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We analyze the possibility to exploit charge-dipole interaction between a single polar molecule or a one-
dimensional (1D) molecular array and a single Rydberg atom to read out molecular rotational populations. We
calculate the energy shift of a single Rb(60s) atom interacting with a single KRb or RbYb molecule in their
lowest two rotational states. At atom-molecule distances, relevant to trapping of molecules in optical lattices,
the Rydberg electron energy shifts conditioned on the rotational states, are of the order of several MHz. Atom
excitation to a Rydberg state and detection of atomic fluorescence conditioned on a rotational state preserves
the molecule, making our scheme a nondestructive measurement of the rotational state. Similarly, a 1D array of
polar molecules can shift the electron energy of a blockaded Rydberg superatom. We consider a scheme to read
out the molecular array collective rotational states using the conditioned Rydberg energy shifts, and numerically
analyze a system with three and five KRb or RbYb molecules interacting with Rb(60s) superatom.
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I. INTRODUCTION

Ultracold polar molecules placed in a periodic array
represent an attractive setup for quantum computation [1]
and simulation of strongly correlated many-body systems
due to the ability to interact via anisotropic and long-range
electric dipole-dipole interaction. Such a system can be used
to simulate quantum magnetism [2], exotic topological states
[3], and complex many-body entanglement [4]. The first
experimental observations of spin exchange processes between
the dipoles of KRb molecules in a three-dimensional (3D)
optical lattice have been reported recently [5], and a similar
effect in a Cr gas of magnetic dipoles [6].

Typically, a spin-1/2 particle or a qubit is encoded in two
rotational molecular states and an initial many-body state
becomes strongly entangled due to the interaction. The state
of such entanglement will need to be read out to extract useful
information about the system. One main challenge for the
current ultracold molecule setups is that there exists no reliable
scheme for readout, which does not lead to loss of molecules.

In this work, we propose an elegant approach to nonde-
structively read out the rotational excitations in a mesoscopic
ensemble of molecular array. We consider a linear or a ring
1D array of molecules interacting with a 1D array or cloud
of neutral atoms in a symmetric state with a single Rydberg
excitation (superatom). We show that in this setup it is possible
to measure total populations of collective rotational states
without loosing or destroying the molecules.

Most current methods for molecular state readout, such
as inverse stimulated Raman adiabatic passage (STIRAP)
combined with Feshbach dissociation for alkali dimers [5]
and resonantly enhanced multiphoton ionization (REMPI) [7],
are destructive. Nondestructive readout of rotational states
of a single molecular ion interacting with an atomic ion by
Coulomb interaction has been reported recently [8]. In a pre-

vious work [9] we proposed a technique to read out populations
of rotational molecular states of a single neutral polar molecule
relying on its interaction with a nearby Rydberg atom [10,11].
This interaction shifts the states of the combined molecule
and Rydberg atom system depending on the rotational state,
allowing conditional excitation and fluorescence of the atom,
realizing readout of rotational states conserving the molecule.

There is strong and growing interest in manipulating
states of few- to many-body systems using their interaction
with a single ancilla system. Examples include control of
environment nuclear spins by a single electron spin in diamond
nitrogen-vacancy (NV) centers [12] or in quantum dots [13],
including polarization [14], superradiance [15], squeezing
[16], and quantum metrology [17]. Recently these ideas have
been extended to atomic systems, using Rydberg states for
spectroscopy [18,19] or topological measurements [20]. Here
we propose using Rydberg atoms to read out collective states
of mesoscopic systems of polar molecules.

Due to a lack of cycling transitions, nondestructive mea-
surements of molecular states need auxiliary systems for
readout, and our suggested path via Rydberg spectroscopy
is akin to the technique of quantum logic spectroscopy [21].
Earlier [22], common mechanical oscillatory modes of an
ion and a molecule were suggested for a similar task. The
neutrality of Rydberg atoms and molecules, as in our setup,
however, makes cotrapping and manipulation with external
electric fields easier.

The paper is organized as follows. In Sec. II we de-
rive matrix elements of the Hamiltonian for the combined
single-molecule–single-Rydberg-atom system. In Sec. III we
numerically calculate energy shifts of the rotational states of
KRb and RbYb molecules interacting with Rb(60s) atom. In
Sec. IV we analyze the interaction between a linear or a ring
1D array of molecules and a Rydberg superatom, placed either
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FIG. 1. (a) Setup geometry: a 1D or 2D array of polar molecules,
interacting via charge-dipole interaction with nearby Rydberg atoms,
placed in a parallel array; (b) a polar molecule with a dipole moment
�d interacts with a Rydberg atom. The distance between the x axis
and the Rydberg core is ρ, the distance between the molecule
and the vertical line connecting the core and the x axis is �x;
(c) level scheme of Rydberg states of Rb near 60s state, taken
into account in the calculations (not to scale). The energy
splittings are: E60p − E60s = 17.06 GHz, E60s − E59p = 18.75 GHz,
E59d − E60s = 27.46 GHz, E60s − E58d = 7.79 GHz, E57f − E60s =
4.07 GHz.

in a parallel commensurate 1D array or a dipole trap. In Sec. V
we discuss readout of rotational states of a single molecule
or an array of molecules using its interaction with a Rydberg
atom. Finally, we conclude in Sec. VI.

II. SINGLE ATOM SINGLE MOLECULE INTERACTION

We envisage a setup shown in Fig. 1(a) where a 1D or
2D array of polar molecules is used to simulate a strongly
correlated many-body quantum system. Each polar molecule
represents a qubit or a spin-1/2, encoded in rotational states
|↓〉 = |J = 0,mJ = 0〉 and |↑〉 = |J = 1,mJ = 0〉 or |↑〉 =
|J = 1,mJ = ±1〉 [5]. Parallel to the molecular array there is
an array with neutral atoms, which can be individually excited
to Rydberg states to read out molecular states. Although a setup
with two close lattices, one filled with molecules and another
with atoms, has yet to be realized, two parallel optical lattices
filled with neutral atoms have been demonstrated recently [23].

The configuration for a single polar molecule interacting
with a single Rydberg atom [10] is depicted in Fig. 1(b): the
molecule is a part of, e.g., an array aligned along the x axis

with its own Rydberg atom at a distance ρ from the x axis,
placed at �x = 0.

The Hamiltonian governing the single-atom–single-
molecule system is given by

H = Ha + Hm + Ve−−M, (1)

where

Ha =
∑
n,l,m

Enl|nlm〉〈nlm|

is the unperturbed Rydberg atom Hamiltonian at principal
quantum numbers n, orbital angular momentum l, and a z

projection of l, m. (Electron spin mixing due to Rydberg
electron spin-orbit and ground electron hyperfine interactions
is not included [24]). We calculate interaction induced energy
shifts of ns Rydberg states due to electron-molecule interaction
Ve−−M by including the ns and the nearest p and d and
f states, whose quantum defects are nonzero: |np〉 and
|(n − 1)p〉, |(n − 1)d〉 and |(n − 2)d〉, and |(n − 3)f 〉. The
corresponding unperturbed energies of Rydberg states are
Enl = −1/2(n − μl)2 in atomic units, μl is the quantum defect
(for Rb μs = 3.13, μp = 2.65, μd = 1.34, μf = 0.016).
As a typical example, we use for our simulations |ns〉 =
|60s〉, |np〉 = |60p〉, |(n − 1)p〉 = |59p〉, |(n − 1)d〉 = |59d〉,
|(n − 2)d〉 = |58d〉, and |(n − 3)f 〉 = |(ns − 3)f 〉 = |57f 〉
states. The corresponding atomic level scheme with energy
splittings is shown in Fig. 1(c). In Rb, the (n − 3)l with
l > 3 degenerate manifolds are known to produce considerable
mixing of the Rydberg energies, leading to formation of large
permanent dipole moments in the polyatomic molecules [25].
To be able to manage the size of the Hamiltonian matrix, we do
not take account of these degenerate manifolds. Since the in-
clusion of such terms should yield more pronounced shifts this
means that we rather underestimate the interaction-induced
resolution of rotational qubits. The Hm = BJ2 Hamiltonian
describes a rigid rotor molecule with states |J,mJ 〉 with
Hm|J,mJ 〉 = BJ (J + 1)|J,mJ 〉 and rotational constant B,
and Ve−−M = e �d· �R

R3 − e �d·( �R−�r)

| �R−�r|3
is the charge-dipole interaction

between the Rydberg atom ionic core and electron and the
molecule, where �d is the molecular dipole moment, �R is the
distance between the Rydberg core and the molecule, and �r
is the distance between the core and the Rydberg electron.
The molecular permanent dipole moment of our two example
molecules is chosen to be below the Fermi-Teller critical value
of dcr = 1.63D [10].

Next we calculate the shifts of the states |nlm〉|↓〉 =
|nlm〉|J = 0,mJ = 0〉 and |nlm〉|↑〉 = |nlm〉|J = 1,mJ =
0,±1〉 of the combined atom-molecule system. For that
we additionally take into account unperturbed states
|nlm〉|J = 2,mJ = 0,±1,±2〉. The matrix elements of Ha ,
Hm, and Ve−−M are given by:

〈J,mJ |〈n l m|Ha|n′ l′ m′〉|J ′,m′
J 〉 = − 1

2(n − μl)2
δn,n′δl,l′δm,m′δJ,J ′δmJ ,m′

J
,

〈J,mJ |〈n l m|Hm|n′ l′ m′〉|J ′,m′
J 〉 = BJ (J + 1)δn,n′δl,l′δm,m′δJ,J ′δmJ ,m′

J
,
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〈J,mJ |〈n l m|Ve−−M|n′ l′ m′〉|J ′,m′
J 〉 = 〈J,mJ |e �d · |J ′,m′

J 〉
�R

R3
δn,n′δl,l′δm,m′

− 〈J,mJ |e �d · |J ′,m′
J 〉〈n l m|

�R − �r
| �R − �r|3 |n′ l′ m′〉. (2)

Energies of the states of the combined atom-molecule system
can be obtained by diagonalizing the Hamiltonian Eq. (1).
Details of the calculation of matrix elements Eq. (2) are given
in Appendix A.

III. NUMERICAL RESULTS FOR ENERGIES
OF KRb-Rb(60s) AND RbYb-Rb(60s) SYSTEMS

In this section we numerically calculate the energies of
the combined single-atom–single-molecule system, shown in
Fig. 1(b), for the case �x = 0 and atom-molecule distances
ρ ∼ 300–600 nm, corresponding to a period of a typical optical
lattice.

We consider two polar molecules KRb and RbYb of
particular interest in the ultracold community. KRb with a
permanent electric dipole moment and rotational constant of
d = 0.566D [26] and B = 1114 MHz [27], respectively, was
the first polar molecule produced in the ground rovibrational
electronic 1

�+ state at ultracold temperatures [26] and is the
most experimentally well mastered at the moment. RbYb with
d ≈ 1 D [28] and B = 353 MHz [28] belongs to the family of
open-shell molecules with 2

�+ ground electronic state, and
is actively studied experimentally [29,30] and theoretically
[31] towards the goal of producing ground rovibrational
state molecules. Polar molecules with the 2

�+ ground state
have both an electric and a magnetic dipole moment and
are attractive for applications in quantum computation [32]
and simulation of lattice-spin models [33]. Other candidate
molecules with subcritical dipoles, to which the readout
method is applicable, include RbCs (d = 1.25D [34], B =
490 MHz [35]) and LiNa (d = 0.566D, B = 11.3 GHz [36])
among alkali dimers, and a number of alkali-metal–alkaline-
earth diatoms such as NaSr (d = 0.63D, B = 1.89 GHz [37]),
KSr (d = 1.5D, B = 960 MHz [37]), RbSr (d = 1.53D, B =
540 MHz [37]), and NaCa (d = 1D, B = 2.49 GHz [38]).

In RbYb, the unpaired electron spin couples to the Rb
nuclear spin, resulting in hyperfine splitting of the ground
electronic state, which is expected to be close to the splitting
of 6.835 GHz between F = 1 and F = 2 hyperfine states of
Rb atom [30]. In the calculations RbYb is assumed to be in
the ground electronic potential, corresponding to the lowest in
energy F = 1 hyperfine state. Rotational states of the ground
state of RbYb are further split by a spin-rotation interaction
γSR

�J �S, whose coupling strength can be approximated as
γSR = −2�g⊥B [39], where �g⊥ = g⊥ − ge is the deviation
of the molecular g tensor component, perpendicular to a molec-
ular axis, from the electron’s value. The spin-rotation splittings
have not been detected for J = 1 rotational states of the last
and second-last bound vibrational levels of RbYb [40]. In
this experiment the frequency resolution was �fres ≈ 6 MHz,
limiting the spin-rotation constant to this value. The rotational
constant for such high vibrational states was measured to be

B(ν = −1) ≈ 30 MHz, while for the ground vibrational state
it is predicted to be B(ν = 0) = 353 MHz, setting an upper
limit on the spin-rotation constant in the ground vibrational
state ∼�fresB(ν = 0)/B(ν = −1) ≈ 70 MHz, provided �g⊥
does not significantly vary with the vibrational number.

The effect of the spin-rotation splitting (not taken into
account in the calculations) can be estimated in the following
way: if |Ve−−M| � 2B (see Appendix B), the energy shifts of
the atom-molecule system can be approximated using pertur-
bation theory as |�E| ∼ |Ve−−M|2/2B. The spin-rotation will
modify the energy shifts as |�E| ∼ |Ve−−M|2/(2B ± γsr) ≈
|Ve−−M|2(1 ± γsr/2B)/2B, where γsr/2B � 0.1.

In Fig. 2(a) and Fig. 2(b) the energy shifts of the states
|J = 0,mJ = 0〉 and |J = 1,mJ = 0,±1〉, are shown for KRb
and RbYb, respectively, interacting with Rb(ns = 60s) state.
The shifts are calculated with respect to unperturbed energies
of the states Ens + 2BJ (J + 1). Since in the ground atomic
state |g〉 the atom-molecule interaction is much weaker
compared to Rydberg states, the energy shifts also give the
frequency shifts of the transitions |g〉|J,mJ 〉 → |ns〉|J,mJ 〉.
These states contain admixtures of other states of the order
of �0.7%. We assume that the molecule and the atom are
separated by distances ρ ∼ 300–600 nm, corresponding to a
period of a typical optical lattice. At these distances and for rel-
atively small dipole moments (d � 1 Debye) of the molecules
the interaction matrix elements between |ns〉|J = 0,mJ = 0〉,
|ns〉|J = 1,mJ = 0,±1〉 and other states are small compared
to energy difference between the corresponding states (see
Appendix B), which explains the small admixing of other
states.

In Fig. 2(b), one observes that for RbYb the splitting
between the states |J = 0,mJ = 0〉 and |J = 1,mJ = 0〉 lies
in the range ∼6.5–1.2 MHz for ρ ∼ 400–600 nm, and
the states |J = 0,mJ = 0〉 and |J = 1,mJ = ±1〉 are split
in the range ∼3–0.6 MHz. Due to a smaller permanent
dipole moment of KRb and a larger rotational constant the
splittings for KRb are smaller compared to the splittings
for RbYb at the same ρ. Splittings of the order ∼1 MHz
can be achieved for KRb for smaller ρ. As shown in
Fig. 2(a) the states |J = 0,mJ = 0〉 and |J = 1,mJ = 0〉
are split by ∼2.2–0.4 MHz for 300 nm < ρ < 500 nm, and
the states |J = 0,mJ = 0〉 and |J = 1,mJ = ±1〉 are split
by ∼1.1–0.2 MHz for the same range. The splittings are
much larger than the width of Rb(60s) �60s ≈ 1.644 kHz,
resulting from spontaneous emission, black-body-radiation-
induced decay, excitation and ionization and the width of
the J = 1 rotational state due to spontaneous emission and
interaction with black-body radiation (BBR) [41].

The convergence of the energy shifts with respect to the
atomic and molecular basis states is discussed in Appendix C,
where it is shown that for KRb the basis set of 60s, 60p, 59p,
59d, and 58d is required to obtain accurate numerical results.
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FIG. 2. (a) and (b) Shifts of the |60s〉|J = 0,mJ = 0〉 (thick solid black lines), |60s〉|J = 1,mJ = 0〉 (thick dashed red lines) and
|60s〉|J = 1,mJ = ±1〉 (thick dotted blue lines) states of the combined single-Rydberg-atom–single-polar-molecule system for KRb and
RbYb and Rb, respectively. The atomic basis set included the 60s, 60p, 59p, 59d , 58d , and 57f states and the molecular basis set included the
J = 0,1,2 rotational states (full set). The shifts are calculated with respect to unperturbed energies of the states Ens + 2BJ (J + 1). Thin lines
correspond to calculations in which 57f state has not been taken into account.

For RbYb on the other hand, even the smallest atomic basis
set including only the 60s state provides good agreement with
the full atomic set. The effect of 57f state is rather small for
both KRb and RbYb, which is explained by the energy gap
between the 60s and 57f states and small interaction matrix
elements between these states. The effect of higher rotational
states such as |J = 3,mJ = 0,±1,±2,±3〉 on the energy shifts
of the J = 0 and J = 1 states was found to be negligible.

Finally, we discuss the effect of position fluctuations of both
the molecule and the Rydberg atom during the interaction.
Assuming that they are trapped in ground states of their
harmonic traps, it is shown in Appendix D that the energy shifts
of the states |ns〉|J = 0,mJ = 0〉, |ns〉|J = 1,mJ = 0,±1〉
get an additional contribution ∼�Ens,J,mJ

(a/ρ)2, where a is
the trap ground-state wave-function width, assumed equal for
the atom and the molecule.

IV. N MOLECULES-RYDBERG
SUPERATOM INTERACTION

What happens if N polar molecules interact now with
Rydberg atoms? This section concerns a 1D array or cloud
of atoms placed in parallel to N molecules. Basically, it is
the same setup as in the previous section where only one
atom-molecule pair was treated. Here, the laser beam that
excites atoms to their Rydberg state interacts with all atoms
simultaneously. Then, the dipole blockade [42] will ensure that
exactly one collective Rydberg excitation (a superatom) will
exist in the ensemble.

The superatom wave function will be a superposition of
states with different single excited Rydberg atoms

|	atom〉 = 1√
Na

Na∑
j=1

eikx RydbXj |g1, . . . gj−1,rj ,gj+1, . . . gNa
〉,
(3)

where Na is the number of atoms, |gj 〉 and |rj 〉 denote the j th
atom in the ground or Rydberg state and Xj its position along
the array, kx Rydb is the x component of the wave vector of the
exciting laser field.

Next, we analytically and numerically calculate the energy
shifts of the states of the combined interacting system of N

molecules and a Rydberg superatom. Numerically the shifts
can be obtained by diagonalizing the Hamiltonian of the
combined system using the basis of superatom states with
a range of Rydberg states, as was done in the previous section,
and a set of collective molecular rotational states. Here, in order
to simplify the calculations we use the smallest atomic basis
set of the |r〉 = |60s〉 state for the superatom in diagonalizing
the interaction Hamiltonian Ve−−M. Then the interaction of ith
molecule with the atomic array takes the form:

〈	atom|Ve−−M, i|	atom〉

= 1

Na

Na∑
j=1

〈rj |Ve−−M, i|rj 〉 = 1

Na

Na∑
j=1

Vji, (4)

where Vji = 〈rj |Ve−−M, i|rj 〉 = 〈rj | e �di · �Rji

R3
ji

− e �di ·( �Rji−�r)

| �Rji−�r|3 |rj 〉 and

�Rji is the vector connecting j th atom to ith molecule. In fact,
one can see from Eq. (4) that interatomic coherences do not
play a role and the same result can be obtained with a mixed
atomic state described by a density matrix

ρ = 1

Na

Na∑
j=1

|φj 〉〈φj |,

where |φj 〉 = |g1, . . . gj−1,rj ,gj+1, . . . gN 〉. The basis
states of the combined atomic-molecular system are
|	atom〉|	mol〉, where |	mol〉 = |a1 . . . aN 〉 and |ai〉 = |J,mJ 〉i .
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Matrix elements of the Hamiltonian of the system

H = Ha + Hm + Ve−−M (5)

with Ha = ∑Na

j=1 Erj
|rj 〉〈rj |, Hm = ∑N

i=1 BJ2
i and Ve−−M = ∑Na

j=1

∑N
i=1

e �di · �Rji

R3
ji

− e �di ·( �Rji−�r)

| �Rji−�r|3 , have the form

〈	atom|〈	mol|Ha|�mol〉|	atom〉 = − 1

2(ns − μs)2
�N

i=1δai ,a
′
i
,

〈	atom|〈	mol|Hm|�mol〉|	atom〉 =
(

N∑
i=1

BJi(Ji + 1)

)
�N

i=1δai ,a
′
i
,

〈	atom|〈	mol|Ve−−M|�mol〉|	atom〉 =
⎛
⎝ 1

Na

Na∑
j=1

〈ai |Vji |a′
i〉

⎞
⎠�N

k=1,k �=iδak,a
′
k
δJi ,J

′
i ±1, (6)

for i = 1 . . . N , where |�mol〉 = |a′
1,a

′
2, . . . a

′
i , . . . ,a

′
N 〉.

For a simplified analysis we also take into account only |J = 0,mJ = 0〉 and |J = 1,mJ = 0〉 rotational states in diagonalizing
the Hamiltonian. Using only J = 0 and J = 1 states makes calculations of the matrix elements 〈ai |Vji |a′

i〉 particularly simple.
For the atom located next to the molecules at �x = 0 the matrix elements are calculated as described in Appendix A 2. For an
atom separated from the molecule by a lattice spacing(s) the matrix elements can be calculated as discussed in Appendix A 3.

If the interaction strength is much smaller than the rotational splitting between the J = 0 and J = 1 states |Ve−−M| � Erot,
where Erot = 2B, and only the ns state is taken into account, the shifted energies of the collective rotational states can be
calculated using second-order perturbation theory. All unperturbed states (k↑,(N − k)↓) with k spins up and N − k spins down
have the same energy E(k↑,(N−k)↓) = kErot, and groups of states differing by one flipped spin are separated by the rotational
splitting Erot. The interaction weakly couples states in neighboring spin groups resulting in shifts of their energy. Let us consider
first the |ns〉|↓,↓, . . . ↓〉 state for N molecules and Na atoms. The energy shift of this state will be given by:

�EN↓ = −
N∑

i=1

|〈	atom|〈↓,.,↓|Ve−−M

∣∣↓,.,↑i ,.,↓
〉|	atom〉|2

Erot

= −
N∑

i=1

|〈↓i

∣∣ ∑Na

j=1〈nsj |Ve−−M|nsj 〉/Na|↑i〉|2
Erot

= −
N∑

i=1

∣∣∑Na

j=1 V
ji

e−−M

∣∣2

ErotN2
a

.

Assuming for simplicity that ith molecule most strongly interacts with its nearest atom with j = i and the matrix elements V
j=i

e−−M
are the same for all i, the shift can be approximated as

�EN↓ ≈ −
∑N

i=1

∣∣V j=i

e−−M

∣∣2

ErotN2
a

≈ −N
∣∣V j=i

e−−M

∣∣2

ErotN2
a

,

which gives the dependence �EN↓ ∼ 1/N for Na ∼ N . For states with a single ith spin up and i ′ = 1, . . . ,i − 1,i + 1, . . . ,N

spins down, the perturbation theory gives the energy shift

�E(1↑,(N−1)↓) = −
N∑

i ′=1,i ′ �=i

|〈	atom|〈↓, . . . ,↑i , . . . ,↓
∣∣Ve−−M

∣∣↓, . . . ,↑i , . . . ,↑i ′ , . . . ,↓
〉|	atom〉|2

Erot

+ |〈	atom|〈↓, . . . ,↑i , . . . ,↓
∣∣Ve−−M|↓, . . . ,↓〉|	atom〉|2

Erot

= − 1

N2
a

N∑
i ′=1,i ′ �=i

∣∣∑Na

j=1 V
ji ′

e−−M

∣∣2

Erot
+ 1

N2
a

∣∣ ∑Na

j=1 V
ji

e−−M

∣∣2

Erot
≈ − (N − 1)

N2
a

∣∣V j=i ′
e−−M

∣∣2

Erot
+ 1

N2
a

∣∣V j=i

e−−M

∣∣2

Erot

= − (N − 2)

N2
a

∣∣V j=i

e−−M

∣∣2

Erot
,
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which shows that the splitting between the N↓ and (1↑,(N − 1)↓) states ∼2|Ve−−M|2/ErotN
2
a ∼ 1/N2. In the general case of

(k↑,(N − k)↓) states the shift will be given by

�E(k↑,(N−k)↓) = − 1

N2
a

N∑
i ′=1,i ′∈(N−k)↓

∣∣ ∑Na

j=1 V
ji ′

e−−M

∣∣2

Erot
+ 1

N2
a

N∑
i=1,i∈k↑

∣∣ ∑Na

j=1 V
ji

e−−M

∣∣2

Erot

≈ − (N − k)

N2
a

∣∣V j=i ′
e−−M

∣∣2

Erot
+ k

N2
a

∣∣V j=i

e−−M

∣∣2

Erot
≈ − (N − 2k)

N2
a

∣∣V j=i

e−−M

∣∣2

Erot
. (7)

The energies of the collective states will also get an additional contribution ∼�E(k↑,(N−k)↓)(2a2/ρ2) due to a finite spread of
atomic and molecular positions in their traps, as shown in Appendix C.

In the case when only the ns atomic state is taken
into account there will be no terms exchanging spins
within the same group such as |↓, . . . ,↑i , . . . ,↓i ′ , . . . ,↓〉 ↔
|↓, . . . ,↓i , . . . ,↑i ′ , . . . ,↓〉 in the (1↑,(N − 1)↓) manifold. The
spin-exchange terms will be absent because the second-order
perturbation theory connects these states via a single state in
the upper and a single state in the lower neighboring spin
groups, which cancel each other due to the equal splitting be-
tween neighboring groups. There will be spin-exchange terms
within the groups due to a direct dipole-dipole interaction
between molecules, which has not been taken into account
in the Hamiltonian (5). The direct dipole-dipole interaction
allows spin-exchange processes within the same group leading
to splittings ∼d2/L3 ∼ 1 kHz for d ∼ 1 D and a lattice period
L ∼ 500 nm, which is of the order of the width of the 60s

state.
In the following we numerically consider a system of

N = 3 and 5 KRb and RbYb molecules interacting with a Rb
superatom. Due to the small size of the considered molecular
arrays, if one uses an atomic array of the same size, effects of
the boundaries will be sizable, because the molecules in the
center will strongly interact with all three nearest atoms, while
the molecules at the boundaries will interact strongly with only
two atoms. This is not going to be the case in a sufficiently long
array, in which all molecules (again, except for two boundary
ones) will have equal interaction conditions. To mitigate the
effects of the boundaries we therefore consider an array of
Na = N + 2 atoms, arranged in a way shown in Fig. 3(a) such
that there is an additional atom at each side of the molecular
array. In this arrangement all molecules will interact strongly
with three nearest atoms, i.e., separated by at most one lattice
period L = 500 nm. Atoms separated from a molecule by two
or more lattice periods do not contribute significantly for the
60s Rydberg state.

Energy shifts of the states of a combined atomic-molecular
system from the unperturbed values E(k↑,(N−k)↓), correspond-
ing to different collective rotational states, are given in Fig. 4
for KRb and RbYb in the left and right columns, respectively.
Since only the 60s Rydberg state and J = 0 and J = 1
rotational states have been used in calculation of matrix
elements of the Hamiltonian Eq. (5), the magnitude of the
shifts is only qualitatively correct. In order to get quantitatively
correct shifts the closest in energy p, d, and f Rydberg states
as well as J = 2 rotational states have to be taken into account,
which is beyond the scope of our work. Figure 4 shows the
shifts calculated by (i) diagonalization of the Hamiltonian
Eq. (5) and (ii) using perturbation theory expression (7)

with V
ji

e−−M calculated numerically. The results of the two
calculations agree very well.

From Fig. 4 one can see that the states with the same number
of spins up and down such as |↑,↓,↓〉, |↓,↑,↓〉 and |↓,↓,↑〉
group, as expected, so only states with at least one spin flipped
significantly differ in energy and can be discerned. For N = 3
the spin groups split from each other by ∼150–50 kHz for
300 nm < ρ < 500 nm for KRb and by ∼600–200 kHz for
400 nm < ρ < 600 nm for RbYb. For an array of N = 5
molecules, shown in Figs. 4(c) and 4(d), the energy splittings
between spin groups become smaller: ∼70–10 kHz for KRb,
and ∼300–100 kHz for RbYb in the same ranges of ρ. The

FIG. 3. (a) Schematic of the N molecular array interacting with
an array of Na = N + 2 atoms. The first and last atoms are added
to mitigate the effects of the boundaries. When the atomic system
is excited to the 60s state the wave function becomes |	atom〉 =

1√
Na

∑Na

j=1 |g1, . . . rj , . . . ,gNa
〉, and each molecule equally interacts

with all (most strongly with three nearest) Rydberg atoms; (b) an
array of molecules interacting with a cloud of atoms in the superatom
state, placed in an elongated dipole trap
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FIG. 4. (a) and (b) Shifts of the states of the combined system of N = 3 polar molecules and Na = N + 2 atoms for KRb and RbYb,
respectively, and Rb(60s) calculated by diagonalizing Hamiltonian (5) (lines) and using the perturbation theory expression (7) (open symbols).
The atomic system is in the state |	atom〉 = 1√

Na

∑Na

j=1 |g1, . . . rj , . . . ,gN1 〉, and only 60s, |↓〉 = |J = 0,mJ = 0〉 and |↑〉 = |J = 1,mj = 0〉
atomic and molecular basis states have been used in diagonalization (5). Solid black line (open squares) correspond to |3↓〉 = |↓,↓,↓〉 state,
dashed red lines (open triangles) correspond to single spin-up states |1↑,2↓〉, dotted green lines (open diamonds) correspond to two spin-up
|2↑,1↓〉 states and a dashed-dotted blue line (open circles) correspond to three spin-up |3↑〉 states; (c) and (d) the same as in (a) and (b) but for
N = 5 molecules: solid black line (open squares) correspond to |5↓〉 state, dashed red lines (open triangles) correspond to |1↑,4↓〉 states, dotted
green lines (open diamonds) correspond to |2↑,3↓〉 states, dash-dotted blue lines (open stars) correspond to |3↑,2↓〉 states, dash-dot-dotted
orange lines (open pentagons) correspond to |4↑,1↓〉 states, and short dash pink line (open circles) correspond to the |5↑〉 state.

reduction of the splittings with increasing N comes from the
simultaneous increase in Na as expected from Eq. (7). This
suggests that for larger N the splittings will get even smaller
and eventually become comparable to the width of the Rydberg
state. The states will no longer be discernible and there will be
a continuous band of collective molecular states.

In experiments it can be difficult to have two parallel optical
lattices, one filled with molecules and another with atoms. The
setup will be simplified if the atoms are placed in a cigar-
shaped dipole trap with a long axis parallel to the molecular
array as shown in Fig. 3(b). We modeled the interaction of
a molecular array with a Rydberg superatom placed in such
a trap by assuming that the excited atom has a Gaussian 1D
probability distribution p(x) = exp(−x2/a2

trap)/atrap
√

π along

the longest trap axis with x = 0 corresponding to the center of
the molecular array. In this case the summation

∑Na

j=1 Vji/Na

over atom’s j position in Eqs. (4) and (6) is replaced by an
integral

∫
Vi(x)p(x)dx. Figures 5(a) [5(c)] and 5(b) [5(d)]

show the shifts of the collective states for N = 3(5) for KRb
and RbYb, respectively, obtained by diagonalization of (5).
The size of the atomic distribution atrap was chosen to have
the largest splittings between spin states differing by one
flipped spin. Compared to the case of atoms in a lattice the
shifts between spin groups become about twice smaller for
N = 3 and three times smaller for N = 5 for both KRb and
RbYb. The splittings within groups appear, and for N = 5
become comparable to the splittings between the groups.
The reason for splittings within the groups is in the unequal
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FIG. 5. (a) and (b) Shifts of the states of N = 3 polar molecules of KRb and RbYb, respectively, and a Rb superatom in 60s, calculated
by diagonalizing the Hamiltonian Eq. (5). The atoms are placed in a 1D Gaussian trap along molecular array with the center of the trap
corresponding to the center of the array. The probability to find a single Rydberg atom scales as p(x) = exp (−x2/a2

trap)/
√

πatrap along the
trap. The trap widths are atrap = 1.3 μm and atrap = 1.7 μm for KRb and RbYb, respectively. (c) and (d) shifts of collective states for N = 5
molecules of KRb and RbYb, respectively. The trap widths are atrap = 2.5 μm for KRb and atrap = 3 μm for RbYb. Collective rotational states
are denoted similarly to Fig. 4 (detailed description is given in Ref. [45]).

interaction conditions for molecules in the center and at the
boundaries. Due to the decrease of the atom’s probability
from the center to the edges of the trap the corresponding
molecules will experience weaker interaction. The interaction
conditions can be made more homogeneous if the trap size in
the longitudinal direction is much larger than the molecular
arrays, but in this case the probability to find the atom in the
range (Xi − L/2,Xi + L/2) around the ith molecule position
Xi will be smaller than the corresponding probability 1/Na of
atoms in a lattice.

The ∼1/N and ∼1/N2 scalings of the spin group energy
shifts and splittings can be avoided if the molecules are placed
in a ring 1D array [43] instead of a linear one. In this case if the
superatom (or a single Rydberg atom) is placed at the center
of the array and its size is much smaller than the radius of the
array all interaction matrix elements V

ji

e−−M will be equal for

a symmetric ns state V
ji

e−−M = Ṽe−−M and the shifts (7) will

become:

�E(k↑,(N−k)↓) = −(N − k)
|Ṽe−−M|2

Erot
+ k

|Ṽe−−M|2
Erot

≈ −(N − 2k)
|Ṽe−−M|2

Erot
,

which shows that in this case the shifts and splittings scale as
�E ∼ N |Ṽe−−M|2/Erot and ∼2|Ṽe−−M|2/Erot with the number
of the molecules, so the splittings are limited by the interaction
strengths |Ṽe−−M|2, falling with the atom-molecule distance,
equal to the radius of the array, as 1/R4

ji .
Selective excitation to the Rydberg state for a particular spin

group will require the Rabi frequency � of an exciting optical
pulse be smaller than the splittings between spin groups. With
the splittings between spin groups approximately hundreds of
kHz one can use � = 10kHz. In this case the blockade radius
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for the 60s state will be of the order of Rb = (C6/��)1/6 ∼
2.2 μm, where C6 is taken from [44]. For the linear array period
L = 500 nm the blockade can be realized for Na � 9 atoms in
60s, i.e., higher n are required for larger arrays. For example,
for n = 100 and the same Rabi frequency � = 10 kHz the
blockade radius will be ≈44 μm, which will allow us to use a
linear array of ∼200 atoms and molecules. In a ring array any
number of atoms can be used provided the atomic trap size is
smaller than the blockade radius.

V. MEASUREMENT OF ROTATIONAL
STATE POPULATION

Let us first discuss the measurement of rotational states
population of a single molecule interacting with a single
Rydberg atom. In this case we assume that each molecule in
an array or optical lattice has its own readout atom, which can
be addressed individually using tightly focused laser beams
and excited to the Rydberg state without affecting neighboring
atoms. Individual addressing of atoms in an optical lattice
with a lattice period λ/2 ∼ 500 nm has been demonstrated
recently in Ref. [46]. Alternatively, low crosstalk addressing
of atoms can be realized if, before the readout, the molecular
and atomic lattices period is increased to values ∼ several μm
using tunable-period 1D or 2D optical lattices [47].

The populations of the ground and first excited rotational
states can be read out in the following way [see Fig. 6(a)].
First, the atom is prepared in the ground state, e.g., |g〉 =
|F = 2,mF = 2〉 for Rb, such that the state of the com-
bined system is (α|↓〉 + β|↑〉)|g〉, where |α|2 and |β|2 are
the molecular qubit states populations to be read out. The
combined system next is transferred selectively from, e.g., the
|g〉|↑〉 to the |r〉|↑〉, where |r〉 is the atomic Rydberg state,
with a π pulse, followed by another π pulse transferring the
system from the |r〉|↑〉 to some auxiliary |e〉|↑〉 state with
a short lifetime, which rapidly decays back to |g〉|↑〉 [48].
Repeating the excitation-fluorescence cycle one can detect
the population |β|2 of the |↑〉 rotational state. Another way

to read out populations of molecular qubits is shown in
Figs. 6(b)–6(d). While the atom is in the ground state its
fluorescence is measured using the cycling transition |g〉 →
|e〉, which will include contributions from both rotational
states with probabilities |α|2 and |β|2 [Fig. 6(b)]. Next a π

optical pulse is applied to excite the system conditionally only
if the molecule is in the |↑〉 state, producing an entangled
state of the combined system α|↓〉|g〉 + β|↑〉|r〉, and again the
atomic fluorescence is measured using the cycling transition
[Fig. 6(c)]. This time the part of the atom in the Rydberg state
will not fluoresce and only the |g〉|↓〉 part will contribute with
the probability |α|2 [Fig. 6(d)]. By measuring the ratio of flu-
orescence intensities in the two cases R = |α|2/(|α|2 + |β|2)
one can calculate the populations of the rotational states |α|2 =
R and |β|2 = 1 − R. The Rydberg state has a finite lifetime
and can decay during the readout steps of Figs. 6(c) and 6(d).
The decay can be avoided if the atom is transferred to a stable
ground state |g′〉 by a π pulse: |g〉|↑〉 → |r〉|↑〉 → |g′〉|↑〉
such that |g′〉 is not affected by the excitation-fluorescence
cycles |g〉 ↔ |e〉. Additionally, it allows one to entangle two
atomic ground states and two rotational molecular states as
(α|↓〉 + β|↑〉)|g〉 → α|g〉|↓〉 + β|g′〉|↑〉. The π pulses can be
replaced by coherent control pulse sequences such as STIRAP
or adiabatic rapid passage (ARP), more robust with respect to
pulse duration and intensity fluctuations.

As was discussed in Sec. III the energies of the |r〉|↓〉,
|r〉|↑〉 states are additionally shifted due to a finite spread of
atomic and molecular positions in their traps. This additional
shift might tune the Rydberg state out of resonance with an
excitation laser. This difficulty can be overcome by using
the Rabi frequency of the excitation pulses large enough
to cover the additional shift, but small enough to provide
selective excitation to a particular rotational state. As shown
in Appendix D the additional shifts of the |J = 0,mJ = 0〉
and |J = 1,mJ = 0〉 states are of the order of � 20 kHz for
KRb and � 40 kHz for RbYb, and for the |J = 1,mJ = ±1〉
states they are of the order of � 60 kHz for KRb and � 7 kHz
for RbYb. Given the splittings between the states ∼1 MHz for

FIG. 6. Readout of populations of molecular rotational states |↓〉 = |J = 0,mJ = 0〉 and |↑〉 = |J = 1,mJ = 0,±1〉. (a) Population of the
|↑〉 state can be measured by selectively exciting the atom-molecule system to the |r〉|↑〉 state by a π pulse, followed by transfer by a second
π pulse to some |e〉|↑〉 state, rapidly decaying to the |g〉|↑〉 state. The transfer |g〉|↑〉 → |r〉|↑〉 → |e〉|↑〉 can be also done using STIRAP or
ARP. The population of the |g〉|↓〉 can be read out in a similar way. (b) While the atom is in the ground state and does not interact with the
molecule atomic fluorescence intensity can be measured using excitation and deexcitation on a cycling transition |g〉 ↔ |e〉. (c) The combined
system can be conditionally transferred from the |g〉|↑〉 to the |r〉|↑〉 state with a π pulse or an ARP pulse. (d) Atomic fluorescence intensity on
the |g〉 ↔ |e〉 transition is measured again. The difference between the fluorescence intensities before and after the Rydberg excitation allows
to obtain populations of the rotational states.
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KRb and ∼3 MHz for RbYb the Rabi frequency satisfying both
requirements can be realized. Another solution is to excite the
atom using ARP with a chirped pulse such that the frequency
sweep covers the additional energy shift.

The main part of the measurement described in Fig. 6 is a
controlled-NOT (CNOT) gate applied to the atom-molecule
system. The measurement based on the CNOT gate is of
a quantum nondemolition type, in which the measurement
is done on the ancilla system after it has interacted with
the primary system in such a way that the primary system
is not destroyed and its projected states are not disturbed
by the measurement [49]. In Ref. [50] requirements for a
QND measurement on a primary qubit by an ancilla qubit
have been derived in terms of fidelities of measurement
FM =

√∑
i p

M
i pin

i , QND fidelity FQND = √∑
i p

in
i pout

i , and
the quantum state preparation fidelity FQSP = ∑

i p
M
i pout

|i〉|i ,
where pin

i , pM
i , and pout

i are the probability distributions of the
input, measured and output states in the basis of the eigenstates
|i〉 of the measurement; pout

|i〉|i is the conditional probability of
finding the output state to be |i〉 if the measurement gave the
eigenvalue i. The CNOT gate gives FM = FQND = FQSP = 1,
i.e., it represents an ideal QND measurement. The QND nature
of the measurement can be seen from the form of the actual
atom-molecule interaction

|ns〉〈ns|(�E↑|↑〉〈↑| + �E↓|↓〉〈↓|)
=

(
Ŝat

z + 1

2

)(
�E↑

(
Ŝmol

z + 1

2

)
+ �E↓

(
1

2
− Ŝmol

z

))

= (�E↑ − �E↓)Ŝat
z Ŝmol

z + Ŝat
z

�E↓ + �E↑
2

+ Ŝmol
z

�E↓ − �E↑
2

,

which commutes with the measured observable Ŝmol
z . Here

Ŝat
z = (|ns〉〈ns| − |g〉〈g|)/2 and Ŝmol

z = (|↑〉〈↑| − |↓〉〈↓|)/2.
The QND measurement based on the CNOT gate has been

used previously in systems of two ions [51], electron-nuclear
spins of NV centers [52], and was also theoretically discussed
for a system of two neutral atoms of different species,
interacting in Rydberg states [53].

Finally, we come to the main point of the work and
discuss how population of collective rotational states can be
measured in a molecular array interacting with a Rydberg
superatom. The measurement is based on the interaction
induced splittings between spin groups |k↑,(N − k)↓〉 for
k = 0, . . . N , analyzed in the previous section. As shown
in Fig. 7, first, the combined system is excited selectively
from some group of k↑ spins up |g,g, . . . g〉|	mol k↑〉 to the
blockaded state |	atom〉|	mol k↑〉 by a π pulse, followed by
another π pulse connecting the |	atom〉 state to some |	e〉 =

1√
Na

∑Na

j=1 ei(kx Rydb−kx e)Xj |g1,g2, . . . ,ej , . . . ,gNa
〉 state, where

|e〉 is an atomic state rapidly decaying to |g〉. Again, instead of
two π pulses a sequence of either STIRAP or ARP pulses can
be used. The collective states will also acquire an additional
energy shift due to a finite spread of atomic and molecular
positions in their traps, which should be taken into account
when exciting the atom to the Rydberg state. This can be
done either using a sufficiently large Rabi frequency of the
excitation pulse, or using a chirped pulse. By repeating these

FIG. 7. Schematic of measurement of populations of collective
states with a certain number of molecular spins up and down.

excitation-fluorescence cycles the population of the |	mol k↑〉
can be detected. Let us illustrate the scheme for N = 3
molecules. Initially, the molecular system is in a superposition
of all spin states:

|	mol〉 = a↓,↓,↓|↓,↓,↓〉 + a↑,↓,↓|↑,↓,↓〉
+ a↓,↑,↓|↓,↑,↓〉 + a↓,↓,↑|↓,↓,↑〉
+ a↑,↑,↓|↑,↑,↓〉 + a↑,↓,↑|↑,↓,↑〉
+ a↓,↑,↑|↓,↑,↑〉 + a↑,↑,↑|↑,↑,↑〉.

Suppose one is to measure the total population of the states
with one spin up and two spins down, i.e., the |↑,↓,↓〉, |↓,↑,↓〉,
|↓,↓,↑〉 states. For that the initial state |g,g, . . . ,g〉|	mol〉 is
transformed into

|g,g, . . . ,g〉(a↓,↓,↓|↓,↓,↓〉 + a↑,↑,↓|↑,↑,↓〉
+ a↑,↓,↑|↑,↓,↑〉 + a↓,↑,↑|↓,↑,↑〉
+ a↑,↑,↑|↑,↑,↑〉) + |	atom〉(a↑,↓,↓|↑,↓,↓〉
+ a↓,↑,↓|↓,↑,↓〉 + a↓,↓,↑|↓,↓,↑〉)

= |g,g, . . . ,g〉(|	mol〉 − |	mol k↑=1〉) + |	atom〉|	mol k↑=1〉
by selective excitation to the Rydberg superatom state, where
we denote the part of the state corresponding to a single spin
up as

|	mol k↑=1〉 = a↑,↓,↓|↑,↓,↓〉 + a↓,↑,↓|↓,↑,↓〉
+ a↓,↓,↑|↓,↓,↑〉.

Next, atoms in |	atom〉 are transferred to the state |	e〉,
which rapidly decays to the |g,g, . . . ,g〉 state. Repeating
the excitation-fluorescence cycles and detecting fluorescence
intensity will allow one to obtain the total population of
the |	mol k↑=1〉 state, given by |a↑,↓,↓|2 + |a↓,↑,↓|2 + |a↓,↓,↑|2.
Applying this sequence for all |	mol k↑〉, populations of all spin
groups can be measured. This measurement is nondestructive
with respect to molecules and is also of a QND type and
will in fact project the molecular system to a superposition of
states with a certain number of spins up and down provided
a spontaneously emitted photon is detected. In this way
entangled many-body molecular states can be prepared by
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measurement, which does not require molecules to interact,
similar to the proposals in cQED systems [54]. For example,
if initially all molecules are prepared in an equal superposition
state (|↓〉i + |↑〉i)/

√
2, and the described above measurement

sequence is applied, one will be able to project the system
to an entangled state, which is an equal superposition of
states with one spin up, i.e., the W state, and more generally,
equal superpositions of states with k spins up and N−k spin
down, i.e., Dicke states. The collective states readout scheme
could also be applied to measure the estimated Hamming
weight of the molecular spin string Nest = ∑

k↑pk↑, where
0 � k↑ � N is the number of spins up in a particular spin
group and pk↑ is the probability of such a group, measured
in our case by atomic fluorescence intensity. The Hamming
weight, which is the total number of spins up in a string of N

spins or qubits, is a useful quantity in quantum error correction
[55] and in ion string clocks for determining the deviation of
the clock frequency from an unperturbed ion frequency [56].

VI. CONCLUSION

We present a detailed analysis for nondestructive readout
of mesoscopic ensembles of polar molecules, by exploiting
the exquisite sensitivity of Rydberg states in interaction with
molecular rotational states. The extreme dipole moment of
the Rydberg atoms allows selective addressing of single or
collective molecular rotational states. Our earlier proposal
dealt only with single atoms and single molecules and found
that, for example, for distances of 300–600 nm between
molecule and atom a shift of several MHz can be detected
in the Rydberg level depending on the molecular rotational
state. This is wider than any line widths in this setup.

In the present article, we have shown that these shifts,
and the ensuing possibility of conditional Rydberg excitation
and thus atom-molecule entanglement allows nondemolition
readout not only for single atom-molecule pairs but also for
collective rotational states in molecular ensembles. In the latter
case instead of a single atom a Rydberg superatom, i.e., a single
Rydberg excitation of a small ensemble of atoms, can be used.

In particular, detailed numerical estimates for small arrays
of ground-state KRb or RbYb molecules show that the
difference of one excited collective rotational state leads to

shifts of 100s of kHz in a Rydberg superatom about half a μm
away. Our calculations were done for atoms in both a linear
array and a dipole trap, often an easier experimental setup.
Calculations in this case predict only a slightly smaller shift,
which shows that the regularity in an optical lattice is not the
defining feature of the setup.

While, at the present status of experiments, arrays of
different species of under a μm distance might still be
challenging (although two close lattices were demonstrated
for the same atomic species [23]), the techniques presented
here address particularly the nondestructive readout of single
or collective molecular rotational states, which has been
a mostly unsolved problem to date. With the size of the
Rydberg shifts at hundreds of kHz, the superatom can be
conditionally excited depending on the collective molecular
state. While the fluorescence of the atom(s) is measured,
effectively reading out the molecular state, the molecules
remain untouched. An obvious extension would be to use
the Rydberg atom(s) as a communication channel between
two molecules or two molecular ensembles, thus allowing for
effective indirect interactions between the molecular dipoles
that are much stronger than the direct dipole-dipole interaction
between the molecules. Proposals for many-body states based
on strongly interacting dipoles could potentially be realized
much easier this way. In addition, the conditional excitation
allows very well controlled entanglement between molecules
or groups of molecules, thus opening the door to, for example,
entanglement-enhanced metrology.
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APPENDIX A

1. Calculation of interaction matrix elements Eq. (2) in a general case

In order to calculate the matrix elements of the interaction term

(Ve−−M)nlmJmJ ,n′l′m′J ′m′
J

= 〈J,mJ |e �d|J ′,m′
J 〉〈n l m|

�R
R3

|n′ l′ m′〉 − 〈J,mJ |e �d|J ′,m′
J 〉〈n l m|

�R − �r
| �R − �r|3 |n′ l′ m′〉

we assume that the Rydberg atom is fixed at its position by, e.g., trapping in a deep dipole trap or optical lattice such that
�R = Rx �ex + Ry �ey + Rz�ez. The molecular dipole moment can be written as �d = dx �ex + dy �ey + dz�ez leading to:

�d( �R − �r) = dx(Rx − r sin θ cos φ) + dy(Ry − r sin θ sin φ) + dz(Rz − r cos θ ),

where θ and φ are the polar and azimuthal angles of the electron with respect to the Rydberg core.
As a result,

Ve−−M = e(dxRx + dyRy + dzRz)

R3
− edx(Rx − r sin θ cos φ) + edy(Ry − r sin θ sin φ) + edz(Rz − r cos θ )

[(Rx − r sin θ cos φ)2 + (Ry − r sin θ sin φ)2 + (Rz − r cos θ )2]3/2
,
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which can be written as Ve−−M = V core
e−−M + V el

e−−M with

V core
e−−M = e(dxRx + dyRy + dzRz)

R3
,

V el
e−−M = −edx(Rx − r sin θ cos φ) + edy(Ry − r sin θ sin φ) + edz(Rz − r cos θ )

[(Rx − r sin θ cos φ)2 + (Ry − r sin θ sin φ)2 + (Rz − r cos θ )2]3/2

= edx

∂

∂Rx

1

[(Rx − r sin θ cos φ)2 + (Ry − r sin θ sin φ)2 + (Rz − r cos θ )2]1/2

+ edy

∂

∂Ry

1

[(Rx − r sin θ cos φ)2 + (Ry − r sin θ sin φ)2 + (Rz − r cos θ )2]1/2

+ edz

∂

∂Rz

1

[(Rx − r sin θ cos φ)2 + (Ry − r sin θ sin φ)2 + (Rz − r cos θ )2]1/2
.

Let us express the vector connecting the core and the molecule via its spherical coordinates (see Fig. 8) �R =
(R sin η cos ν,R sin η sin ν,R cos η) and express the derivatives ∂

∂Rx
, ∂

∂Ry
, ∂

∂Rz
via spherical coordinates as well:

∂

∂Rx

= sin η cos ν
∂

∂R
+ cos η cos ν

R

∂

∂η
− sin ν

R sin η

∂

∂ν
,

∂

∂Ry

= sin η sin ν
∂

∂R
+ cos η sin ν

R

∂

∂η
+ cos ν

R cos η

∂

∂ν
,

∂

∂Rz

= cos η
∂

∂R
− sin η

R

∂

∂η
.

Next we can use the expansion

1√
R2 + r2 − 2rR cos γ

= 4π

∞∑
l′′=0

1

2l′′ + 1

rl′′
<

rl′′+1
>

m′′=l′′∑
m′′=−l′′

Ym′′
l′′ (θ,φ)Ym′′∗

l′′ (η,ν)

= 4π

{∑∞
l′′=0

1
2l′′+1

rl′′

Rl′′+1

∑l′′
m′′=−l′′ Y

m′′
l′′ (θ,φ)Ym′′∗

l′′ (η,ν) for r < R∑∞
l′′=0

1
2l′′+1

Rl′′

rl′′+1

∑l′′
m′′=−l′′ Y

m′′
l′′ (θ,φ)Ym′′∗

l′′ (η,ν) for r > R,

where γ is the angle between vectors �R and �r (see Fig. 8).
As a result, we have

V el
e−−M, x = edx

∂

∂Rx

1

(R2 + r2 − 2rR cos γ )1/2

= 4πedx sin η cos ν

⎧⎨
⎩

∑∞
l′′=0 − l′′+1

2l′′+1
rl′′

Rl′′+2

∑l′′
m′′=−l′′ Y

m′′
l′′ (θ,φ)Ym′′∗

l′′ (η,ν) for r < R∑∞
l′′=0

l′′
2l′′+1

Rl′′−1

rl′′+1

∑l′′
m′′=−l′′ Y

m′′
l′′ (θ,φ)Ym′′∗

l′′ (η,ν) for r > R

+ 4πedx

cos η cos ν

R

⎧⎨
⎩

∑∞
l′′=0

1
2l′′+1

rl′′

Rl′′+1

∑l′′
m′′=−l′′ Y

m′′
l′′ (θ,φ)

∂Ym′′∗
l′′ (η,ν)

∂η
for r < R∑∞

l′′=0
1

2l′′+1
Rl′′

rl′′+1

∑l′′
m′′=−l′′ Y

m′′
l′′ (θ,φ)

∂Ym′′∗
l′′ (η,ν)

∂η
for r > R

+ 4πiedx

sin ν

R sin η

⎧⎨
⎩

∑∞
l′′=0

1
2l′′+1

rl′′

Rl′′+1

∑l′′
m′′=−l′′ m

′′Ym′′
l′′ (θ,φ)Ym′′∗

l′′ (η,ν) for r < R∑∞
l′′=0

1
2l′′+1

Rl′′

rl′′+1

∑l′′
m′′=−l′′ m

′′Ym′′
l′′ (θ,φ)Ym′′∗

l′′ (η,ν) for r > R,
(A1)

V el
e−−M, y = edy

∂

∂Ry

1

(R2 + r2 − 2rR cos γ )1/2

= 4πedy sin η sin ν

⎧⎨
⎩

∑∞
l′′=0 − l′′+1

2l′′+1
rl′′

Rl′′+2

∑l′′
m′′=−l′′ Y

m′′
l′′ (θ,φ)Ym′′∗

l′′ (η,ν) for r < R∑∞
l′′=0

l′′
2l′′+1

Rl′′−1

rl′′+1

∑l′′
m′′=−l′′ Y

m′′
l′′ (θ,φ)Ym′′∗

l′′ (η,ν) for r > R

+ 4πedy

cos η sin ν

R

⎧⎨
⎩

∑∞
l′′=0

1
2l′′+1

rl′′

Rl′′+1

∑l′′
m′′=−l′′ Y

m′′
l′′ (θ,φ)

∂Ym′′∗
l′′ (η,ν)

∂η
for r < R∑∞

l′′=0
1

2l′′+1
Rl′′

rl′′+1

∑l′′
m′′=−l′′ Y

m′′
l′′ (θ,φ)

∂Ym′′∗
l′′ (η,ν)

∂η
for r > R
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− 4πiedy

cos ν

R sin η

⎧⎨
⎩

∑∞
l′′=0

1
2l′′+1

rl′′

Rl′′+1

∑l′′
m′′=−l′′ m

′′Ym′′
l′′ (θ,φ)Ym′′∗

l′′ (η,ν) for r < R∑∞
l′′=0

1
2l′′+1

Rl′′

rl′′+1

∑l′′
m′′=−l′′ m

′′Ym′′
l′′ (θ,φ)Ym′′∗

l′′ (η,ν) for r > R,
(A2)

V el
e−−M, z = edz

∂

∂Rz

1

(R2 + r2 − 2rR cos γ )1/2

= 4πedz cos η

⎧⎨
⎩

∑∞
l′′=0 − l′′+1

2l′′+1
rl′′

Rl′′+2

∑l′′
m′′=−l′′ Y

m′′
l′′ (θ,φ)Ym′′∗

l′′ (η,ν) for r < R∑∞
l′′=0

l′′
2l′′+1

Rl′′−1

rl′′+1

∑l′′
m′′=−l′′ Y

m′′
l′′ (θ,φ)Ym′′∗

l′′ (η,ν) for r > R

− 4πedz

sin η

R

⎧⎨
⎩

∑∞
l′′=0

1
2l′′+1

rl′′

Rl′′+1

∑l′′
m′′=−l′′ Y

m′′
l′′ (θ,φ)

∂Ym′′∗
l′′ (η,ν)

∂η
for r < R∑∞

l′′=0
1

2l′′+1
Rl′′

rl′′+1

∑l′′
m′′=−l′′ Y

m′′
l′′ (θ,φ)

∂Ym′′∗
l′′ (η,ν)

∂η
for r > R,

(A3)

where

∂Ym′′∗
l′′ (η,ν)

∂η
= −1

2

(√
(l′′ + m′′)(l′′ − m′′ + 1)

(
Ym′′−1

l′′
)∗

e−iν −
√

(l′′ − m′′)(l′′ + m′′ + 1)
(
Ym′′+1

l′′
)∗

eiν
)
.

2. Calculation of the interaction matrix elements Eq. (2) in the case �R = R�ez

We can obtain the interaction matrix elements in the case �R = R�ez by taking the limit η → 0, ν → 0 in Eqs. (A1)–(A3). In

this limit Ym′′
l′′ (η,ν) →

√
2l′′+1

4π
δm′′,0 and Ym′′

l′′ (θ,φ)
∂Ym′′∗

l′′ (η,ν)
∂η

→ − 1
2

√
(2l′′+1)l′′(l′′+1)

4π
[Y 1

l′′(θ,φ) − Y−1
l′′ (θ,φ)].

As a result, V core
e−−M = edz

R2 ,

V el
e−−M, x = −edx

2R

⎧⎨
⎩

∑∞
l′′=0

√
4πl′′(l′′+1)

2l′′+1
rl′′

Rl′′+1

[
Y 1

l′′(θ,φ) − Y−1
l′′ (θ,φ)

]
for r < R∑∞

l′′=0

√
4πl′′(l′′+1)

2l′′+1
Rl′′

rl′′+1

[
Y 1

l′′(θ,φ) − Y−1
l′′ (θ,φ)

]
for r > R.

Next, when η → 0,ν → 0

V el
e−−M, y → −4πiedy

R sin η

⎧⎨
⎩

∑∞
l′′=0

1
2l′′+1

rl′′

Rl′′+1

[
Y 1

l′′(θ,φ)Y 1∗
l′′ (η,ν) − Y−1

l′′ (θ,φ)Y−1∗
l′′ (η,ν)

]
for r < R∑∞

l′′=0
1

2l′′+1
Rl′′

rl′′+1

[
Y 1

l′′(θ,φ)Y 1∗
l′′ (η,ν) − Y−1

l′′ (θ,φ)Y−1∗
l′′ (η,ν)

]
for r > R

and we can use the small η approximation Y 1
l′′(η,0) → − sin η

2

√
(2l′′+1)l′′(l′′+1)

4π
, giving

V el
e−−M, y = iedy

2R

⎧⎨
⎩

∑∞
l′′=0

√
4πl′′(l′′+1)

2l′′+1
rl′′

Rl′′+1

[
Y 1

l′′(θ,φ) + Y−1
l′′ (θ,φ)

]
for r < R∑∞

l′′=0

√
4πl′′(l′′+1)

2l′′+1
Rl′′

rl′′+1

[
Y 1

l′′(θ,φ) + Y−1
l′′ (θ,φ)

]
for r > R,

resulting in

V el
e−−M, x + V el

e−−M, y = −e(dx − idy)

2R

⎧⎨
⎩

∑∞
l′′=0

√
4πl′′(l′′+1)

2l′′+1
rl′′

Rl′′+1 Y
1
l′′(θ,φ) for r < R∑∞

l′′=0

√
4πl′′(l′′+1)

2l′′+1
Rl′′

rl′′+1 Y
1
l′′(θ,φ) for r > R

+ e(dx + idy)

2R

⎧⎨
⎩

∑∞
l′′=0

√
4πl′′(l′′+1)

2l′′+1
rl′′

Rl′′+1 Y
−1
l′′ (θ,φ) for r < R∑∞

l′′=0

√
4πl′′(l′′+1)

2l′′+1
Rl′′

rl′′+1 Y
−1
l′′ (θ,φ) for r > R,

Ve−−M, z = edz

⎧⎨
⎩

∑∞
l′′=0 −

√
4π

2l′′+1 (l′′ + 1) rl′′

Rl′′+2 Y
0
l′′(θ,φ) for r < R∑∞

l′′=0

√
4π

2l′′+1 l′′ Rl′′−1

rl′′+1 Y 0
l′′(θ,φ) for r > R.

Next we will analyze separately the three terms of Ve−−M:
(i) The matrix element of the interaction between the molecular dipole and the Rydberg core has the form:

(
V core

e−−M

)
nlmJmJ ,n′l′m′J ′m′

J

= 〈J,mJ |〈n l m|edz

R2
|n′ l′ m′〉|J ′m′

J 〉 = ed
J,mJ ;J ′,m′

J
z

R2
δn,n′δl,l′δm,m′δJ±1,J ′δmJ ,m′

J
, (A4)
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(ii) The matrix elements of the V el
e−−M, z and V el

e−−M, x + V el
e−−M, y terms have the form:

〈J,mJ |〈n l m|V el
e−−M, z|n′ l′ m′〉|J ′,m′

J 〉

= δm,m′

(
−

∞∑
l′′=0

(l′′ + 1)

√
4π

2l′′ + 1

1

Rl′′+2

∫ R

0
rl′′+2Rnl(r)Rn′l′(r)dr

∫ 2π

0
dφ

∫ π

0
Ym∗

l Y 0
l′′Y

m′
l′ sin θdθ

+
∞∑

l′′=0

l′′
√

4π

2l′′ + 1
Rl′′−1

∫ ∞

R

1

rl′′−1
Rnl(r)Rn′l′ (r)dr

∫ 2π

0
dφ

∫ π

0
Ym∗

l Y 0
l′′Y

m′
l′ sin θdθ

)
〈J,mJ |edz|J ′,m′

J 〉

= δm,m′δJ ′,J±1δmJ ,m′
J

(
−

∞∑
l′′=0

(l′′ + 1)

√
4π

2l′′ + 1

1

Rl′′+2

∫ R

0
rl′′+2Rnl(r)Rn′l′(r)dr

∫ π

0
Ym∗

l Y 0
l′′Y

m
l′ sin θdθ

+
∞∑

l′′=0

l′′
√

4π

2l′′ + 1
Rl′′−1

∫ ∞

R

1

rl′′−1
Rnl(r)Rn′l′ (r)dr

∫ π

0
Ym∗

l Y 0
l′′Y

m
l′ sin θdθ

)
ed

J,mJ ;J ′,m′
J

z (A5)

and,

〈J,mJ |〈n l m|V el
e−−M, x + V el

e−−M, y|n′ l′ m′〉|J ′,m′
J 〉

= −
( ∞∑

l′′=0

1

Rl′′+1

√
4πl′′(l′′ + 1)

2l′′ + 1

∫ R

0
rl′′+2Rnl(r)Rn′l′dr

∫ 2π

0
dφ

∫ π

0
Ym∗

l Y 1
l′′Y

m′
l′ sin θdθ

+
∞∑

l′′=0

Rl′′
√

4πl′′(l′′ + 1)

2l′′ + 1

∫ ∞

R

RnlRn′l′

rl′′−1
dr

∫ 2π

0
dφ

∫ π

0
Ym∗

l Y 1
l′′Y

m′
l′ sin θdθ

)
e〈J,mJ |dx − idy |J ′,m′

J 〉
2R

+
( ∞∑

l′′=0

1

Rl′′+1

√
4πl′′(l′′ + 1)

2l′′ + 1

∫ R

0
rl′′+2Rnl(r)Rn′l′dr

∫ 2π

0
dφ

∫ π

0
Ym∗

l Y−1
l′′ Ym′

l′ sin θdθ

+
∞∑

l′′=0

Rl′′
√

4πl′′(l′′ + 1)

2l′′ + 1

∫ ∞

R

RnlRn′l′

rl′′−1
dr

∫ 2π

0
dφ

∫ π

0
Ym∗

l Y−1
l′′ Ym′

l′ sin θdθ

)
e〈J,mJ |dx + idy |J ′,m′

J 〉
2R

= −ed
J,mJ ;J ′,m′

J+√
2R

δm,m′+1

( ∞∑
l′′=0

1

Rl′′+1

√
4πl′′(l′′ + 1)

2l′′ + 1

∫ R

0
rl′′+2Rnl(r)Rn′l′dr

∫
Ym∗

l Y 1
l′′Y

m′
l′ sin θ ′dθ ′dφ′

+
∞∑

l′′=0

Rl′′
√

4πl′′(l′′ + 1)

2l′′ + 1

∫ ∞

R

RnlRn′l′

rl′′−1
dr

∫
Ym∗

l Y 1
l′′Y

m′
l′ sin θ ′dθ ′dφ′

)

− ed
J,mJ ;J ′,m′

J−√
2R

δm,m′−1

( ∞∑
l′′=0

1

Rl′′+1

√
4πl′′(l′′ + 1)

2l′′ + 1

∫ R

0
rl′′+2Rnl(r)Rn′l′dr

∫
Ym∗

l Y−1
l′′ Ym′

l′ sin θ ′dθ ′dφ′

+
∞∑

l′′=0

Rl′′
√

4πl′′(l′′ + 1)

2l′′ + 1

∫ ∞

R

RnlRn′l′

rl′′−1
dr

∫
Ym∗

l Y−1
l′′ Ym′

l′ sin θ ′dθ ′dφ′
)

,

where the dipole moment matrix elements are d
JmJ ,J ′m′

J
z = 〈J,mJ |dz|J ′,m′

J 〉, dJmJ ,J ′m′
J± = ±〈J,mJ |dx ∓ idy |J ′,m′

J 〉/√2, where
for J = 0, J = 1 and J = 2 rotational states the corresponding matrix elements are d0,0;1,0

z = d/
√

3, d1,0;2,0
z = 2d/

√
15,

d1,±1;2,±1
z = d/

√
5, d

0,0;1,±1
± = −d/

√
3, d

1,0;2,±1
± = −d/

√
5, d

1,±1;2,±2
± = −d

√
2/

√
5, d

1,±1;2,0
± = −d/

√
15, where d is the

permanent dipole moment of a molecule. The integrals involving three spherical harmonics are calculated using the expression:

∫ 2π

0

∫ π

0
Y

m1
l1

(θ,φ)Ym2
l2

(θ,φ)Ym3
l3

(θ,φ) sin θdθdφ =
√

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
.

where ( l1 l2 l3
m1 m2 m3

) is the 3j symbol.
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The matrix elements of the full Hamiltonian including all terms are then given by

〈J,mJ |〈n l m|H |n′ l′ m′〉|J ′,m′
J 〉

= − 1

2(n − μl)2
δn,n′δl,l′δm,m′δJ,J ′δmJ ,m′

J
+ BJ (J + 1)δn,n′δl,l′δm,m′δJ,J ′δmJ ,m′

J

+〈J,mJ |〈n l m|V core
e−−M|n′ l′ m′〉|J ′,m′

J 〉 +
∑

α=x,y,z

〈J,mJ |〈n l m|V el
e−−M, α|n′ l′ m′〉|J ′,m′

J 〉.

The total Hamiltonian is then diagonalized to find new eigenstates accounting for the interaction, and corresponding eigenenergies.

3. Calculation of the matrix elements for the case �R = Rx �ex + Rz �ez using |60s〉 atomic
and |J = 0,m J = 0〉, |J = 1,m J = 0〉 molecular basis states

The case Ry = 0 corresponds to the limit ν = 0 in Eqs. (A1)–(A3). These expressions are further simplified by using

only the |ns〉 atomic basis state. In the matrix elements 〈ns|Ve−−M, α|ns〉 ∼ ∫ 2π

0 dφ
∫ π

0 Y 0∗
0 (θ,φ)Ym′′

l′′ (θ,φ)Y 0
0 (θ,φ) sin θdθ only

l′′ = 0,m′′ = 0 terms are nonzero. As a result,
∂Ym′′=0∗

l′′=0
(η,0)

∂η
= 0 and the interaction terms have the form:

V el
e−−M, z = 4πedz cos η

{
− 1

R2 Y
0
0 (θ,φ) for r < R

0 for r > R
,

V el
e−−M, x = 4πedx sin η

{
− 1

R2 Y
0
0 (θ,φ) for r < R

0 for r > R
,

and V el
e−−M, y = 0. Finally, using only |J = 0,mJ = 0〉 and |J = 1,mJ = 0〉 molecular basis states allows us to neglect the

V el
e−−M, x ∼ 〈J = 0,mJ = 0|dx |J = 1,mJ = 0〉 = 0 term, as well as the edxRx/R

3 term in V core
e−−M. We are therefore left with the

only nonzero matrix element

〈J = 0,mJ = 0|〈ns|Ve−−M|ns〉|J = 1,mJ = 0〉 = ed0,0;1,0
z cos η

R2
− d0,0;1,0

z cos η
1

R2

∫ R

0
r2R2

nsdr.

APPENDIX B

In this section we show that interaction matrix elements
between states |ns〉|↓〉 = |ns〉|J = 0,mJ = 0〉, |ns〉|↑〉 =
|ns〉|J = 1,mJ = 0,±1〉 and their closest in energy neighbors
are much smaller than the energy difference between the
corresponding states. The corresponding level schemes are
shown in Figs. 9(a) and 9(b) for KRb and Figs. 9(c) and 9(d) for

FIG. 8. Angles of the vectors �R and �r in the case of a general
orientation of the Rydberg atom with respect to the molecule.

RbYb, respectively. We consider the case �R = R�ez analyzed
in Appendix A 2.

The matrix elements 〈Ve−−M〉 = 〈J = 0,mJ = 0|〈ns|
Ve−−M |n′l′m′〉|J ′ = 1,m′

J 〉, where m′
J + m′ = 0 by selection

rules, are shown in Figs. 10(a) and 10(b) for KRb and RbYb,
respectively. The matrix elements 〈J = 1,mJ |〈ns|Ve−−M

|n′l′m′〉|J ′ = 2,m′
J 〉 (with mJ = m′ + m′

J and m′
J = mJ ,

mJ ± 1) describing transitions between J = 1 and J = 2
rotational states can be expressed via the corresponding
J = 0 ↔ J = 1 matrix elements as 〈J = 1,mJ |〈ns|
Ve−−M, α|n′l′m′〉|J ′ = 2,m′

J 〉=(d
1,mJ ;2,m′

J
α /d

0,0;1,m′
J −mJ

α )〈J =
0,mJ = 0|〈ns|Ve−−M, α|n′l′m′〉|J ′ = 1,m′

J − mJ 〉, where α=
z,± and |d1,mJ ;2,m′

J
α /d

0,0;1,m′
J −mJ

α | ∼ 1 as can be seen from the
end of Appendix A 2. From Figs. 9 and 10 one can see that

|V ns,J,mJ ;n′l′m′,J ′,m′
J

e−−M /(Ens,J,mJ
− En′l′m′,J ′,m′

J
)| < 0.03 for KRb

for both J = 0 and J = 1 rotational states and all closest
in energy states |n′l′m′〉 (this ratio is < 0.08 for RbYb).
In particular, this validates the discussion in Sec. III about
the small effect of possible spin-rotation splitting of J = 1
states of RbYb on the energy shifts. For both KRb and RbYb
the most important contribution to the energy shift of the
|ns〉|J = 0,mJ = 0〉 state comes from the interaction with the
|ns〉|J = 1,mJ = 0〉 state; for the |ns〉|J = 1,mJ = 0〉 the
largest contribution is from interaction with |ns〉|J =
0,mJ = 0〉 and |ns〉|J = 2,mJ = 0〉 states; for the
|ns〉|J = 1,mJ = ±1〉 the main contributions of the same
amount and opposite sign come from interaction with |ns〉|J =
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FIG. 9. Schematic of the states closest to the qubit states |↓〉 = |ns〉|J = 0,mJ = 0〉 and |↑〉 = |ns〉|J = 1,mJ = 0,±1〉 with the
corresponding energies.

2,mJ = ±1〉 and |(n − 2)d,m〉|J = 2,mJ = 0,±1,±2〉
states.

APPENDIX C

In this section we discuss the convergence of the calcu-
lations of the energy shifts shown in Fig. 2 with respect
to the atomic and molecular basis states. We checked if all
the states np, (n − 1)p, (n − 1)d, (n − 2)d, and (n − 3)f are

contributing significantly to the energy shifts. Figures 11(a)
and 11(b) show the shifts taking into account the full set of
60s,60p,59p,59d,58d, and 57f states (thick lines) and and
three closest in energy 60p, 59p, and 58d states (thin lines)
for KRb and RbYb, respectively. One can see that for both
KRb and RbYb the smaller basis set gives a good agreement
with the full one except for the |J = 1,mJ = 0〉 state. We
also compared the shifts calculated using the full set and the
smallest possible atomic set including only the 60s state.
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FIG. 10. Interaction matrix elements, most relevant to the energy shifts of the |ns〉|↑〉, |ns〉|↓〉 states: 〈Ve−−M〉 =
〈ns|〈J = 0,mJ = 0|Ve−−M |n′l′m′〉|J ′ = 1,m′

J 〉, where m′
J + m′ = 0. The curves correspond to |n′l′m′〉|J ′ = 1,m′

J 〉 = |ns〉|J ′ = 1,m′
J = 0〉

(solid black line), |np,m′ = −1〉|J ′ = 1,m′
J = 1〉 (thick, dashed red line), |np,m′ = 0〉|J ′ = 1,m′

J = 0〉 (thin, dashed red
line), |(n − 1)p,m′ = −1〉|J ′ = 1,m′

J = 1〉 (thick, dotted green line), |(n − 1)p,m′ = 0〉|J ′ = 1,m′
J = 0〉 (thin, dotted green line),

|(n − 1)d,m′ = −1〉|J ′ = 1,m′
J = 1〉 (thick, dash-dotted blue line), |(n − 1)d,m′ = 0〉|J ′ = 1,m′

J = 0〉 (thin, dash-dotted blue line),
|(n − 2)d,m′ = −1〉|J ′ = 1,m′

J = 1〉 (thick, dash-dot-dotted magenta line), |(n − 2)d,m′ = 0〉|J ′ = 1,m′
J = 0〉 (thin, dash-dot-dotted magenta

line), |(n − 3)f,m′ = −1〉|J ′ = 1,m′
J = 1〉 (thick, short-dashed orange line), and |(n − 3)f,m′ = 0〉|J ′ = 1,m′

J = 0〉 (thin, short-dashed orange
line).

It will give a good approximation to the full set if |〈J =
0,mJ = 0|〈ns|Ve−−M |ns〉|J ′ = 1,m′

J 〉|2/2B � |〈J,mJ |〈ns|
Ve−−M |n′(l′ > 0)m′〉|J ′,m′

J 〉|2/|Ens,J,mJ
− En′(l′>0)m′,J ′,m′

J
|.

The results are shown in Figs. 11(c) and 11(d) for KRb
and RbYb, respectively. Again, for RbYb the smallest set
has a good agreement with the full one except for the
|J = 1,mJ = 0〉 state. For KRb the smallest and the full
sets agree approximately, giving shifts of the same order of
magnitude and sign except for the |J = 1,mJ = ±1〉 states.

The effect of the 57f state can be seen in Figs. 2(a) and 2(b)
for KRb and RbYb, respectively. The thick lines show the shifts
calculated using the full set, and the thin lines correspond to
shifts calculated without the 57f state. One can see that the
effect of the f state is reasonably small. For RbYb the curves
with and without 57f completely overlap.

The above calculations were done taking into account J =
0,1,2 rotational states. We also checked if higher rotational
states such as |J = 3,mJ = 0,±1,±2,±3〉 influence the shifts.
Figures 11(e) and 11(f) compare the shifts for KRb and RbYb,
respectively, using the smaller basis set of 60s, 60p, 59p, 58d

to simplify the calculations and J = 0,1,2 (thick curves) and
J = 0,1,2,3 (thin curves) rotational states. One can see that

the curves completely overlap, which means that the shifts of
the J = 0 and J = 1 rotational states are hardly affected by
the J = 3 states.

APPENDIX D

In this section we estimate the effect of a finite spread
of atomic and molecular positions in their respective traps
on the energy shifts obtained in Secs. III and IV. For that
we assume both the Rydberg atom and the molecule to
be in a ground state of their harmonic traps and approxi-
mate the corresponding wave functions as 	at(mol)( �Rat(mol)) =
exp (−(Rat(mol))2/2a2

ho at(mol))/(πa2
ho, at(mol))

1/4, where �Rat(mol)

is the position of the atom(molecule) with respect to its trap
center, aho at(mol) is the corresponding wave-function width.
In Appendix B it was shown that the main contributions to
the shifts of the |ns〉|J = 0,mJ = 0〉 and |ns〉|J = 1,mJ = 0〉
come from the interaction with other |ns〉|J ′,m′

J 〉 states.
For the |ns〉|J = 1,mJ = ±1〉 both the |ns〉|J = 2,mJ = ±1〉
and |(n − 2)d,m〉|J = 2,mJ = 0,±1,±2〉 states contribute
significantly. The interaction matrix elements for ns states
can be written as follows:

V
nsJmJ ;nsJ ′m′

J

e−−M = cnsJmJ ;nsJ ′m′
J

(ρ + Rz mol − Rz at)2 + (Rx mol − Rx at)2 + (Ry mol − Ry at)2
, (D1)

where cnsJmJ ;nsJ ′m′
J

is a constant coefficient. The matrix element between |ns〉|J = 1,mJ = ±1〉 and |(n − 2)d,m〉|J ′,m′
J 〉 states

has the following form:

V
nsJmJ ;(n−2)mdJ ′m′

J

e−−M = cnsJmJ ;(n−2)dmJ ′m′
J

[(ρ + Rz mol − Rz at)2 + (Rx mol − Rx at)2 + (Ry mol − Ry at)2]2
. (D2)
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FIG. 11. (a) and (b) Shifts of the |ns〉|J = 0,mJ = 0〉 (solid black lines), |ns〉|J = 1,mJ = 0〉 (dashed red lines) and |ns〉|J = 1,mJ = ±1〉
(dotted blue lines) states of the combined single Rydberg atom-single polar molecule system for KRb and RbYb and Rb, respectively.
The shifts are calculated with respect to unperturbed energies of the states Ens + 2BJ (J + 1). The atomic basis set included the
60s,60p,59p,59d,58d,and 57f states and the molecular basis set included the J = 0,1,2 rotational states (thick lines). Thin lines correspond
to calculations in which a smaller atomic basis set of 60s, 60p, 59p, and 58d was used; In (c) and (d) the full shifts (thick lines) are compared
to the shifts calculated using the smallest atomic basis set of 60s (thin lines); in (e) and (f) the shifts calculated using the smaller atomic basis
set of 60s, 60p, 59p, 58d , and J = 0,1,2 rotational states (thick lines) are compared to the shifts calculated using J = 0,1,2,3 rotational states
(thin lines).
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The matrix elements Eqs. (D1) and (D2) should be multiplied by |	at(mol)|2 and averaged over atomic and molecular positions:

〈
V

nsJmJ ;nsJ ′m′
J

e−−M

〉 = cnsJmJ ;nsJ ′m′
J

π3a3
ho ata

3
ho mol

∫
exp (−(Rat)2/a2

ho at) exp (−(Rmol)2/a2
ho mol)

(ρ + Rz mol − Rz at)2 + (Rx mol − Rx at)2 + (Ry mol − Ry at)2
d3 �Ratd

3 �Rmol, (D3)

and the same averaging should be done for V
nsJmJ ;(n−2)mdJ ′m′

J

e−−M .

Let us introduce the integration variables �Rp = ( �Rmol + �Rat)/2, �Rm = �Rmol − �Rat with the inverse relations �Rmol = �Rp +
�Rm/2, �Rat = �Rp − �Rm/2, giving d3 �Rmold

3 �Rat = d3 �Rpd3 �Rm. Let us also assume for simplicity that aho at = aho mol = a. In
this case Eq. (D3) becomes

〈
V

nsJmJ ;nsJ ′m′
J

e−−M

〉 = cnsJmJ ;nsJ ′m′
J

π3a6

∫
exp (−2(Rp)2/a2 − (Rm)2/2a2)(

ρ + Rm
z

)2 + (
Rm

x

)2 + (
Rm

y

)2 d3 �Rpd3 �Rm.

The integration over �Rp is straightforward and gives unity. In order to carry the integration over �Rm we assume that ρ � a and
expand the denominator in Rm

x /ρ, Rm
y /ρ, Rm

z /ρ up to second order:

1(
ρ + Rm

z

)2 + (
Rm

x

)2 + (
Rm

y

)2 ≈ 1

ρ2

[
1 − 2Rm

z

ρ
+ 3

(Rm
z

ρ

)2

−
(Rm

x

ρ

)2

−
(Rm

y

ρ

)2
]
.

The integration over �Rm then gives the following result:

〈
V

nsJmJ ;nsJ ′m′
J

e−−M

〉 ≈ cnsJmJ ;nsJ ′m′
J

ρ2

(
1 + a2

ρ2

)
.

The same procedure results in

V
nsJmJ ;(n−2)mdJ ′m′

J

e−−M ≈ cnsJmJ ;(n−2)mdJ ′m′
J

ρ4

(
1 + 6

a2

ρ2

)
.

Finally, the energy shifts of the states |ns〉|J = 0,mJ = 0〉, |ns〉|J = 1,mJ = 0〉, and |ns〉|J = 1,mJ = ±1〉 will have the form:

�Ens,0,0 ≈
∣∣V ns,0,0;ns,1,0

e−−M

∣∣2

Ens,0,0 − Ens,1,0
≈ −|cns,0,0;ns,1,0|2

ρ4Erot

(
1 + 2

a2

ρ2

)
,

�Ens,1,0 ≈
∣∣V ns,1,0;ns,0,0

e−−M

∣∣2

Ens,1,0 − Ens,0,0
+

∣∣V ns,1,0;ns,2,0
e−−M

∣∣2

Ens,1,0 − Ens,2,0
≈ |cns,1,0;ns,0,0|2

ρ4Erot

(
1 + 2

a2

ρ2

)
− |cns,1,0;ns,2,0|2

ρ42Erot

(
1 + 2

a2

ρ2

)
,

�Ens,1,±1 ≈
∣∣V ns,1,±1;ns,2,±1

e−−M

∣∣2

Ens,1,±1 − Ens,2,±1
+

∑
m,m′

J =0,±1,±2

∣∣V ns,1,±1;(n−2)d,m,2,m′
J

e−−M

∣∣2

Ens,1,±1 − E(n−2)d,m,2,m′
J

≈ −|cns,1,±1;ns,2,±1|2
2Erotρ4

(
1 + 2

a2

ρ2

)
+

∑
m,m′

J =0,±1,±2

|cns,1,±1;(n−2)d,m,2,m′
J
|2

ρ8(Ens,1,±1 − E(n−2)d,m,2,m′
J
)

(
1 + 12

a2

ρ2

)
.

For sufficiently deep traps oscillation frequencies reach ωho ∼ 100 kHz, resulting in a = √
�/mωho � 30 nm, where m is the

mass of Rb, KRb, or RbYb. For KRb at ρ � 300 nm it gives 2(a/ρ)2 � 2 · 10−2, for RbYb at ρ > 400 nm the corresponding
number is 2(a/ρ)2 � 10−2. This allows us to estimate the corrections to the energy shifts shown in Fig. 2 due to the finite spread
of atomic and molecular positions in their traps. For KRb maximal energy shifts of the |J = 0,mJ = 0〉 and |J = 1,mJ = 0〉
states are ∼1 MHz, giving the correction �20 kHz. For RbYb the maximal energy shifts ∼4 MHz result in the energy correction
�40 kHz. The correction to the energy shift of the |J = 1,mJ = ±1〉 state can be calculated using interaction matrix elements
discussed in Appendix B, giving the maximal correction �60 kHz for KRb and �7 kHz for RbYb. The same corrections

apply to the energies of collective rotational states Eq. (7), which become �E(k↑,(N−k)↓) ≈ −N−2k
N2

a

|V j=i

e−−M
|2

Erot
(1 + 2 a2

ρ2 ), where we

took into account that only ns state is used to calculate V
j=i

e−−M. This means that to the energy of each collective state the term
�E(k↑,(N − k)↓)(2a2/ρ2) is added. For the case of N = 3,5 molecules considered in Sec. IV, the corrections for the collective
states are �4 kHz for KRb and �10 kHz for RbYb.

This energy correction has to be taken into account when the system is excited to the Rydberg state selectively for a particular
rotational state because it can tune the excitation field out of resonance. The excitation field can be made resonant by, e.g., making
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its Rabi frequency larger than the corresponding energy correction. Another solution is to excite the system with a chirped pulse
such that its frequency sweep covers the corrected energy.
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