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One-way quantum computing is experimentally appealing because it requires only local measurements on an
entangled resource called a cluster state. Record-size, but nonuniversal, continuous-variable cluster states were
recently demonstrated separately in the time and frequency domains. We propose to combine these approaches
into a scalable architecture in which a single optical parametric oscillator and simple interferometer entangle up
to (3 × 103 frequencies) × (unlimited number of temporal modes) into a computationally universal continuous-
variable cluster state. We introduce a generalized measurement protocol to enable improved computational
performance on this entanglement resource.

DOI: 10.1103/PhysRevA.94.032327

I. INTRODUCTION

One-way quantum computing [1] is a form of measurement-
based quantum computing (MBQC) [2,3] and an appealing
alternative to the circuit model [4], which is being more widely
pursued [5]. In one-way quantum computing, the primitives
of the universal gate set are pre-encoded in a “quantum
substrate” that is a generic, yet precise, entangled cluster state
described by a graph specifying the entanglement structure of
the qubits [6] or qumodes [7]. Quantum computing proceeds
solely from single-node measurements on the cluster graph
and feedforward of the measurement results [1,8].

Quantum error correction and fault tolerance in one-way
quantum computing have been theoretically proven feasible for
qubit cluster states [9], with thresholds comparable to those for
concatenated codes (10−3 to 10−6), and then later improved
using topological methods to thresholds slightly above the
percent level [10]. Fault tolerance has recently been proven for
continuous-variable (CV) cluster states in terms of required
levels of squeezing, the squeezing threshold being no more
than 20.5 dB for a 10−6 error rate [11]. Since the techniques
used in Ref. [11] mirror those in Ref. [9], this threshold value
is conservative and can most likely be improved.

A fully fledged, scalable experimental demonstration of
one-way quantum computing has yet to be achieved, as none
of the proof-of-principle implementations using four photonic
qubits [12,13] or four optical qumodes [14] employed a
scalable architecture.

Recently, one-dimensional cluster-state entanglement was
demonstrated, at record sizes, over the continuous variables
represented by the quantum amplitudes of the electromagnetic
field, a.k.a. qumodes. This was achieved in the frequency
domain [15], with 60 simultaneously addressable entangled
qumodes, and in the time domain [16,17], with 104 sequen-
tially addressable entangled qumodes. Solely technical issues
reduced these numbers from their potential higher values of
3 × 103 qumodes in the frequency architecture [18] and un-
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limited qumodes in the temporal architecture [17]. Besides this
scalability breakthrough, optical implementations of quantum
information offer other advantages such as room-temperature
operation, naturally low decoherence, and significant potential
for device integration [19,20].

In this paper, we show that one can create computationally
universal CV cluster states by entangling, both in time and in
frequency, the quantum frequency comb of Einstein-Podolski-
Rosen (EPR) pairs emitted from a single optical parametric
oscillator (OPO). Based on previous results [15,17], the lattice
for this state could potentially be up to 3 × 103 nodes in
one dimension (frequency) and unlimited in the other (time
bins). We then show that this state enables universal quantum
computing.

This work combines the best of all previous proposals
for scalable CV cluster states: It employs Gaussian states
with bipartite, self-inverse graphs—which are known to
be highly scalable [22,23]—and reduces the experimental
requirements by simultaneously utilizing both frequency
multiplexing [15,21] and temporal multiplexing [16,17,24]. In
addition, these architectures are known to admit more compact
computation [17] with more favorable noise properties [25]
when compared to approaches based on CV cluster states
generated by the canonical method [8,26]. Those so-called
canonical CV cluster states [27]—which also admit a tempo-
ral [24] and a time-frequency implementation [28]—are not
so easily scalable in optics due to frequent use of the CV
controlled-Z gate.

Our proposal, in contrast, employs macronode-based clus-
ter states [23] entangled into a bilayer square lattice (BSL),
which has two qumodes per macronode (hence “bilayer”),
instead of four as in previous proposals [21–23,27]. The BSL
CV cluster state admits a more versatile elementary gate set
than do canonical CV cluster states [8,26], generalizing an
analogous result for single-qumode operations on the CV
dual-rail quantum wire [25].

The structure of this paper proceeds as follows. In Sec. II
we describe the BSL resource state and give an explicit
experimental procedure for how to generate it. In Sec. III we
discuss the experimental requirements in detail. In Sec. IV we
outline the basics of our measurement protocol. In Sec. V
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FIG. 1. Experimental setup to generate a bilayer square-lattice (BSL) CV cluster state (see text for details). Abbreviations: HWP@θ =
half-wave plate at angle θ to the horizontal principal axis of the crystal (rotates polarization by 2θ ); (P)BS = (polarizing) beamsplitter; MZI =
Mach-Zehnder interferometer. Local oscillator fields, at the frequencies of the qumodes to be measured, will be injected at the unused input
port of the MZI and will also be used for locking all optical phases in the experiment. Note that light propagates from right to left in the
figure. The labeled panels show a precise graphical representation of the Gaussian state present in the beam at each step of the experiment,
using the simplified graphical calculus for Gaussian pure states (for notation and definitions, see Appendix A). Blue and orange correspond
to edge weights of ±C tanh 2r [16], respectively, with C given below for each panel. All qumodes (black dots) are labeled as shown in the
left panel: by node index [Eq. (2.1)] (vertical) and by time bin and polarization (horizontal). (a) The OPO generates a temporal sequence of
frequency-encoded two-mode squeezed states (C = 1). (b) Multiple (time-binned) CV dual-rail quantum wires encoded in frequency [15,21]
(C = 2−1/2). (c) Result of delaying all odd-numbered Z-polarized qumodes (C = 2−1/2). (d) Final BSL CV cluster state (C = 2−3/2) after
required phase delays (see text).

we describe how to implement universal quantum computation
on the BSL. In Sec. VI we discuss noise due to finite squeezing,
and we conclude in Sec. VII.

II. STATE GENERATION

Construction of the BSL CV cluster state is illustrated in
Fig. 1 and described in more detail here. A type-II OPO is
pumped at two frequencies 2ν0 ± �ν, one of each polarization
(Y and Z). Each pump produces a number of two-mode
squeezed (TMS) states [29] over the frequency comb of the
OPO eigenmodes, as shown in Fig. 1(a). These states are each
a Gaussian approximation to an EPR state [30] between two
frequencies that add to the corresponding pump frequency.
Now, even if the pump beams are continuous wave, we still
can, and will, logically assign pieces of the output beam to
sequential time bins [17].

The OPO modes have linewidth δν and are spaced by the
free spectral range �ν. Each output frequency νn = ν0 + n�ν

has a corresponding frequency index n and associated macron-
ode index [21]

m := (−1)nn, (2.1)

which we will call the node index for short and is used
to label qumodes sequentially (rather than by frequency) in

Fig. 1(a). Indeed, phase matching two frequencies νn and
νn′ requires n + n′ = ±1, and all TMS states are generated
between adjacent node indices (i.e., m − m′ = ±1 [21]) in
Fig. 1(a).

A π
4 polarization rotation (by a half-wave plate at π

8 rad from
the horizontal principal axis of the OPO crystals), equivalent
to a balanced beamsplitter for polarization qumodes,
entangles these TMS states into a temporal sequence of
frequency-encoded dual-rail quantum wires [15,21], as shown
in Fig. 1(b). A Mach-Zehnder interferometer (MZI) of path
difference c(2�ν)−1 [31,32] separates frequencies of even and
odd frequency index (and node index) into separate beams.
For all odd qumodes, the Z polarization is then time delayed
with respect to the Y polarization by the interval δt between
two consecutive time bins. The result is shown in Fig. 1(c).
A final π

4 polarization rotation on the odd qumodes (another
“balanced beamsplitter”) yields the BSL graph of Fig. 1(d).

A final phase delay by π
2 (not shown) on either all odd

or all even frequencies converts this into a finitely squeezed
CV cluster state with the same ideal graph as in panel (d).
It is this state that we call the BSL CV cluster state. The
fact that the BSL is a bipartite, self-inverse graph makes this
possible and ensures the scalability of the scheme [16,21–
23,27]. (See the general discussion of bipartite, self-inverse
graphs in Ref. [27].)
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III. EXPERIMENTAL DETAILS

We now outline the basic experimental requirements for
generating the BSL CV cluster state, verifying its entanglement
structure, and using it for quantum information processing.

Generating the BSL CV cluster state requires a “musical
score” condition—i.e., the measurement times must be com-
patible with resolving all qumode frequencies: δt � �ν−1,
an easily fulfilled condition. In addition, the measurement
times must allow one to achieve maximum squeezing—that
is, they must be at least as long as the OPO cavity storage
time [33]. This translates into δt � δν−1 � �ν−1, since δν is
also half the squeezing bandwidth [34]. This condition can also
be easily fulfilled in practice [17] and ensures that the time bins
contain maximally squeezed qumodes, to the extent permitted
by the experiment’s squeezing limit (mainly determined by the
intracavity losses).

Moreover, it is important to remember that as long as the
undepleted pump approximation remains valid the number of
modes to be entangled has no bearing on the required pump
power. To see that the undepleted-pump approximation holds
for our scheme, note that a typical 100-mW pump power
(i.e., 2.5 × 1017 photons/s for green light) and a typical OPO
cavity lifetime of 20 ns together yield 5 × 109 pump photons
available for downconversion. Squeezing of 20 dB corresponds
to 24.5 OPO photons per output mode (since 〈â†â〉 = sinh2 r ,
with (number of dB) = 10 log10 e2r ≈ 8.69 r). With each
pump photon downconverting into two daughter photons, even
with one million output modes the total number of pump
photons required is only 1

2 × 24.5 × 106 = 1.2 × 107, which
is just 0.25% of the total number available. Therefore, pump
depletion is indeed negligible.

To verify that the BSL CV cluster state has been generated
successfully, we use a balanced homodyne measurement with a
two-tone local oscillator, as demonstrated in our two previous
works [15,35]. For entanglement characterization alone, the
qumodes do not need to be separated in frequency.

When using the BSL CV cluster state for quantum infor-
mation processing, complete qumode separation is required.
The qumode separation is straightforward in the time and
polarization domains. Experimental techniques that have been
honed on classical optical frequency combs [36] can be used
for the frequency domain qumode separation. Such techniques
include virtually imaged phase arrays, arrayed waveguide
gratings, as well as diffraction gratings and combinations
thereof. After separation, the individual beams will be directed
to homodyne detectors or photon counters as required by the
particular algorithm [26]. In the case of homodyne detection,
the local oscillators will likely need to be derived from
a stable classical comb, be it a femtosecond laser or a
cavity-enhanced electro-optic modulator, whose beam can
be overlapped with the OPO’s and subjected to the same
frequency separation method. The use of integrated optics may
assist in implementing this scheme to full scale.

IV. BASICS OF QUANTUM COMPUTING ON THE
BILAYER SQUARE LATTICE

The BSL CV cluster state is easily shown to be universal
for MBQC. Simply measure q̂ on all qumodes of one (e.g., Y )

FIG. 2. Two MBQC protocols applied on the bilayer square-
lattice cluster state (C = 2−3/2). In both cases, information is encoded
on the left (in purple nodes) and flows from left to right along
(green) wire segments. Wires are separated by lines of sacrificial
qumodes (shown in the red segments). These are referred to as
control macronodes c(i,i + 1) because measurements on them control
whether one- or two-qumode gates are applied on the adjacent wire
macronodes w(i) and w(i + 1). Two-qumode gates are represented by
a connecting green segment between two adjacent wires. (a) Standard
one-way protocol [8,26] applied to the BSL graph after measuring
q̂ on all Y -polarized qumodes (shown faded). Time ordering of the
nodes has been preserved, resulting in an atypical nodal arrangement
of an ordinary square-lattice graph. Information propagates at 45◦

to the direction of increasing temporal index. Control nodes are
measured in the q̂ basis to delete them or in a different basis to
implement a two-qumode gate. (b) New MBQC protocol taking
advantage of the BSL structure. Both layers of the lattice are used
simultaneously, and quantum information propagates in the direction
of increased temporal index, i.e., horizontally on the figure. Control
and wire macronodes are now at a constant frequency, as shown. See
text for further details.

polarization, resulting in a CV cluster state with an ordinary
square-lattice graph, which can be used with standard CV
MBQC protocols [8,26]. This is shown in Fig. 2(a).

Using so-called deletion measurements (as above) to
simplify the graph structure of a CV cluster state is a standard
way to prove universality of a given graph [16,23], but it is
a wasteful procedure to follow in practice since half of the
graph nodes and their connectivity are lost. More precisely, this
method inefficiently uses available squeezing (and therefore
entanglement [37]), which leads to extra noise when using
these resources for quantum computing [25]. Furthermore,
lattice edges are at 45◦ to the direction of increasing temporal
index, meaning that either the information must flow in a
zig-zag pattern or the lattice width will have to scale linearly
with the length of the computation, hindering the scheme’s
scalability.

Fortunately, there exists a more favorable MBQC protocol
that eschews all these complications and makes better use of
the structure of the BSL CV cluster state, while still using
just single-site measurements. The idea is to use both layers
of the graph simultaneously and in a way analogous to the
conventional (single-layer) square-lattice protocol, as shown
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in Fig. 2(b). Each lattice site, which we call a macronode [23],
is composed of two qumodes (one of each polarization).
Qumodes with even node index carry the quantum information
to be processed and are therefore called wire macronodes
(for “quantum wires”). Those with odd node index control
the connectivity between the wires and are therefore called
control macronodes. Input states are localized with respect to
the macronode structure and are encoded within the symmetric
subspace of each macronode (defined in the section below).
One- and two-qumode Gaussian gates are selected by the
choice of homodyne measurement angles.

To simplify the presentation, we will introduce our protocol
within the context of an infinitely-squeezed BSL resource
state. Any physical CV cluster state can only be finitely
squeezed [8,27], and this leads to introducing finite-squeezing
effects into the computation [25], which we discuss in Sec. VI.

A. Computing with macronodes

For a given macronode with node index m, composed of
individual qumodes labeled Y and Z, we define the symmetric
(+) and antisymmetric (−) qumodes via

âm± := 1√
2

(âmZ ± âmY ), (4.1)

which is mathematically equivalent to a π
4 polarization rotation

into the diagonal and antidiagonal qumode decomposition
(equivalently, a 50:50 beamsplitter between the two qumodes).
Input states at a particular time step will either be the output
state from the previous time step or new states directly injected
into the BSL via an optical switch [17]. They are localized
to macronodes but distributed (symmetrically) between the
two physical qumodes. We further define quadrature operators
q̂ (position) and p̂ (momentum) for each qumode through
â = 1√

2
(q̂ + ip̂), which satisfy [q̂,p̂] = i with � = 1.

Before describing our measurement protocol, we also
provide some definitions for useful CV logic gates. These
include an optical phase delay by θ ,

R̂(θ ) := exp(iθ â†â) = exp

[
iθ

2
(q̂2 + p̂2 − 1)

]
, (4.2)

and a 50:50 beamsplitter between qumodes i and j ,

B̂ij := exp

[
−π

4
(â†

i âj − â
†
j âi)

]

= exp

[
−i

π

4
(q̂i p̂j − q̂j p̂i)

]
. (4.3)

We also define a (nonstandard) single-qumode squeezing
operation:

Ŝ(s) := R̂(Im ln s) exp

[
−1

2
(Re ln s)(â2 − â†2)

]

= R̂(Im ln s) exp

[
− i

2
(Re ln s)(q̂p̂ + p̂q̂)

]
, (4.4)

where s is known as the squeezing factor. This gate is
just an ordinary squeezing gate with squeezing parameter
r = ln |s|, followed by a π phase delay if and only if s < 0.
We chose this form of the gate so that for all real s 	= 0, its

Heisenberg action on the quadratures is Ŝ(s)†q̂Ŝ(s) = sq̂ and
Ŝ(s)†p̂Ŝ(s) = s−1p̂.

As is standard in MBQC, once the entangled resource state
is prepared, quantum computation proceeds solely through
adaptive local measurements. Here we restrict the measure-
ments to linear combinations of the quadrature operators,
which will be shown to be sufficient to implement arbitrary
multiqumode Gaussian unitaries. Experimentally, this can
be performed through homodyne detection. For any given
qumode, we define the rotated quadrature operators

x̂(θ ) =
(

q̂(θ )

p̂(θ )

)
:= R̂†(θ )

(
q̂

p̂

)
R̂(θ )

=
(

cos θ − sin θ

sin θ cos θ

)(
q̂

p̂

)
, (4.5)

where the second line shows the symplectic-matrix represen-
tation of the Heisenberg action of a phase delay by θ [25].

In Fig. 3 we show alternative (and equivalent) graphical
representations of the BSL CV cluster state. Recall that
within each macronode the map from the physical and logical
mode labels is given by Eq. (4.1). We can apply this map
to every macronode, giving us a graph where each node
now represents the symmetric or antisymmetric mode of the
enclosing macronode, as shown in Fig. 3(c). This graph reveals
a simpler underlying logical structure that will provide us
with a convenient framework for describing how homodyne
measurements on the physical modes can implement useful
gates.

Generically, due to the nonlocal nature of the map from
physical (Z,Y ) to logical (+,−) mode labels, local mea-
surements on the physical modes will effectively “stitch
together” the disjoint square graphs present in Fig. 3(c). For
a macronode m, measurement of p̂mZ(θmZ) and p̂mY (θmY ) can
be represented by the following quantum circuit:

(4.6)

where ρm+,− denotes the input state with respect to the logical
(+,−) mode tensor product structure. Above, the 50:50 beam-
splitter takes us from logical to physical mode labels. Rotated
quadratures are measured as in Eq. (4.5). Such measurements
on the wire macronodes connect square subgraphs with their
neighbors in the horizontal direction, enabling “wirelike”
transmission along the BSL. The measurements on the control
macronodes connect these neighboring wires vertically.

B. Keeping square graphs disconnected

For a fixed macronode, there exists a one-parameter
class of homodyne angles that do not connect the adjacent
square graphs. Specifically, when θmZ = θmY = θ , the above
circuit (4.6) is equivalent to

(4.7)
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FIG. 3. (a) Simplified graphical-calculus representation [16] of the bilayer square-lattice (BSL) CV cluster state. Here, qumodes are ordered
according to temporal index. Input states are encoded within macronodes on the left, shown in purple. Here and also in (b), C = (2

√
2)−1.

(b) As in (a) but time ordering has been partially sacrificed in order to make the square-lattice graph structure more apparent. (c) Each macronode
is now represented in terms of the logical-mode tensor-product structure [see Eq. (4.1)]. We use the same time-ordered node arrangement as in
(b). Unlike in the previous subfigures, here the graph has a lower connectivity (it is a disjoint collection of square graphs) and all input states
are localized. In this subfigure, C = 2−1/2. We indicate internal qumode labeling on the top right macronode of each lattice.

where the single-qumode rotation gates commute with the
50:50 beamsplitter because the rotation angles are the
same [38]. This in turn is equivalent to

(4.8)

where all circuit elements are now local, and we take the
sum and difference of the measurement outcomes. Therefore,
choosing θmZ = θmY for a particular wire or control macronode
m will disconnect the neighboring regions of the BSL graph in
the horizontal or vertical direction, respectively. By restricting
all control macronode measurements in this way and including
the required postprocessing (i.e., sum and difference of
outcomes), the disjoint square graphs of Fig. 3(c) remain
uncoupled by homodyne measurements with respect to the
physical modes.

V. UNIVERSAL GATE SET

The methods above allow us to apply single-qumode gates
on adjacent wires without them interacting. Alternatively,
relaxing the restriction on a particular control macronode
implements a two-qumode gate between the adjacent wires at
that location. In this section, we elaborate on this and construct
a universal gate set for quantum computation on the BSL.

A. Single-qumode gates

Figures 4(a)–4(c) show an alternative way to represent the
BSL such that all measurements are local, but with respect to
a mixture of physical (Z,Y ) and logical (+,−) mode labels.
As information propagates along the lattice in the direction
of increasing time index, information will flow strictly in the
horizontal direction, and there will be no interactions between
neighboring wire macronodes.

The structure shown in Fig. 4(c) is identical to a collection
of CV dual-rail quantum wires [16,25], which are resources
for universal single-qumode quantum computation. Therefore,
we can implement single-qumode gates on the BSL by directly
implementing the macronode protocol for the CV dual-rail
wire from Ref. [25]. We briefly review it here. If the qumodes

FIG. 4. Implementing single- and two-qumode gates on the
bilayer square lattice. Node indices [Eq. (2.1)] for all macronodes
are provided on the left. A red ellipse indicates a restriction on the
measurements of that macronode—specifically, θcZ = θcY for control
macronode c. (a) We begin with the configuration as in Fig. 3(c), with
each macronode decomposed into logical (+,−) modes. Note that
measurements on macronodes 1 and 5 are restricted (red coloring).
This decouples the two fully displayed square graphs from their
partially displayed neighbors above and below. (b) Same as (a), except
we visually separate the internal nodes of the control macronodes.
(c) Starting with (b), we decompose the wire macronodes (within
the green regions) into physical (Z,Y ) modes in order to reveal a
pair of CV dual-rail wires [15,17,25]. Restricting the measurements
(red ellipse) of control macronode 3 allows one to implement
single-qumode gates [25] on each wire independently (Sec. V A).
(d) Alternatively, if we set θ3Z 	= θ3Y , then control macronode 3
will mediate an entangling gate between the two neighboring wires
(Sec. V C).
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at the leftmost wire site are measured in the bases p̂mZ(θmZ)
and p̂mY (θmY ), as depicted here,

(5.1)

then (up to a displacements conditioned on the measurement
outcomes and neglecting the effects of finite squeezing—see
Sec. VI) the overall Gaussian unitary applied to the encoded
input state is [25] V̂ (θmZ,θmY ), where

V̂ (θj ,θk) = R̂(θ+)Ŝ(tan θ−)R̂(θ+) (5.2)

with θ± = 1
2 (θj ± θk). This is the basic building block for all

single- and two-qumode gates that can be implemented on the
BSL.

There is an important difference between the conventional
CV dual-rail wire and the BSL, however. With respect to the
original BSL time-ordered node layout [see Fig. 3(a)], it is
natural to consider a single measurement step as translating
input states horizontally by one time step—from wire macron-
ode to wire macronode. This corresponds to translating two
sites along the CV dual-rail wire since wire macronodes are
interleaved by control macronodes, as shown here:

(5.3)

where the horizontal black arrows indicate the size of each
measurement step. Each measurement step implements two V̂

gates [Eq. (5.2)], but with one important caveat: the measure-
ments on the control macronodes have to be constrained by
the condition θcZ = θcY (for control macronode c) so that that
neighboring wires decouple [as in Fig. 4(c)]. Note that these
constraints jointly affect nodes of separate neighboring wires,
which share a control macronode.

Although these constraints do not completely specify the
set of possible measurements on the control macronodes, some
care has to be taken in assigning the measurement angles. For
one thing, constraining all control macronode measurements
to the same angle would projectively measure the encoded
information (as discussed below in Sec. V B), thereby ending
the computation at that point. On the other hand, attempting
to use control macronode degrees of freedom to locally
implement some desired gate on a particular wire would
necessarily implement a nontrivial gate on both neighboring
wires. For this reason, we fix all measurements on the control
macronodes and only use the measurements on the wire
macronodes to implement gates.

A particularly convenient choice is to set the homodyne
angles to be θcZ = θcY = ±π

4 (for control macronode c),
where the sign alternates vertically with each row of control
macronodes, as shown in Fig. 5. For one physical time step

FIG. 5. Sign convention for measurements on the control macron-
odes. Both physical modes of each ± control macronode (alternating
top to bottom, as shown above) are measured in the basis specified
by homodyne angle θ = ± π

4 , respectively.

(i.e., measuring one wire macronode w and its neighboring
control macronodes) on a wire above a row of ± control
macronodes, this implements

V̂

(
∓ π

4
, ± π

4

)
V̂ (θwZ,θwY ), (5.4)

where the first gate V̂ (θwZ,θwY ) results from measurement
of the wire macronode w, and the second gate V̂ (∓π

4 , ± π
4 )

results from the measurements of the two control macronodes
above and below, as in Fig. 3(a). Plugging into Eq. (5.2), we
get

V̂

(
∓π

4
, ± π

4

)
= Ŝ(∓1). (5.5)

Noting that Ŝ(−1)V̂ (θwZ,θwY ) = V̂ (θwY ,θwZ), a single mea-
surement step on the BSL implements V̂ (θwY ,θwZ) or
V̂ (θwZ,θwY ), depending on whether the control macronodes
below the wire are + or −, respectively. Two applications of
these gates generate all single-qumode Gaussian unitaries (up
to displacements) [17,25].

As mentioned above, we have neglected a ubiquitous
phase-space displacement (dependent on the measurement
outcomes) and the effects of finite squeezing in our discussion
above. We did this in order to present clearly the basic logic of
the protocol. The details of the additional displacements and
squeezing effects can be found in Sec. VI.

B. Projective measurement

Notice that when θwZ = θwY = θ , the squeezing term in
Eq. (5.2) diverges. A gate is not applied in this case. Instead,
this projectively measures both logical modes in p̂(θ ), as can
be seen from the symmetry discussed in Sec. IV B.

C. Two-qumode gates

In the above, we found that (by appropriately restricting
the control macronode measurements) we could treat the BSL
as a collection of independent noninteracting quantum wires.
This protocol can be extended to also include a two-qumode
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FIG. 6. Beamsplitter gymnastics. All graphs are drawn in terms of logical (+,−) modes. A 50:50 beamsplitter B̂ij between two qumodes
i and j is indicated by a red arrow from i to j . Where applicable, dashed-arrow beamsplitters always act before solid-arrow beamsplitters.
(a) We start from Fig. 4(a). Measuring control macronode 3 in the physical (Z,Y ) modes is equivalent to performing a beamsplitter as shown
and then measuring in the logical modes. (b) Since all qumodes of control macronodes 1 and 5 are measured in the same basis, we are free to
insert an additional beamsplitter between them as shown (see Sec. IV B). This is the key observation. (c) The squares in (b) (with C = 2−1/2)
can be replaced by pairs of two-qumode CV cluster states (with C = 1) followed by two additional beamsplitters as shown (dashed) [16].
These occur before the other two (solid). (d) By direct calculation using their symplectic representation [27], B̂il B̂jk(B̂kl B̂ij ) = (B̂klB̂ij )B̂lj B̂ik .
(e) The symmetries of a pair of two-qumode CV cluster states (see Appendix C) allow for the beamsplitter to be moved to the other two
qumodes as shown.

entangling gate by lifting the measurement restrictions on
control macronodes that lie between neighboring wires. This
corresponds to the case shown in Fig. 4(d). We parametrize
the choice of measurements by the vector of homodyne angles
θ = (θ1Z,θ1Y ,θ2Z, . . . θ5Y ).

We would like our two-qumode gate protocol to be com-
patible with single-qumode gates applied on adjacent regions
of the BSL. With respect to Fig. 4(d), we allow θ3Z and θ3Y

to be free parameters, while θ1Z = θ1Y = θ5Z = θ5Y = ±π
4 ,

corresponding to macronode 3 being a ∓ control macronode,
respectively. Correspondingly, selecting homodyne angles

θ =
(

±π

4
,±π

4
,θ2Z,θ2Y ,θ3Z,θ3Y ,θ4Z,θ4Y ,±π

4
,±π

4

)
(5.6)

implements a two-qumode gate the form of which we will now
derive.

Our strategy for the derivation will be to use symmetries of
CV cluster states and “beamsplitter gymnastics” to reduce the
evolution to a form that can be interpreted as a combination of
two steps of evolution on the CV dual-rail wire [25] interleaved
with two additional beamsplitters. To this end, we call attention
to Fig. 6, which shows that measurements on the original
resource shown in (a) are equivalent to the same measurements
on the resource shown in (e). As such, we can read off the
evolution from the last subfigure, using knowledge of evolution
on the CV dual-rail wire [25].

We summarize this procedure here, referring to Fig. 6(e).
First, the leftmost wire macronodes (2 and 4) are measured,
applying V̂ (θ2Z,θ2Y ) ⊗ V̂ (θ4Z,θ4Y ) to the input and teleporting
the output into qumodes 1− and 3−, respectively. Then,
the 50:50 beamsplitter between those two qumodes (dotted
arrow) is applied. Next, the solid-arrow beamsplitters and
measurements of the control macronodes implement the gate
V̂ (±π

4 ,θ3Z) ⊗ V̂ (θ3Y , ± π
4 ), teleporting the output to qumodes

2+ and 4+ at the following time step. Finally, the last
dotted-arrow beamsplitter acts on this output, concluding the
evolution.

Thus, up to displacements and neglecting finite-squeezing-
induced noise (see Sec. VI), the total gate applied is the
combination of all of these individual gates:

B̂2+,4+

[
V̂

(
±π

4
,θ3Z

)
⊗ V̂

(
θ3Y ,±π

4

)]
×B̂2+,4+[V̂ (θ2Z,θ2Y ) ⊗ V̂ (θ4Z,θ4Y )], (5.7)

where the tensor product is H(2+) ⊗ H(4+). This captures
the most general type of two-qumode Gaussian unitary gate
compatible with our framework.

Though we have the general form, it is useful to give
particular measurement parameters that reduce the two-
qumode gates into a simple form. It is also desirable to
choose a form that is commonly included in universal gate
sets, such as the CV controlled-Z (ĈZ) gate [26], defined as
ĈZ(g) = exp [igq̂ ⊗ q̂].

While there is no valid choice of measurement parameters
in θ that yields an exact ĈZ gate, it is possible to implement
one followed by phase delays that can be corrected in the next
step by applying the single-qumode measurement protocol
immediately after this gate. Again assuming macronode 3 is a
∓ control macronode, choosing

θ = ±
(

π

4
,
π

4
,−π

8
,
3π

8
,
π

4
± φ,

π

4
∓ φ,−π

8
,
3π

8
,
π

4
,
π

4

)
(5.8)

reduces Eq. (5.7) to[
R̂

(
∓ 3π

4

)
⊗ R̂

(
± π

4

)]
ĈZ(2 cot φ), (5.9)

which is a tunable-strength ĈZ gate followed by (known,
fixed) phase delays that can be undone at the next time
step. Appendix D contains the detailed derivation. Once
again, we postpone discussing finite-squeezing effects and
outcome-dependent displacements until Sec. VI.
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FIG. 7. Graphical-calculus representation [27] of measurements
on a subregion of the bilayer square lattice with inputs in purple.
Here we show how measuring the control macronodes (1,3,5) in two
different ways leads to different connectivities of the wires. (a) The
lattice prior to measurement. We assume that θ1Z = θ1Y and θ5Z =
θ5Y . Having θ3Z 	= θ3Y or θ3Z = θ3Y will result in a graph as shown
in subfigures (b) and (c), respectively. (b) After measurement, the
resulting graph has connecting edges between the wire macronodes.
This is consistent with the application of a two-qumode gate between
the encoded inputs as was shown in Sec. V C. Relevant graphical
weights are defined in Eqs. (5.10)–(5.12). (c) After measurement,
there are no graph edges connecting the input macronodes. Therefore,
performing measurements on the input macronodes results in the
application of single-qumode gates only. Thus, these entangled pairs
can be thought of as separate quantum wires. Note that the four
remaining edge weights share a dependence on θ3Z . In other words,
the weights of adjacent quantum wires—and hence the single-qumode
gate applied on them—are logically dependent in general. This is
consistent with what was shown in Sec. V A. Unlabeled edges all
have C = 2−1/2.

D. Alternative representation of
two-qumode gate implementation

In the previous two subsections, we showed how measure-
ments on the control macronodes selected between applying
either a pair of single-qumode gates or a two-qumode gate on
neighboring wires. Here we provide an alternative description
of this mechanism that employs more fully the graphical
calculus for Gaussian pure states [27].

Rather than finding a graphical description of the BSL
that uses a mixture of physical (Z,Y ) and logical (+,−)
mode labels as in Fig. 4, we can instead consider the
graphical representation of the premeasurement of the control
macronodes (in analogy to “wire shortening” in cluster state
terminology [26]), as shown in Fig. 7. Note that for the
measurement-based implementation of Gaussian gates, cluster
nodes can be measured in any order since the result is
equivalent up to a final phase-space displacement [26].

The edge weights that are changed by the measurements are
functions of the homodyne angles on the control macronodes
and are given below in the large-squeezing limit. We get
these from the graph transformation rules [27] corresponding
to homodyne measurements on the physical modes of the
BSL and then taking the limit r → ∞ (we choose this limit

for clarity of presentation only). The edge weights in Fig. 7
are

fi = 1
4 (cot θiZ − cot θiY ), (5.10)

hij = 1
4 (− cot θiZ − cot θiY − cot θjZ − cot θjY ), (5.11)

gij = 1
4 (cot θiZ + cot θiY − cot θjZ − cot θjY ). (5.12)

After the control macronodes are measured and when
θ3Z 	= θ3Y , wire macronodes 2 and 4 are clearly connected
by horizontal and diagonal links [see Fig. 7(b)]. Attempting
to “teleport” the input states through this highly connected
resource state will entangle the input states. Contrast this with
the case when θ3Z = θ3Y [see Fig. 7(c)], where the resource
state is simply a pair of unconnected entangled pairs. The latter
is useful for propagating input states horizontally across the
lattice without entangling the inputs [25].

E. Achieving universal quantum computation

A CV controlled-Z gate ĈZ can be applied between any two
adjacent wires at any point on the BSL by locally substituting
the macronode protocol with the entangling-gate protocol
described in Sec. V C. This can be done repeatedly so long as
each wire is involved in at most one ĈZ gate at a time. Together
with vacuum input states and Weyl-Heisenberg displacement
operations, these gates are universal for multimode Gaussian
computation [26].

In order to achieve universal quantum computation, we also
need to include non-Gaussian resources [26]. (Subuniversal
algorithms, such as state verification [15,17], only require
homodyne detection.) In principle, it does not matter which
type of resource is used [39]. Typical examples include
photon-counting measurements supplemented with Gaussian
resources to implement a cubic phase gate [40] or preparation
and injection of non-Gaussian magic states such as photon
subtracted states [41]. We leave the detailed implementation
to future work.

VI. DISPLACEMENTS AND
FINITE-SQUEEZING EFFECTS

Thus far, we have neglected both the measurement-
outcome-dependent displacements and finite-squeezing ef-
fects that always arise in CV MBQC [25,26]. We account
for them here.

Since all evolution on the BSL can be reduced to evolution
on the CV dual-rail wire (plus additional beamsplitters in the
case of the two-qumode gate), all we need to do to take into
account the effects of the measurement outcomes and finite
squeezing is to use Eq. (3.4) from Ref. [25], which amounts
to replacing V̂ (θj ,θk) [Eq. (5.2)] with

V̂ (r,mj ,mk,θj ,θk) := N̂ (r)D̂(mj,mk,θj ,θk)V̂ (θj ,θk), (6.1)

where

D̂(mj,mk,θj ,θk) = D̂

[−ieiθkmj − ieiθj mk

sin(θj − θk)

]
(6.2)

is a phase-space displacement [D̂(α) = eαâ†−α∗â] that depends
on the homodyne angles and associated measurement out-
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comes (mj,mk), and

N̂ (r) = e−εq̂2/2e−εp̂2/2t2
Ŝ(t−1) (6.3)

is a nonunitary operator that captures the effects of finite
squeezing. We recover Eq. (5.2) in the limit of large squeezing
and when all measurement outcomes are zero:

V̂ (θj ,θk) = lim
r→∞ V̂ (r,0,0,θj ,θk). (6.4)

More generally, the displacements can either be actively
corrected at each step or merely accounted for using feed-
forward [26].

Noise from finite squeezing is ubiquitous in all MQBC
protocols using CV cluster states, but fault tolerance is still
possible using quantum error correction [40] provided that
the overall squeezing levels—which set the amount of noise
introduced per gate [25]—are high enough [11]. The only
known threshold result [11] states that no more than 20.5 dB
of squeezing will be required. Squeezing levels in temporal-
mode [17] and frequency-mode [15] cluster-state experiments
(5 and 3.2 dB, respectively) fall short of this, but state-of-the-
art experiments in optics [42] are within an order of magnitude
(12.7 dB). The existence of a compact and scalable protocol
such as the one presented here is likely to further spur on
experimental and theoretical work to close this gap.

Technical note

The astute reader will note that this presentation differs from
that of Ref. [25] in three ways. First, the r-dependent squeezing
term Ŝ(t−1) appears after the displacements in Eq. (6.1), while
it appears before them in Eq. (3.4) of Ref. [25]. We have
modified our displacement operator (6.2) accordingly [cf. Eqs.
(3.8) and (3.9) in Ref. [25]], which allows us to group all
finite-squeezing effects to the end and allows our displacement
to depend only on the measurement angles and outcomes (and
not on r). Second, we have written the displacement in terms
of the standard quantum-optics displacement operator, which
relates to the Weyl-Heisenberg displacements as X̂(s)Ẑ(t) =
(phase)D̂[(s + it)/

√
2], and we ignore the overall phase.

Third, we have corrected a typo in Eqs. (3.8) and (3.9) in
Ref. [25], which is that sin θi− should actually be sin 2θi−.

VII. CONCLUSION

We have proposed an extremely compact and scalable
method for producing—from a single OPO and simple
interferometer—a CV cluster state of unprecedented size
[(3 × 103) × ∞] that is universal for quantum computation.
The proposal has all the advantages of record-breaking
temporal- and frequency-multiplexed schemes [15,17] while
vastly increasing the size of the lattice by utilizing both types of
multiplexing at once. This is a very compact and scalable pro-
posal for CV cluster states, and it is implementable today using
demonstrated quantum-optical technology. In addition, we
have generalized the one-way model for quantum computing
to utilize the generated resource for quantum computation. The
result translates familiar notions of CV MBQC to the particular
state proposed here, generalizing prior work based on one-
dimensional, macronode-based CV cluster states [17,25].

The vast majority of the existing literature on CV cluster
states to date has treated canonical CV cluster states (i.e.,
those described in Refs. [7,8,26]) as the appropriate target for
an MBQC resource state. The work presented here—as well
as the entire research direction upon which it is based—shows
that we should shift the focus onto CV cluster states with a
macronode structure [15–17,21–23,25]. These schemes, which
are all based on bipartite self-inverse graphs [23], have been
demonstrated to have unprecedented scalability [15,17] and to
admit novel, flexible [43], and more efficient [25] quantum-
computing schemes within the MBQC paradigm.

The work presented here further underscores this point,
emphasizing the importance of bipartite, self-inverse graphs
and of focusing on scalable designs from the ground up when
working with CV cluster states. One might hope that the
optimized protocols available for these states [25,43] could be
used to improve the fault-tolerance threshold for MBQC using
CV cluster states [11]. We leave this question to future work.

Note added in proof. Recently, the state of the art in
cluster state generation and optical squeezing has substantially
improved. Temporal-mode one-dimensional CV cluster states
have recently reached sizes of one million modes with no sign
of phase drift over the course of the experiment [44]. Optical
squeezing levels have also improved, with the state of the art
now at 15 dB [45].
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APPENDIX A: GRAPHICAL CALCULUS FOR
GAUSSIAN PURE STATES

Any N -qumode Gaussian pure state |ψZ〉 can be repre-
sented uniquely (up to phase-space displacement and over-
all phase) by an N -node, complex-weighted, undirected
graph [27]. This graph Z can be represented pictorially
or, equivalently, by a corresponding N × N complex-valued
adjacency matrix

Z := V + iU, (A1)

where V and U are N × N symmetric real-valued matrices,
and U > 0. This object is related to the wave function in the
following way:

ψZ(q) = (det U)1/4

πN/4
exp

[
i

2
qT Zq

]
. (A2)

A covariance matrix for this state can be expressed in terms
of the matrices in Eq. (A1). First, denote the vector of 2n

position and momentum quadrature operators as

x̂ := (q̂1,q̂2, · · · q̂N ,p̂1,p̂2, · · · p̂N )T. (A3)

Then [27],

� := 1

2
〈{x̂,x̂T}〉 = 1

2

(
U−1 U−1V

VU−1 U + VU−1V

)
, (A4)
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which in turn allows us to give an expression for the Wigner
function:

W (x) = (2π )−N (det �)−1/2 exp

[
−1

2
xT�−1x

]
. (A5)

For some Gaussian unitary Û , we can define |ψZ′ 〉 to be

|ψZ′ 〉 := Û |ψZ〉 . (A6)

|ψZ′ 〉 is also a Gaussian pure state (by the definition of a
Gaussian unitary). How is the graph Z′ (corresponding to state
|ψZ′ 〉) related to the original graph Z by the Gaussian unitary?
The Heisenberg action of Û on x̂ is linear, which means it can
be represented as [27]

Û †x̂Û =: SÛ x̂ (A7)

where SÛ is a 2N × 2N symplectic matrix. If we represent SÛ

as

SÛ =
(

A B

C D

)
, (A8)

then the corresponding graph update rule is [27]

Z → Z′ = (C + DZ)(A + BZ)−1. (A9)

APPENDIX B: SIMPLIFIED GRAPHICAL CALCULUS

In general, representing all the features of Z requires
an appropriately connected graph with all edges (including
self-loops) labeled by complex-valued weights [27]. When
representing Gaussian pure states with uniformly weighted
graphs, it is convenient to employ a simplified set of rules.
In the main text, we represent Gaussian pure states using
simplified graphs, as introduced in Ref. [16]. This allows us
to represent graph edge weights by color and omit self-loops
from the illustrations.

With the exception of the (omitted) self-loop weights, the
edge weights are implicitly defined as ±Ct , where C is called
the edge-weight coefficient and can be thought of as the edge
weight magnitude in the infinite-squeezing limit, while

t := tanh 2r (B1)

can be thought of as a rescaling factor that depends on an
overall squeezing parameter r for the state. In the graphs,
signs of + and − are represented by blue and orange coloring,
respectively, and C is indicated within relevant figure captions.
Note that in the infinite-squeezing limit (r → ∞), edge weight
±Ct → ±C. For all graphs, all black nodes have self-loop
edges with weight iε, where

ε := sech 2r. (B2)

Technically, the simplified graphical calculus representa-
tions used in the majority of the figures of this paper are valid
for both infinite- and finite-squeezing cases [16]. To include
finite squeezing explicitly, the full graphical calculus [27] must
be used. To do this, simply replace the simplified disjoint
square graphs in Fig. 3(c) by more detailed versions with
self-loops and edge weights as in Fig. 8.

We note that there is a subtlety in Fig. 1 of the main
text. The state that exists at various stages (a)–(d) of the
optical circuit diagram is technically not a CV cluster state,

FIG. 8. Going from using the simplified graphical calculus
description of the bilayer square lattice with C = 2−1/2 (left)—with
edge weights defined implicitly by coloring—to the full graphical
calculus description (right) [27]. Edge weights t and ε are defined in
text [Eqs. (B1) and (B2), respectively].

but is in fact an H-graph state [27] that would have an
edge weight of −i sinh 2r . However, at every stage of the
diagram this state can be converted into a CV cluster state
with edge weights as quoted and with the same simplified
graphical representation [16] by simply applying an optical
phase delay of π

2 (a.k.a. a Fourier transform [26]) on half
the qumodes (specifically, all qumodes with either even or
odd frequencies). In practice, this difference is unimportant
because this phase delay can be incorporated directly into the
homodyne measurements acting on the final state, and in fact,
the simplified graphical calculus is defined in Ref. [16] to
represent both types of states (i.e., with or without these final
Fourier transforms).

APPENDIX C: BEAMSPLITTER SYMMETRIES OF A PAIR
OF TWO-QUMODE CV CLUSTER STATES

We use Ref. [38] to derive the symmetries of a pair of
two-qumode CV cluster states. This result is used to equate
panels (d) and (e) of Fig. 6.

Each individual CV cluster state shown in Fig. 6(d) has a
graph given by

Z1 =
(

i sech 2r tanh 2r

tanh 2r i sech 2r

)

= i(sech 2r)I + (tanh 2r)σ x (C1)

and an alternative graph representation of [27,38]

K1 := (I + iZ)(I − iZ)−1

=
(

0 i tanh r

i tanh r 0

)
= i(tanh r)σ x. (C2)

A pair of such states (one between qumodes i and j and a
separate one between qumodes k and l) has the alternative
graph

K2 =
(

K1 0

0 K1

)
= i(tanh r)I ⊗ σ x, (C3)

with rows and columns ordered (i,j,k,l). Note that ⊗ here
merely indicates a matrix Kronecker product and has nothing
to do with a tensor product of Hilbert spaces.
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An interferometric Hamiltonian 1
2 âHMâ, with M = MH,

generates a symmetry of the Gaussian pure state defined by
K if and only if MK = −(MK)T [38]. One choice (among
many) for M that works for K2 is M = σ y ⊗ I. This generates a
one-parameter class of symmetry operations [38], one example
of which is

exp

(
−i

π

4
âHMâ

)
= exp

[
−π

4
(a†

i ak + a
†
j al − H.c.)

]
= B̂ikB̂j l . (C4)

Since this pair of beamsplitters is a symmetry of the pair of CV
cluster states, acting with B̂ik alone is equivalent to acting with
B̂

†
j l = B̂lj alone, which is exactly the symmetry employed in

Fig. 6(e).

APPENDIX D: DERIVATION
OF THE TWO-QUMODE GATE

Here we derive the two-qumode gate [Eq. (5.9)] imple-
mented by using the measurement settings from Eq. (5.8) in
Eq. (5.7). As usual, we neglect outcome-dependent displace-

ments and finite-squeezing effects, with discussion of these
effects relegated to Sec. VI. Before we start, we define the
following abbreviations of phase shifts and squeezing on two
qumodes at a time:

R̂(θj ,θk) := R̂(θj ) ⊗ R̂(θk), (D1)

Ŝ(sj ,sk) := Ŝ(sj ) ⊗ Ŝ(sk). (D2)

For the chosen measurement settings [Eq. (5.8)], the bottom
line of Eq. (5.7) (measurements of wire macronodes) gives

B̂

[
V̂

(
∓ π

8
,±3π

8

)
⊗ V̂

(
∓ π

8
,±3π

8

)]

= B̂

{
R̂

( − 3π
4 ,− 3π

4

)
R̂

( − π
4 ,−π

4

)
}

, (D3)

where the two cases on the right correspond to the top
and bottom signs, respectively, and we omit subscripts on
B̂ for clarity. Next, we evaluate the top line of Eq. (5.7)
(measurements of control macronodes), which gives

B̂

[
V̂

(
± π

4
,±π

4
+ φ

)
⊗ V̂

(
± π

4
− φ,±π

4

)]

= B̂R̂

(
± π

4
+ φ

2
,±π

4
− φ

2

)
Ŝ

(
− tan

φ

2
,− tan

φ

2

)
R̂

(
± π

4
+ φ

2
,±π

4
− φ

2

)

= B̂R̂

(
± π

4
,±π

4

)
R̂

(
φ

2
,−φ

2

)
Ŝ

(
tan

φ

2
, tan

φ

2

)
R̂

(
φ

2
,−φ

2

)
R̂

(
∓ 3π

4
,∓3π

4

)
. (D4)

The total gate is therefore the following product of the two lines:

B̂R̂

(
± π

4
,±π

4

)
R̂

(
φ

2
,−φ

2

)
Ŝ

(
tan

φ

2
, tan

φ

2

)
R̂

(
φ

2
,−φ

2

)
R̂

(
∓ 3π

4
,∓3π

4

)
B̂

{
R̂

( − 3π
4 ,− 3π

4

)
R̂

( − π
4 ,−π

4

)
}

. (D5)

Noting that B̂R̂(θ,θ ) = R̂(θ,θ )B̂, the full gate becomes

R̂

(
± π

4
,±π

4

)
B̂R̂

(
φ

2
,−φ

2

)
Ŝ

(
tan

φ

2
, tan

φ

2

)
R̂

(
φ

2
,−φ

2

)
B̂︸ ︷︷ ︸

R̂(π,0)ĈZ (2 cot φ)R̂(− π
2 ,− π

2 )

R̂

(
π

2
,
π

2

)
, (D6)

where we have used the Bloch-Messiah decomposition [37] of the ĈZ gate. This reduces the gate to its final form:

R̂

(
∓ 3π

4
,±π

4

)
ĈZ(2 cot φ). (D7)
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[31] O. Glöckl et al., Sub-shot-noise phase quadrature measurement
of intense light beams, Opt. Lett. 29, 1936 (2004).

[32] E. H. Huntington, G. N. Milford, C. Robilliard, T. C. Ralph, O.
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