experimental and numerical
spin asymmetry data, out of which the corresponding values
for the spin correlation parameter can easily be obtained.
A detailed analysis will allow for a deep insight into the
entanglement properties of the final state spin pairs. The
results will reveal that surprisingly strong spin correlations
can be created during the collision which in some cases
violate Bell’s inequalities even maximally, indicating large
nonlocal effects. Furthermore, the dependence of the spin
correlation parameter on scattering angle and energy allows for
generating spin pairs with any desired degree of entanglement,
simply by changing the experimental conditions. Hence, the
scattered particles can be used, for example, as a resource of
strongly correlated spin pairs for further experiments. All in
all, the collision system under discussion can be utilized as
a useful means for studying and applying nonlocal effects in
quantum theory. Possible applications in quantum information
and quantum computation will be pointed out. In Sec. IX we
will summarize our main results. A possible spin resolved
experimental coincidence analysis of the spin-spin correlations
is outlined in the Appendix.

II. DENSITY MATRIX OF THE FINAL STATE

Our main goal in Secs. II and III is the derivation of
expressions (14) and (16), which contain the key results for
all following discussions, and to introduce relation (21) which
is essential for the discussion of existing experimental and
numerical data in Sec. VIII.

In order to describe the elastic scattering within the
combined electron-atom system, while neglecting spin-orbit
interaction, we express the initial unpolarized state by the
density matrix

ρin = 1

4

∑
m1m2

|m1m2〉〈m1m2|, (1)

being an incoherent superposition of the equally distributed
spins, where m1 and m2 denote the spin components of the
first (electrons) and second particle (atoms), respectively.
The density matrix, characterizing the final state after the
scattering, is given by the relation

ρ = TρinT
+, (2)

where T is the transition operator. Taking matrix elements (Mi

and mi denote spin components in the final and initial states,
respectively) we obtain

〈M ′
1M

′
2|ρ|M1M2〉 = 1

4

∑
m1m2

〈M ′
1M

′
2|T |m1m2〉

× 〈m1m2|T +|M1M2〉. (3)

Here scattering angle and energy are assumed to be fixed and
their dependence on the scattering amplitudes is suppressed.
In the T -matrix elements we couple to the total spin S and its
component Ms with the help of Clebsch-Gordan coefficients

〈M1M2|T |m1m2〉 =
∑
SMs

(1/2M1,1/2M2|SMs)

×(1/2m1,1/2m2|SMs)〈SMs |T |SMs〉,
(4)

where conservation of the total spin and its component has
been applied. Using the fact that the T matrix is independent
of Ms , we introduce

〈SMs |T |SMs〉 = f (S), (5)

where f (S) denote the triplet (S = 1) and singlet (S = 0)
scattering amplitudes, respectively.

Substituting (4) and (5) into (3) and using the orthogonality of the Clebsch-Gordan coefficients finally yields

〈M ′
1M

′
2|ρ|M1M2〉 = 1

4

∑
SMs

(1/2M ′
1,1/2M ′

2|SMs)(1/2M1,1/2M2|SMs)|f (S)|2. (6)
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For the following it is useful to write the density matrix ρ in explicit matrix form. Inserting numerical values for the Clebsch-
Gordan coefficients into (6), we obtain as a preliminary result the 4 × 4 matrix

ρ = 1

8σ

⎛
⎜⎜⎜⎜⎜⎝

2|f (1)|2 0 0 0
0 |f (1)|2 + |f (0)|2 |f (1)|2 − |f (0)|2 0
0 |f (1)|2 − |f (0)|2 |f (1)|2 + |f (0)|2 0
0 0 0 2|f (1)|2

⎞
⎟⎟⎟⎟⎟⎠

. (7)

Here ρ is normalized by the differential cross section

σ = 1
4 (3|f (1)|2 + |f (0)|2), (8)

and tr ρ = 1.

III. SPIN CORRELATIONS

The spin density matrix (7) can be completely characterized
in terms of the two individually measured polarization vectors
P (1) and P (2), referring to particles 1 and 2,

P
(1)
i = tr ρ(σi × 1) and P

(2)
i = tr ρ(1 × σi), (9)

where i = x,y,z,1 is the two-dimensional unit matrix, and
× denotes the direct product, and the nine direct product
components P

(1)
i × P

(2)
j of the spin-spin correlation tensor

(i,j = x,y,z), defined by the expression [22]

P
(1)
i × P

(2)
j = tr ρ(σi × σj ), (10)

where σi (i = x,y,z) abbreviate the Pauli matrices:

σx =
(

0 1
1 0

)
, σy =

(
0 −i

i 0

)
,

and σz =
(

1 0
0 −1

)
. (11)

If both subsystems are completely uncorrelated, i.e., if ρ =
ρ(1) × ρ(2), then (10) reduces to the simple product of the
individual polarization vectors

P
(1)
i × P

(2)
j = P

(1)
i · P

(2)
j . (12)

The correlation parameters refer to experiments where both
scattered particles are measured in coincidence by two ob-
servers. For example, P (1)

z × P (2)
z gives the outcome of an

experiment where both analyzer-detector sets are oriented
along the z direction, which yields [22]

P (1)
z × P (2)

z = 1

N

(
N (z)↑↑ + N (z)↓↓ − N (z)↑↓ − N (z)↓↑

)
,

(13)

where, e.g., N (z)↑↑ denotes the number of measurements find-
ing both particles with spin up with respect to the z axis. The
spin-selective detectors in such an experiment can be realized
by a Stern-Gerlach analyzer and Mott polarimeter techniques
for the atomic and electronic spins, respectively [23]. A
possible scheme of an e-H spin correlation experiment is
depicted in Fig. 8 of the Appendix for illustrative purposes.

The simple structure of the density matrix (7) allows for
quickly calculating the relevant parameters. The individual

polarization vectors of the two subsystems cancel, and the
only nonvanishing spin correlation parameters are

P = P
(1)
i × P

(2)
i = |f (1)|2 − |f (0)|2

3|f (1)|2 + |f (0)|2 , i = x,y,z, (14)

where we introduced the parameter P = P (θ,E) which is a
function of scattering angle and energy.

Equation (14) can be generalized applying the tensorial
properties of P

(1)
i × P

(2)
i . Let σa = σ · a denote the component

of the Pauli operator σ in the direction of the unit vector a, and
σb = σ · b denote the component in direction b. If the spin of
the first particle is measured along direction a, and the spin
of the second particle along b, the resulting correlations are
given by the expression

P (1)
a × P

(2)
b = P cos β, (15)

where β is the angle between a and b [22]. This, together
with (14), exhibits the rotational symmetry of the spin-spin
system. Using (8) and (14) we can express the spin density
matrix (7) in terms of the spin correlation parameter. We obtain

ρ = 1

4

⎛
⎜⎝

1 + P 0 0 0
0 1 − P 2P 0
0 2P 1 − P 0
0 0 0 1 + P

⎞
⎟⎠. (16)

Equation (16) shows that the spin system under discussion is
completely characterized by the single parameter P . In con-
trast, for a most general scattering experiment, e.g., including
spin-orbit interaction and more general initial conditions, the
density matrix can depend on up to 15 independent parameters.
In general, the values of the correlation parameter are restricted
to the interval [−1,1]. From (14) we get the further restriction

−1 � P � 1

3
. (17)

The spin density matrix (16) provides the key equation. From
its structure, (16) represents a so-called X matrix, with only
diagonal and antidiagonal elements, which has been used
in the analyses of two-qubit quantum systems [24,25]. Its
simple structure will allow for a transparent discussion of all
entanglement properties of the final spin system. Note that the
density matrix (16) admits the Bloch representation

ρ = 1

4

(
1 + P

∑
i

σi × σi

)
, i = x,y,z, (18)

where 1 denotes the four-dimensional unit matrix.
A spin selective coincidence experiment as described above

is not easy to perform. Therefore, it is important to note that the
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correlation parameter (14) can also be obtained from the results
of a different type of experiment, where many experimental
and numerical results are already available. Consider the case
where electrons and atoms, both, are initially polarized. Then,
the spin asymmetry Aex can be measured which is defined as

Aex = σ↑↓ − σ↑↑
σ↑↓ + σ↑↑

, (19)

where σ↑↓ and σ↑↑ denote differential cross sections for in-
cident antiparallel and parallel spins, respectively. Expressing
Aex in terms of the scattering amplitudes f (0) and f (1), we
obtain [26]

Aex = |f (0)|2 − |f (1)|2
3|f (1)|2 + |f (0)|2 . (20)

A comparison with (14) yields the simple relation

P (θ,E) = −Aex(θ,E). (21)

Using published data for the spin asymmetry Aex, then (21)
allows us to immediately obtain the spin correlation param-
eter P for our considered experimental setup with initially
unpolarized particles (see the discussion in Sec. VIII later on).

IV. ENTANGLEMENT VERSUS SEPARABILITY:
PERES-HORODECKI CRITERION

We now discuss under which conditions the mixed spin
state (16) is separable or entangled, or a combination of both.
Generally, a density matrix of a bipartite mixed state is called
separable if and only if it is possible to express it in the form

ρ =
n∑

i=1

pi |ai〉〈ai | × |bi〉〈bi |, (22)

where the pure one-particle states |ai〉 and |bi〉 refer to the
first (electron) and second (atom) particle, respectively. The
parameters pi � 0 denote the relevant probabilities. If no
transformation of a given density matrix ρ to the form (22) can
be given, the system is said to be nonseparable or entangled.
Peres [27] and Horodecki et al. [28] derived a convenient
criterion which, in the case of a 4 × 4 density matrix, yields
a necessary and sufficient condition for separability. For this,
we construct the partial transpose density matrix ρPT where
only the variables of one subsystem are transposed:

〈M ′m′|ρPT|Mm〉 = 〈Mm′|ρ|M ′m〉. (23)

Applying this to the density matrix (16) we obtain

ρPT = 1

4

⎛
⎜⎝

1 + P 0 0 2P

0 1 − P 0 0
0 0 1 − P 0

2P 0 0 1 + P

⎞
⎟⎠. (24)

A given density matrix ρ describes a separable state if all
eigenvalues of ρPT are positive. In contrast, ρ describes an
entangled system if at least one eigenvalue is negative [27,28].
Calculating the eigenvalues λi of ρPT yields

λ1,2,3 = 1

4
(1 − P ) and λ4 = 1

4
(1 + 3P ). (25)

FIG. 1. Separable, entangled, and Bell correlated areas (see text).

Equation (25) indicates that all eigenvalues are positive for P

values in the range

−1

3
� P � 1

3
, (26a)

and that the scattering matrix ρ is separable in this region. The
density matrix ρ describes an entangled system in the range

−1 � P < −1

3
, (26b)

where λ4 becomes negative. The system is maximally
entangled for P = −1. The results are depicted in Fig. 1.

In conclusion, whether a given collision system is separable
or nonseparable depends on the strength of the spin correlation
and can be decided experimentally by measuring P .

V. DISCUSSION OF SEPARABILITY

We will now illustrate the abstract results of the preceding
section by constructing explicit expressions which will give
further insight. Decomposition of mixed states is not unique.
However, if it is possible to transform the scattering matrix to
the form (22), then ρ is separable. In general, this task is very
cumbersome. In our case of interest though, it is rather simple,
since the results (14) provide the essential hints. We derive the
results for positive and negative values of P separately.

A. Positive correlation parameters

If P is positive, then the spins of the collision pairs
are predominantly parallel oriented as follows from (13)
and similar equations. The spin system remains separable
in this case as shown in Fig. 1. As discussed in Sec. III,
the spins of the two collision partners are always correlated,
but the correlations are not strong enough for generating
entanglement.

Inserting explicitly P = |P |, we rewrite the spin density
matrix (16) by subtracting a term proportional to the four-
dimensional unit matrix. The remaining matrix can then be
expressed in terms of the three triplet states |S = 1Ms〉 with
Ms = −1,0,1, respectively. We obtain

ρ = 1 − 3|P |
4

1 + |P |
2

⎛
⎜⎝

2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

⎞
⎟⎠

= 1 − 3|P |
4

1 + |P |
∑
Ms

|1Ms〉〈1Ms |. (27)
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The 4 × 4 unit matrix 1 describes a completely uncorrelated
mixture of states, e.g.,

1 =
∑

i

|aibi〉〈aibi | with ai,bi ∈ {↑ , ↓}, (28)

where the two particles can be found in any of the four
separable states with equal probability 1

4 . The four states
occurring in (28), and the states |11〉 = | ↑↑〉 and |1 − 1〉 =
| ↓↓〉 in (27) are clearly separable, but the Bell state |10〉 =

1√
2
(| ↑↓〉 + | ↓↑〉) is maximally entangled. One might assume

that ρ is at least partially entangled, but Fig. 1 shows that ρ

is separable for all allowed positive values of P . We will now
construct such a representation. Guided by the results (14)
for the correlation parameter we start by considering the spin
density matrix

ρ1 = 1
6 (| ↑x〉〈↑x | × | ↑x〉〈↑x | + | ↓x〉〈↓x | × | ↓x〉〈↓x |
+ | ↑y〉〈↑y | × | ↑y〉〈↑y | + | ↓y〉〈↓y | × | ↓y〉〈↓y |
+ | ↑z〉〈↑z | × | ↑z〉〈↑z | + | ↓z〉〈↓z | × | ↓z〉〈↓z |),

(29)

where | ↑i〉 and | ↓i〉 denote particle states with spin up (↑)
and spin down (↓) with respect to the i axis (i = x,y,z). It is

| ↑x〉 = 1√
2

(| ↑〉 + | ↓〉), | ↑y〉 = 1√
2

(| ↑〉 + i| ↓〉),

and

| ↓x〉 = 1√
2

(| ↑〉 − | ↓〉), | ↓y〉 = 1√
2

(| ↑〉 − i| ↓〉),

while

| ↑z〉 = | ↑〉 and | ↓z〉 = | ↓〉.
(30)

The state (29) is of the general form (22) and clearly separable.
It can be prepared by two spatially separated observers,
commonly called Alice and Bob, in an entirely classical way,
i.e., by agreeing over the phone on the local preparation of
their respective states. For instance, Alice prepares a subset
of electrons locally in the state | ↑x〉. She communicates this
to Bob via a classical channel, e.g., phone, see Fig. 2. Then,
Bob will prepare the corresponding subset of his particles,
hydrogenlike atoms, in the same spin state.

This operation is repeated for the other five states in (29).
The beams created by Alice and Bob remain spatially separated
without interaction. The total final spin system is then
described by the matrix ρ1 which contains the full information
on the system. Any mixed state which is prepared in this
way by local operations and classical communication (LOCC)
contains correlated spins, but these correlations are created
entirely by classical means. By contrast LOCC cannot be used
to create entangled states [3]. Calculation of the correlation
parameters for ρ1 by means of (10) yields the results

Pi × Pi = 1

3
(i,j = x,y,z), (31)

and Pi × Pj = 0 for i 	= j . The individual polarization vectors
vanish. In particular, we get Pa × Pa = 1

3 , for any direction a
of the two spin detector systems. Comparing this with (14),
we see that the two spin systems have the same rotational

FIG. 2. At her place, Alice prepares a subset of electrons locally in
the state | ↑x〉. She communicates this to Bob via her smart phone, i.e.,
she is using a classical communication channel. After receiving this
message, Bob will prepare the corresponding subset of his particles,
hydrogenlike atoms, in the same spin state | ↑x〉.

symmetry. Only the magnitudes of the correlation parameters
differ (Pi × Pi = 1

3 in case of ρ1, and 0 � Pi × Pi = P � 1
3

for ρ). The correlations contained in ρ1 can be reduced by
mixing ρ1 with a completely uncorrelated system, described
by the 4 × 4 unit matrix (28), until this mixture contains the
same amount of correlations as ρ. In order to achieve this we
write the spin density matrix (27) as a superposition of the
normalized identity matrix 1

41 and ρ1,

ρ = a

4
1 + b ρ1, (32)

and determine the coefficients a and b by requiring that both
sides of (32) must have the same trace, which gives a + b =
1, and the same correlation parameters, resulting in |P | =
1
3b. Thus, we obtain for the spin scattering matrix (27) the
expression

ρ = 1 − 3|P |
4

1 + 3|P |ρ1. (33)

Remembering (22) we obtain from (33) that the spin matrix
ρ is separable if |P | � 1

3 (see Fig. 1) which is in accordance
with the Peres-Horodecki criterion.

The essential point is that, on the left-hand side of (33),
we have the spin matrix (27) describing the spin correlations
between colliding pairs of spin-1/2 particles. On the right-
hand side, we have a mixture of 1 and ρ1 which can be
prepared by LOCC. Both systems, ρ and the mixture, coincide
in all measurable polarization and correlation parameters
and are therefore physically indistinguishable. Without prior
knowledge it is impossible to decide which system is created
in the final state of a scattering experiment, and which system
has been prepared by LOCC. This discussion illustrates the
meaning of separability.

Of course, there are many different ways of preparing the
same state ρ. But produced in a collision, the important point
is, the spin correlations of separable systems can be reproduced
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entirely by a classical mechanism. Hence, it is quite reasonable
to state that separable states contain no entanglement.

Finally, comparing (27) and (33), we obtain

ρ1 = 1

3

∑
Ms

|1Ms〉〈1Ms |. (34)

This result is remarkable as the normalized sum over the three
triplet states is always separable, though (34) contains the
maximally entangled triplet state |10〉 = 1√

2
(| ↑↓〉 + | ↓↑〉).

B. Negative correlations

Now we consider anticorrelated spins. Inserting P = −|P |
in (16) we can write the scattering matrix ρ in form of a Werner
state [21]

ρ = 1 − |P |
4

1 + |P |
2

⎛
⎜⎝

0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

⎞
⎟⎠

= 1 − |P |
4

1 + |P ||00〉〈00|, (35)

where

|00〉 = 1√
2

(| ↑↓〉 − | ↓↑〉) (36)

is the singlet state. The Werner state (35) represents a
mixture of the completely uncorrelated state (28) ∼ 1 (with
amount 1 − |P |) and the maximally entangled singlet state.
The magnitude |P | of the correlation parameter plays the
role of a mixing parameter in the Werner state. From the
Peres-Horodecki criterion, it follows that the state (35) is
separable for 0 � P � − 1

3 (see Fig. 1). We illustrate this
result by explicit construction, following essentially the same
procedure as in the preceding case. Since the correlations are
negative we consider the density matrix ρ2 with anticorrelated
spins,

ρ2 = 1
6 (| ↑x〉〈↑x | × | ↓x〉〈↓x | + | ↓x〉〈↓x | × | ↑x〉〈↑x |
+ | ↑y〉〈↑y | × | ↓y〉〈↓y | + | ↓y〉〈↓y | × | ↑y〉〈↑y |
+ | ↑z〉〈↑z | × | ↓z〉〈↓z | + | ↓z〉〈↓z | × | ↑z〉〈↑z |).

(37)

As ρ2 is of the form (22) it is separable and hence can be
prepared by LOCC. The only nonvanishing components of the
correlation tensor are given by

Pi × Pi = −1

3
(i = x,y,z). (38)

Repeating the steps from (29) to (33) we can rewrite the Werner
state (35) in the explicit separable form (0 � P � − 1

3 )

ρ = 1 − 3|P |
4

1 + 3|P |ρ2. (39)

Both sides of (39) are normalized and are characterized by
the same set (14) of correlation parameters. They are therefore
physically indistinguishable. The discussion following (33)
applies directly to (39). The Bloch representation of ρ2 follows
directly from (18) with P = − 1

3 . This value of P divides the
separable and entangled parts in Fig. 1. Therefore, ρ2 can

be interpreted as that separable state which is nearest to the
entanglement region.

VI. QUANTIFICATION OF ENTANGLEMENT:
IMPORTANCE OF NONLOCALITY

We now consider the range − 1
3 > P � −1 of Fig. 1 where

the density matrix (35) represents an entangled spin state
according to the Peres-Horodecki condition. The presence of
entangled spin pairs can be verified experimentally on the basis
of one local coincidence measurement, the determination of
P .

The amount of entanglement, produced in the spin system
ρ during the collision, can be quantified using the concept
of negativity [29,30] which is directly related to the Peres-
Horodecki criterion (see Sec. IV). The negativity is defined as

N (ρ) = −2
∑

i

ni, (40)

where the ni are the negative eigenvalues of the partial
transpose density matrix ρPT. If all eigenvalues are positive, the
corresponding density matrix is separable, and N (ρ) vanishes.
Thus, N (ρ) “measures” the amount by which ρPT fails to be
positive definite, and it is intuitively sensible to use N (ρ) as a
measure for the entanglement present in the system ρ [30].

In our case of interest, only the eigenvalue λ4 in (25) can
become negative. Hence, for P < − 1

3 , we have

N (ρ) = −2λ4 = 1

2
(3|P | − 1). (41)

The negativity is proportional to the magnitude |P | of the
correlation parameter and is equal to one for maximal en-
tanglement (P = −1), and equals zero for zero entanglement
(P = − 1

3 ).
These abstract results can be interpreted in the following

way. Setting |P | = 1
3 in (35) and (39) and combining both

results we obtain

ρ2 = 2

3

(
1

4
1

)
+ 1

3
|00〉〈00|. (42)

Hence, by mixing the maximally entangled singlet state
with the (normalized) identity matrix (28) in the ratio 2 : 1
one obtains the separable state ρ2, which is nearest to the
entanglement region in Fig. 1. By definition, the mixture on
the right-hand side of (42) contains no entanglement, and
all correlations contained in this mixture can be classically
reproduced. Taking this result into account we write the density
matrix (35) in the form

ρ = (1 − |P |)
(

1

4
1 + 1

2
|00〉〈00|

)
+ 3|P | − 1

2
|00〉〈00|

= 3

2
(1 − |P |)ρ2 + 3|P | − 1

2
|00〉〈00|, (43)

and, using (41), we finally rewrite the Werner state (35) in the
form (− 1

3 > P � −1)

ρ = (1 − N )ρ2 + N |00〉〈00|. (44)

Equation (44) shows that the entangled part of the final
collision system is determined by the negativity. Thus, N (ρ)
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measures the amount of entanglement, contained in the system
ρ, after all classical correlation terms ∼ρ2 have been separated
off from the original singlet contribution. Only this fraction is
useful for further entanglement studies.

It might be useful for the following discussion to compare
the states ρ2 and |00〉 in more detail. The singlet state
is inherently nonlocal. A spin measurement on one of the
particles (say, the free electron) fixes instantaneously the spin
state of the second particle (atomic electron) independently of
how far the particles are separated from each other. If the first
has been found with its spin directed along a specific direction,
the second particle will be found with certainty with its spin
pointing in the opposite direction.

On the other hand, ρ2 can be prepared by Alice and Bob
in a local way as described in Sec. V B. Each particle is in a
well defined spin state, and the correlations have been fixed
in advance by Alice and Bob. Furthermore, each particle of a
spin pair is not affected by what happens to its partner. That
is, ρ2 behaves in a local realistic manner.

Comparing the spin correlations we obtain from (15)

P (1)
a × P

(2)
b = − cos β, (45a)

for the singlet state, and

P (1)
a × P

(2)
b = −1

3
cos β, (45b)

for ρ2 where we have applied (38). We remember that |P | =
1
3 is the largest value of the correlation parameter which can be
obtained by LOCC methods. Hence, the inherent nonlocality of
the singlet state produces correlations three times as strong as
the best result that can be achieved by classical local methods.

It is remarkable that the two systems, which are as
fundamentally different as |00〉 and ρ2, can be combined in an
expression as simple as (44). Similar relations can be derived
for other Bell states.

Eventually we compare the mixed states briefly with pure
spin states. In collisions between two spin-1/2 beams, which
are initially completely polarized, the final combined spin
state is necessarily a pure state. In this case the amount of
entanglement is quantified by the magnitudes |P (1)| = |P (2)|
of the two individually measured polarization vectors (see,
e.g., Sec. 3.6.5 of [22]). The final spin system is maximally
entangled if the polarization vectors vanish. These results are
contained in the negativity as a special case.

VII. BELL CORRELATIONS

Entanglement is inherently a nonlocal phenomenon. In
order to avoid this strange feature of quantum mechanics some
researchers introduced hypothetical hidden variables [4,5]
hoping to reinstate the results of conventional quantum me-
chanics in a Newtonian local realistic way. Although designed
to preserve locality it has turned out that they were unable to do
so in all circumstances. As a consequence of Bell’s theorem [5]
a set of inequalities have been derived, collectively known as
Bell inequalities, which must be satisfied by any local theory,
and which can be used as a test of its validity.

A quantum mechanical state is said to display nonlocal
correlations, or being Bell (or EPR) correlated, if it violates
any of the Bell inequalities. Whereas pure entangled spin-1/2

FIG. 3. Coplanar directions of the detector-spin-analyzer sets (see
text).

states are necessarily Bell correlated [31–34], this is in general
not the case for mixed entangled states. This surprising result,
which is of fundamental importance for the foundations of
quantum mechanics, was first demonstrated by Werner [21]
who proved that a state of the form (35) is only Bell correlated if
the condition P < − 1√

2
is satisfied; from (41), we get N (ρ) �

0.56 for the negativity in this case.
Following Aspect et al. [35], we will adapt this to our case

of interest. Consider the following combination of correlation
parameters:

�(a,a′,b,b′) = ∣∣P (1)
a × P

(2)
b − P (1)

a × P
(2)
b′

∣∣
+ ∣∣P (1)

a′ × P
(2)
b + P

(1)
a′ × P

(2)
b′

∣∣, (46)

where a,a′,b,and b′ denote four unit vectors referring to the
directions of the detector-spin-analyzer sets in the correspond-
ing coincidence measurement of the first (directions a and a′)
and second beam (directions b and b′), respectively. Based on
Bell’s work [5], it has been shown by Clauser et al. [6] that
local realism implies the familiar CHSH inequality

�(a,a′,b,b′) � 2, (47)

which has been more generally derived by Bell himself, shortly
after [36]. Quantum mechanics allows a larger bound, known
as Cirel’sons bound [37]

�(a,a′,b,b′) � 2
√

2. (48)

In order to demonstrate that local hidden variable theories are
inconsistent with quantum mechanics it is only necessary to
show that condition (47) is violated for a particular setting of
the measurement apparatus.

Considering coplanar vectors, as shown in Fig. 3, the
angles between the different directions are not independent.
Assuming the angles between a and b,b and a′, and a′ and b′

equal to π
4 , the remaining angle between a and b′ is equal to

3π
4 .

Calculating the correlation parameters using (15) one
obtains from (46)

� = 2
√

2 |P |. (49)
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It follows that the inequality (47) is violated for all correlation
parameters with P < −1/

√
2. Thus, as depicted in Fig. 1, the

spin system (35) is entangled in the range − 1
3 > P > − 1√

2
but

does not violate any Bell inequalities since the spin correlation
in this region is not sufficiently strong and it is in principle
possible to simulate the quantum correlations within local
theories. This possibility is ruled out for values −1 � P <

− 1√
2

by Bell’s theorem. In this case, the correlations, generated
by the spin-exchange collision, are stronger than could ever be
created by classical means and cannot be described by local re-
alistic theories. For P = −1, (49) yields a maximal violation of
the CHSH inequality (47), or any other of the Bell inequalities.

VIII. DISCUSSION OF EXPERIMENTAL AND
NUMERICAL RESULTS

As the crucial question, we discuss how strong the spin cor-
relations are which can be produced during the elastic collision
process out of an initial totally chaotic spin system, and without
the influence of explicit spin-dependent interaction. In order
to get some insight into the relationship between scattering
dynamics and entanglement properties, we analyze published
experimental and numerical data for the spin asymmetry Aex

which, applying (21), we reinterpret in terms of the spin
correlation parameter P .

First in the field, investigating spin-dependent elastic e-H
scattering were Burke and Schey [38]. They derived general
equations for the various possible observables for arbitrary
initial conditions of the two spin systems, and published
numerical results for collision energies around and below
10 eV, while employing a rather crude approach from a
nowadays view. Combining two of their observables, results
for the entanglement parameter P can be obtained, though, it
turns out that the final spin state remains practically separable,
except for the lowest energy at E = 1.36 eV. Later on, several
groups investigated spin-dependent elastic e-H scattering, e.g.,
see [39–43]. However, in the energy region studied (0.14
to 300 eV), the data corroborate the results of Burke and
Schey indicating that practically no entanglement can be
created, except at the lowest energies [42], e.g., see the
multipseudostate close coupling (MPCC) data in Fig. 4 at
E = 0.14, 0.54, and 1.22 eV.

The Bell correlated region can almost not be reached.
Remarkable measurements have been performed on spin-

dependent elastic e-Na scattering by the NIST group
[26,44–47]. We have selected experimental data at 4.1, 10,
and 20 eV (see Fig. 5), and at 1.6 and 12.1 eV (see Fig. 6),
demonstrating that the correlation parameter P may vary over
the full region from P = 1

3 (fully separable) down to P = −1
(fully entangled) and thus, any degree of entanglement or even
Bell correlation can be reached.

For example, for E = 4.1 eV, the data reveal pronounced
entanglement effects between about 80◦ and 105◦ with a sharp
minimum around θ = 90◦), with P � −0.87 and negativity
N (ρ) � 0.81. These data are well in the Bell correlated area.

Even more striking are the results for E = 10 eV, where
P decreases rapidly around θ = 60◦ to values near P = −1.
Here the spins of the colliding pairs form intermediately the
maximally entangled singlet state, and the Werner state (44)

FIG. 4. Correlation parameter P of hydrogen versus scattering
angle θ for different scattering energies. Numerical data: 0.14, 0.54,
and 1.22 eV, (MPCC) van Wyngaarden and Walters [42]. Horizontal
lines divide separable (S), entangled (E), and Bell correlated (B)
regions.

is dominated by the singlet contribution with negativity
N (ρ) = 1. A similar behavior is shown for the experimental
data at E = 12.1 eV (see Fig. 6), where P reveals a sharp
minimum with negativity N (ρ) � 1 near θ = 53◦. These data
are in excellent agreement with convergence close coupling
(CCC) [48–50] and coupled channel optical (CCO) calcula-
tions [51], respectively, as shown in Figs. 5 and 6. For energies
around the 3p threshold (2.1 eV) or higher, close coupling
(CC) data are available [52] elucidating considerable degrees
of entanglement up to N (ρ) � 1. For example, for E = 2.2 eV
and E = 2.05 eV, we obtain P � −1 at θ � 107.5◦ and
θ � 105◦, respectively (see Figs. 5 and 6). Even for 5.0 eV the
CC data exhibit a minimum of P � −0.93 around θ = 85◦
as shown in Fig. 6, elucidating that the Bell correlated area
is attainable over a broad region of energy. On the other
hand, the NIST data reveal that for E = 1.0 and 1.6 eV,

FIG. 5. Correlation parameter P of sodium versus scattering
angle θ for different scattering energies. Experimental data by NIST
group: 4.1 eV (�), McClelland et al. [44,47]; 10 eV (•) and 20 eV
(�), Kelley et al. [46]. Numerical data: 2.2 eV, (CC) Moores and
Norcross [52]; 4.1, 10, and 20 eV (CCC) Bray [48,49]. Horizontal
lines divide separable (S), entangled (E), and Bell correlated (B)
regions.

032331-8



TUNABLE ENTANGLEMENT RESOURCE IN ELASTIC . . . PHYSICAL REVIEW A 94, 032331 (2016)

FIG. 6. Correlation parameter P of sodium versus scattering
angle θ for different scattering energies. Experimental data by NIST
group: 1.6 eV (�), Lorentz et al. [26]; 12.1 eV (•), McClelland
et al. [47]. Numerical data: 0.1, 2.05, and 5.0 eV (CC) Moores and
Norcross [52]; 1.6 eV, (CCC) Bray [49]; 12.1 eV, (CCO) Bray and
McCarthy [51]. Horizontal lines divide separable (S), entangled (E),
and Bell correlated (B) regions.

the latter shown in Fig. 6, as well as for E = 20 eV (see
Fig. 5) and larger energies, practically no entanglement can
be produced. However, for small energies E = 0.1 eV (see
Fig. 6) the CC data again enter the entanglement area with
a minimum of P � −0.61 at θ = 88◦, indicating the strong
energy dependence of the spin-spin correlations. The Bell
correlated area cannot be reached in this energy region.

Interestingly, similar behavior is observed in experimental
data on elastic e-Li scattering [53]. The Li data are in
generally good agreement with CCO calculations [54]. Here
the asymmetry was measured as a function of the collision
energy at fixed scattering angles as depicted in Fig. 7 which,
moreover, provides good examples for the different cases of
separable, entangled, and Bell correlated states.

FIG. 7. Correlation parameter P of Li versus electron projectile
energy in the range E = 1–30 eV for fixed scattering angles θ =
65◦(), 90◦(�), 107.5◦(•). Experimental data: Baum et al. [53].
Numerical data: 13CCO8 calculation, Bray et al. [54]. Horizontal
lines divide separable (S), entangled (E), and Bell correlated (B)
regions.

For a scattering angle of θ = 65◦ and up to E ∼ 20 eV
the correlation parameter is nearly constant with value P � 1

3 .
The final state in this region, given by the separable density
matrix ρ1, is practically independent of the scattering energy.
ρ1 can be written as a sum over the three triplet states (34)
or in the explicit separable form (29). Alternatively, one can
think of the final spins of the combined e-Li system as paired
up exactly parallel oriented, and the spin pairs are equally
distributed over all spatial directions (see Sec. V A). For θ =
90◦, the combined spin system is separable for all energies
except a small region around 2p threshold at 1.84 eV, where
the experimental data already indicate an entanglement of P ∼
−0.45. For energies between about E � 2 and 6 eV, the lower
bound of the separable region P � − 1

3 is reached, and the final
state can be approximately represented by the density matrix
ρ2 which may be expressed either by (42) or, alternatively, by
the explicit separable expression (37). Because of its rotational
invariance the final spin system can be considered as consisting
of pairs with antiparallel spins, equally distributed over all
spatial directions (see Sec. V B). In contrast, for θ = 107.5◦,
see Fig. 7, the correlation parameter decreases rapidly to P =
−1 around 2p threshold and remains low up to E � 4 eV.
In this energy region, the anticorrelations are strong enough
to generate entanglement with negativity N (ρ) � 1. In this
case, we read off from (44) that the Werner state is almost
solely represented by the inherently nonlocal singlet state (see
Sec. VI).

Let us consider the experimental and numerical sodium
results of Figs. 5 and 6, and the lithium data of Fig. 7 in
more detail. The two most remarkable points to note are
the following. First, the results show that correlations with
P � −1 can be obtained. Then, the spins of the final collision
partners are practically completely anticorrelated and form
very nearly a singlet state, independently of how far they are
separated again after the collision. These states violate the
CHSH inequality (47) almost maximally, providing strong
evidence for the existence of nonlocal effects. Second, it is
remarkable that in several cases the correlation parameter
varies nearly over the full allowed range [−1, 1

3 ] for both,
as a function of θ , and as a function of E. This allows for
interesting practical applications where Figs. 5–7 can be used
as a guide. One can prepare a spin-spin correlated system by
scattering unpolarized electrons from unpolarized atoms (Na,
Li), choosing particular values for scattering angle, and/or
energy, and can read off from Figs. 5–7 the value of the
corresponding spin correlation parameter without need of
a further measurement. In this way any desired degree of
entanglement, and corresponding negativity N (ρ), between the
collision spin pairs can be prepared. In particular, the singlet
state can readily be generated by tuning to the appropriate
experimental parameters. These systems are then available for
further experiments, where a source of strongly correlated
particle pairs is required, capable of transmitting nonlocal
information; for example in quantum teleportation or quantum
cryptography studies.

This possibility might be of practical importance. For
example, while it has been shown [55], that any mixed
system of two spin- 1

2 states which violates the Bell-CHSH
inequality (47) is useful for teleportation [14], Popescu[56]
provided arguments that states, which do not violate Bell’s
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inequalities, could still be used for teleportation, and stressed
the need for an experimental verification. We refer to the
review by Brunner et al. [1] for further details. For such
an experiment one would need collision pairs with values
− 1

3 � P � − 1√
2

for the correlation parameter. Such states
could be prepared, for example, by scattering electrons from
sodium atoms at E = 10.0 or 12.1 eV and choosing a scattering
angle as indicated by Fig. 5 or 6. Alternatively, electrons could
be scattered from lithium atoms at θ = 107.5◦, choosing the
appropriate scattering energy from Fig. 7.

However, it should be remembered that for states, less
entangled then the singlet state, only a fraction of the final
collision pairs can be used for subsequent entanglement-
dependent studies. From (41) we find N (ρ) varying between
zero for P = − 1

3 and N (ρ) = 0.561 for P = − 1√
2

in this case.
All together, the results in Figs. 4–7 may provide a practical

tool for new testing grounds of nonlocal effects. In this context
the physics of scattering meets quantum information and
quantum computation.

IX. CONCLUSIONS

In the present paper we have discussed under which con-
ditions entanglement can be generated in elastic collisions be-
tween electrons and light, pseudo (or truly) one-electron atoms,
both initially unpolarized. Both beams have been prepared
independently from each other and had never been in contact
before the collision. Explicit spin-dependent forces have been
neglected which is a good approximation for light atoms.

We have shown that the full information on the entangle-
ment properties of the final mixed spin system is contained in
one single parameter, the spin correlation parameter P , which
is a function of scattering angle and energy. The areas of P ,
where the spins of the collision partners remain separable, or
are entangled, or even Bell correlated, have been identified.
Experimentally, the presence of entangled spin pairs can
be verified on the basis of one local measurement via the
determination of P . The amount of entanglement, produced
during the collision, is given by the negativity N (ρ).

Analyzing published numerical and experimental data on
the spin asymmetry Aex, we have obtained results for the spin
correlation parameter P . Figures 4–7 reveal the unexpected
result that surprisingly strong spin correlations can be created
out of an initially totally chaotic spin system. In particular,
Bell correlated spin pairs have been obtained, violating the
CHSH equation even maximally, with P � −1. This is
proof that the electron exchange process under discussion is
intrinsically nonlocal.

Considering the remarkable experiments, presented in
[8–10], we emphasize that our results originate from a
completely unrelated field of research and refer to experiments
with massive particles. The results yield therefore additional
support to the thesis that nature behaves quantum mechanically
and nonlocally.

By performing the described scattering experiment Bell
pairs can be produced quickly and repeatable in the full range
between P = − 1√

2
and P = −1. By studying the data in

Figs. 4–7 one can tune to a particular scattering angle and
energy, and create pairs of collision partners with any desired

degree of spin entanglement. In particular, the singlet state
can readily be generated in the collision. These pairs can then
be used for further experiments where pairs of particles with
a high degree of correlation are required. This might be of
interest for quantum communication or teleportation studies
and might lead to a certain entanglement between scattering
physics and quantum information.
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APPENDIX: THE e-H COINCIDENCE EXPERIMENT

We stressed the point that our main intention is to provide
and describe an entanglement source for subsequent experi-
ments and applications in the field of quantum information and
quantum computation. On the other hand, the derived theory
of the scattering process allows for a direct measurement
of the spin correlations of the collision particles within a
spin-spin coincidence experiment. A possible experimental
setup is illustrated in Fig. 8.

FIG. 8. Scheme of an e-H spin correlation coincidence experi-
ment expressed by (A2). The incoming unpolarized electron (gold)
is elastically scattered under the angle θ in the Coulombic field of
the unpolarized hydrogen atom (blue), where electron exchange with
the bound electron (green) can come into effect (purple arrows). This
allows for the generation of spin entanglement (red and blue up-down
arrows) between the collision partners which is then observed in
coincidence by two spin detectors. A Mott polarimeter, oriented
with its analyzing axis into direction a, analyzes the spin of the
scattered electron, while a Stern-Gerlach magnet, oriented with its
spin selection axis into direction b, is analyzing the spin of the bound
electron. The angle β denotes the angle between the orientations a and
b of the two spin detectors, shown in the inset. In case of maximal
negativity N (ρ) = 1, that is for a pure singlet state |00〉, and for
parallel orientations of the two detectors, the Mott polarimeter counts
spin-up while the Stern-Gerlach magnet counts spin-down and vice
versa.
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As discussed in Sec. III, the individual components (9) of
the spin polarization vectors of the two subsystems cancel,
and the only nonvanishing components of the spin correlation
tensor, as given in (14), are expressed by the spin correlation
parameter

P = P
(1)
i × P

(2)
i , i = x,y,z, (A1)

where P = P (θ,E) is a function of scattering angle and
energy.

Denoting σa = σ · a as the component of the Pauli operator
σ in the direction of the unit vector a, and σb = σ · b as the
component into direction b, we are able to generalize (A1)
applying the tensorial properties of P

(1)
i × P

(2)
i .

For instance, if the spin of the first particle, say electron, is
measured along direction a via Mott polarimeter techniques,
and the spin of the second particle, hydrogenlike atom, along b
by means of a Stern-Gerlach magnet (see Fig. 8), the resulting
spin correlations are given by the expression

P (1)
a × P

(2)
b = P cos β, (A2)

where β is the angle between a and b (see inset Fig. 8), which,
together with (14), exhibits the rotational symmetry of the

spin-spin system. Equation (A2) yields a measurable quantity
which can be obtained from a spin-spin correlation coincidence
experiment, as depicted in Fig. 8, illustrated for the case of an
elastic e-H collision.

In principle, in such spin-spin correlation experiment,
and from a theoretical point of view, both directions of the
analyzing axes a and b of the two spin detectors can be
freely rotated about 4π and may point in any direction for a
specific measurement. However, due to the technical analyzing
requirements of the Mott polarimeter and the Stern-Gerlach
magnet, both vectors, a and b, must be oriented perpendicular
to the corresponding beam axes of the elastically scattered
particles. Nevertheless, both may still be rotated about 2π

around their beam axes, as illustrated in Fig. 8. Furthermore,
note that the red and blue spin up-down arrows in Fig. 8 only
illustrate a certain time sketch of the totally chaotic, spin orien-
tations of the scattered particles. Generally, each single spin of
either particle is fully arbitrarily oriented, which is illustrated
by the fact that the two individual spin polarization vectors
vanish. Though, if both spins are measured in coincidence, they
exhibit spin-spin correlations quantified by the spin correlation
parameter P .
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Larsson, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, J.
Beyer, T. Gerrits, A. E. Lita, L. K. Shalm, S. W. Nam, T. Scheidl,
R. Ursin, B. Wittmann, and A. Zeilinger, Significant-Loophole-
Free Test of Bell’s Theorem with Entangled Photons, Phys. Rev.
Lett. 115, 250401 (2015).

[10] L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst,
M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel,

M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V.
B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang,
D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C.
Abellán, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell,
P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W.
Nam, Strong Loophole-Free Test of Local Realism, Phys. Rev.
Lett. 115, 250402 (2015).

[11] E. Schrödinger, Die gegenwärtige Situation in der Quan-
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