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Pulse-phase control for spectral disambiguation in quantum sensing protocols
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We present a method to identify spurious signals generated by finite-width pulses in quantum sensing
experiments and apply it to recently proposed dynamical decoupling sequences for accurate spectral interpretation.
We first study the origin of these fake resonances and quantify their behavior in a situation that involves the
measurement of a classical magnetic field. Here we show that a change of the initial phase of the sensor
or, equivalently, of the decoupling pulses leads to oscillations in the spurious signal intensity while the real
resonances remain intact. Finally we extend our results to the quantum regime for the unambiguous detection of
remote nuclear spins by utilization of a nitrogen vacancy sensor in diamond.
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I. INTRODUCTION

In current quantum sensing experiments involving nitrogen
vacancy (NV) centers in diamond [1–3], dynamical decoupling
(DD) pulse sequences such as Carr-Purcell-Meiboom-Gill
(CPMG) [4,5] or the XY family [6–8] are used to design filter
functions [9–11] only transmissive for particular frequencies
by refocusing the undesired couplings. The operating principle
to detect an external signal, either classical or quantum [12],
corresponds to having the NV center, i.e., the quantum sensor,
evolving under the action of these decoupling pulses and
the signal. Whenever the generated filter is permeable for a
certain frequency component of the signal, the quantum sensor
gathers a phase that will be subsequently measured leading to
a spectrum that characterizes its environment [13–17].

A filter function is created by a sequence of microwave π

pulses applied on the NV center. For standard DD sequences
such as the CPMG or the XY family, the expected resonances
can only occur at the frequencies lωDD, where l are odd integers
and ωDD = π/tfree for a pulse interval of tfree [13,15]. In the
same manner DD schemes employing composite pulses admit
a similar description [18]. However it has been recently shown
[19] that, due to the finite width of the applied pulses, the
quantum sensor still accumulates a phase if lωDD/k matches
the signal frequency ωac or, equivalently, ωDD = αωac with
α = k/l. Here k ∈ N with the maximum value of k defined
by the outer period of the sequence, and odd numbers of k are
excluded by symmetric sequences [19]. Therefore the spurious
responses with k �= 1 lead to spectral ambiguities and to a
misinterpretation of the signals present in the environment. In
particular, the k = 4 spurious resonance of a 13C spin may be
falsely interpreted as the k = 1 resonance of a hydrogen spin.

In this work we show that spurious responses in the
measured spectrum can be identified and separated from the
real ones by controlling the initial phase of the quantum sensor
or the phase of the decoupling pulses. More specifically, we
show how the intensity of the spurious peaks changes when
we vary this phase while the real peaks do not change in
the spectrum. Furthermore we show how this method can be
combined with recently proposed robust DD sequences for an
accurate characterization of the spin environment.

The article is organized as follows: In Sec. II we motivate
our method by studying the spurious signals’ behavior in the
detection of classical fields. In Sec. III we apply the method to

the quantum regime where, in particular, we will make use of
an NV center in diamond as a quantum sensor. Furthermore we
will combine our protocol with the recently proposed adaptive
XY (AXY) DD pulse sequences for accurate spin detection
[20,21].

II. THEORY

A. Detection of a classical signal

To understand the presence and detection of spurious
resonances we consider a sensor spin subjected to a static
magnetic field, �B = Bz ẑ, and driven by a classical ac field, i.e.,
the external signal, applied in the same ẑ direction with angular
frequency ωac and amplitude B. For the case of an NV based
sensor, we choose the ẑ direction along the NV symmetry axis.
In addition we consider the action of microwave π pulses for
both coherence protection of the sensor spin and detection of
the ac field. The relevant Hamiltonian in a rotating frame with
respect to the static Bz field reads (� = 1)

H (t) = γnB sin(ωact + θ )
σz

2
− �

σz

2
+ Hc, (1)

where σμ,μ = x,y,z are Pauli matrices, θ is the initial phase
of the ac field, and � is a possible detuning of the driving field.
The control Hamiltonian

Hc = 1
2	[cos (ϕi + ϑ) σx + sin (ϕi + ϑ)σy] (2)

is applied stroboscopically leading to the action of the
decoupling π pulses on the sensor spin. The pulse-phase ϕi

controls the rotation axis on the x−y plane, while ϑ sets
an overall phase on the pulses which we set to zero for the
following calculations.

In the sensing protocol, the sensor spin is initialized in the
state described by the density matrix

ρ0 = 1

2

(
1 e−iφ

eiφ 1

)
, (3)

where φ corresponds to the initial phase of the state. After
applying a DD pulse sequence, the density matrix of the central
spin becomes ρ(t) and we consider the transition probability
P = 1 − Tr[ρ(t)ρ0] as the measured spectrum.

The effects of the control pulses and the ac field on ρ(t) can
be described by a sequence of rotations

Rn̂(κ) = e−iκn̂·�σ/2 (4)
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on the central spin, where �σ = (σx,σy,σz)T . Note that for in-
stantaneous π pulses κ = π . The effect of each instantaneous
π pulse around an axis lying in the x−y plane corresponds to
the change σz �→ −σz. The free evolution between π pulses
gives rise to a phase accumulation

κfree,j =
∫ tj+1

tj

dτγnB sin(ωacτ + θ )

= γnB

ωac
[cos(ωactj + θ ) − cos(ωactj+1 + θ )], (5)

induced by the ac field during the free evolution between the
times tj and tj+1 where pulses are applied. In this manner
one can find that, for ideal control, the measured signal is
P = sin2 [

∑N
j=0(−1)j κfree,j /2] [22]. This signal depends on

the initial signal phase θ . The effect of the detuning �, which
can be treated as static noise as shown in Eq. (1), would be
ideally removed by the DD sequence. For experiments where
no control over θ is available, the signal would have to be
averaged leading to a loss in contrast [23].

B. Identifying spurious responses

The spurious resonances are caused by noninstantaneous
π pulses. To capture the physics of spurious resonances,
we consider π pulses with constant amplitudes and with
a pulse duration tflip = π/	. For the sake of simplicity
in the following discussion we will assume � = 0; see
Eq. (1). The presence of the ac field during tflip of the
j th pulse changes the rotation axis by an angle βj out of
the x-y plane; see Fig. 1(a). The value of βj is set by the
relative strengths of the ac field and the j th pulse at time
tj , i.e., βj = tan−1 [γnB sin (ωactj + θ )/	] (assuming that
the ac field experiences almost no change during tflip). In the
following we consider a typical experimental situation where
the signal amplitude, γnB, is small compared with 	 leading
to βj ≈ βmax sin (ωactj + θ ), where βmax ≈ γnB/	 � 1.

Now, we study the effect of βj on the widely used XY-8
sequence [18] by tuning the ratio α = ωDD/ωac. The ideal
signal after a single application of the XY-8 sequence is given
in Appendix A, Eq. (A1). This ideal signal is completely
independent of the initial phase φ of the sensor spin. In fact,
for βmax �= 0 the influence of the tilt arises in higher orders of
βmax, which we characterize in the following. As it can be seen
in Fig. 1(b) we apply the DD sequence such that the tilt of
the axis is maximal, which we expect to be the worst possible
case, therefore we set θ = 0. In addition we have for α = 1
and equally spaced pulses a constant magnitude for βj up to
a sign change, i.e., |βj | = |βmax| ∀j ; see Fig. 1(b). Hence,
during pulses the state is rotated around the axis

n̂α=1
j = (

cos ϕj cos βmax, sin ϕj cos βmax,(−1)j sin βmax
)T

.

(6)

We apply an XY-8 sequence with eight pulses and find that for
small tilting angles βmax we have

Pα=1 =−16

[
sin

(
2γnB

ωac
− 2φ

)
− 1

]
β6

max + O
(
β7

max

)
. (7)

(a) (c)

(d)

(b)

FIG. 1. (a) Visualization of the actual control axis at the present
of signal fields on the Bloch sphere. The driving field 	 in the
x−y plane and the ac field 	j

ac parallel to the z axis add to a total
driving field along n̂j , which set the angle βj out of the x−y plane.
(b) Locations of the X [blue (dark grey)] and Y [orange (light grey)]
pulses with respect to the ac field for α = 1 and θ = 0. The height
of each square pulse is proportional to the tilting angle β. Panels (c)
and (d) are the illustrations similar to (b) but for α = 2 and α = 4,
respectively.

The result in Eq. (7) tells us that when the frequency ωDD is
tuned to ωac (note that α = 1) the sensor is only marginally
affected by the presence of the tilting angle. Therefore, a
change on the initial phase φ would have almost no effect
on the observed spectrum.

In contrast, for a decoupling frequency such that ωDD =
2ωac we have that the rotation axis is

n̂α=2
j =

⎛
⎝ cos ϕj cos βj

sin ϕj cos βj

(−1)2mod
(j−1)/2� sin βj

⎞
⎠. (8)

and after the application of an XY-8 sequence we obtain

Pα=2 = 8

{
cos

(
γnB√
2ωac

)2

×
[

1 + sin

(
2(

√
2 − 1)γnB

ωac
+ 2φ

)]}
β2

max

+O
(
β3

max

)
. (9)

Here the signal is already affected by the square of the tilting
angle which is the reason for a spurious resonance to appear.

For the fourfold frequency, ωDD = 4ωac, and γnB/ωac � 1
we have that the transition probability is

Pα=4 ≈ 2(
√

2 − 2)[sin(2φ) − 1]β2
max + O(β3

max), (10)

which also contains the second order of βmax and as it can be
seen in Fig. 1(d) the rotation axis corresponding to consecutive
X (or Y ) pulses are always different.

In Fig. 2(a) we have analytically computed [see Eq. (B1)
in the Appendix B] the impact of the phase φ of the initial
spin state on the factors accompanying the second order on the
tilting angle for different values of the ωDD frequencies after
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(a)

(b)

FIG. 2. (a) Impact of the second order in the tilting angle for
the XY-8 sequence as a function of 1/α and the phase angle φ. The
cuts indicated by the dashed lines have different values of α and are
shown in (b), where we compare the analytic results (solid lines)
of Eqs. (7), (9), and (10) with a numerical simulation (dots) of the
behavior of the transition probability P under the Hamiltonian given
in Eq. (1) for ωac = 2π × 1 MHz, γnB = 2π × 0.12 MHz, θ = 0,
and βmax = 0.012.

the application of a single XY-8 sequence under the assumption
γnB/ωac � 1. From that figure we can extract important
conclusions. On the one hand for the frequencies ωDD with k =
1 and 1/α = l = 1,3,5, . . ., there is no dependence on β2

max.
Hence these resonances are independent up to the order β6

max,
therefore the effect of φ is entirely negligible for short pulses.
Note that for the case θ = π/2 we will find no spurious contri-
bution as the pulses are located on the nodes of the ac field thus
we have βmax = 0. In addition, for the cases l = 3,5, . . . the
collected error is completely equivalent to the l = 1 case as the
field in the moment of pulse application is exactly the same. On
the other hand, for other values of α with spurious resonances,
the dependence on φ can be clearly observed. Furthermore the
vertical lines in Fig. 2(a) correspond to the cases α = 1,2,4
that we have previously discussed in Eqs. (7), (9), and (10)
respectively, and a numerical check shown in Fig. 2(b) stresses
the agreement with those analytical expressions. In addition,
Fig. 5 in Appendix B shows the equivalent for Fig. 2(a), but
for three applications of the XY-8 sequence. Here, the phase
dependent accumulation is even more pronounced while the
width of the resonances is decreased.

This dependence on the phase φ motivates the development
of a criterion to identify spurious resonances.

According to the behavior predicted by Eqs. (7), (9), and
(10) we are able to suppress and enhance the quadratic order
in βmax by choosing a suitable value of the initial phase φ

when the resonances are spurious. Therefore, we can detect
a spurious resonance by the oscillation of its associate peak’s
height when choosing different initial phases of the state. More
specifically, after the first experiment and the recording of the
spectrum Pφ1 , we repeat the experiment with a different initial
phase to obtain Pφ2 . In this manner for every real resonance
we will have

Pφ1 = Pφ2 + O
(
β6

max

) ≈ Pφ2 , (11)

meaning that the effect of the tilting angle is negligible. On
the contrary, spurious resonances differ already at the order
β2

max. Hence by comparing Pφ1 and Pφ2 the real resonances
can be identified.

A further improvement concerning resolution on spurious
peaks can be made by recording multiple initial phases to
construct a spectrum of spurious resonances. In this respect
one can define the following quantity:

W = max
φi ,φj

|Pφi
− Pφj

|, (12)

where the maximum is taken over all recorded initial phases.
W contains all the peaks but the real resonances because in
this case Pφi

≈ Pφj
∀φi,φj leading to W ≈ 0. It is important

to stress that this criterion is one-directional namely in the case
of having multiple ac fields with frequencies ωac,j and some of
them are integer multiples of another one, i.e., ωac,k = μωac,l ,
the real resonances ωac,l cannot be distinguished from the
spurious contribution of ωac,k .

C. Effects of pulse errors

We derived the above criterion for pulses which are only
disturbed by the action of the ac field during the pulse time.
However, a real situation will also suffer from the presence
of a detuning �, see Eq. (1), and flip-angle errors caused by
fluctuations in the Rabi frequency 	 in Hc. For the following
analysis we will consider static errors in � and 	. Note that
this condition can be justified by assuming that both � and
	 are slowly varying. The detuning � of the applied control
field from the transition frequency of the sensing qubit, see
Eq. (1), tilts the rotation axis out of the x-y plane by an
angle γ that can be quantified as γ = tan−1(�/	) ≈ �/	

if � � 	. In addition an error on 	 results in nonperfect π

pulses with the angle of rotation π + δ. To analyze the signal
in small control errors, we write all possible deviations as
βmax = β̃η, γ = γ̃ η, δ = δ̃η and expand the signal with respect
to the small parameter η. In the case of ideal control, η → 0.
Note that different errors are described by the independent
proportionality constants, β̃, γ̃ , and δ̃. A repetition of the
calculation for finding Eq. (7) yields

Pα=1 = 1
4

[
4β̃2 − 4γ̃ 2 + δ̃2

]2[
(2β̃ + δ̃) cos φ

+ (2β̃ − δ̃) sin φ
]2

η6 + O(η7), (13)
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while it can be shown that Pα=2 and Pα=4 do not change in the
second order of η. Therefore, our criterion is valid to identify
spurious peaks under the presence of error sources.

D. Remark on pulse phases

It is worthwhile to mention that the preparation of the
initial state in the x−y plane with different initial phases φj or
different choices of the rotation axis for the decoupling pulses
are interchangeable. The latter can be achieved by a variation of
ϑ in Eq. (2). More specifically, a preparation in ρ = |+x〉〈+x |
and choosing the rotation axis Xϑj

and Yϑj
= Xϑj +π/2 is

equivalent to the situation described throughout the paper.
When both phases are changed, the equations above still hold
if one makes the identification φ �→ φ − ϑ .

III. DETECTION OF A QUANTUM SIGNAL

A. A scheme for quantum emitters

In a quantum setting the classical field is replaced by one
or more nuclei, each of them oscillating at its own Larmor
frequency, and coupled differently to the sensor spin. For the
sake of simplicity, we stick to a single remote spin. In that case
the free evolution of the system is dictated by the Hamiltonian

H = ωcσz − ωIz + �σÃ �I ≈ ωcσz − ωIz + σz
�A �I , (14)

where Ã is the hyperfine tensor describing the interaction
between the sensor and the target spin. We assumed that
the energy splitting is much larger than the interaction with
each remote spin, ωc � ω, therefore the central spin does
not flip and we applied the secular approximation which
removes the corresponding flip-flop terms. In a rotating frame
of the free energy terms ωcσz − ωIz we obtain the following
Hamiltonian:

HI (t) = σz[Ax cos(ωt)Ix − Ay sin(ωt)Iy + AzIz]. (15)

Hence the levels of the central spin are shifted by the ampli-
tudes Ai which are the analog to the amplitude of the classical
field. Note that the first two contributions at the right-hand
side of Eq. (15) reassemble the cases θ = 0 and θ = π/2
simultaneously. Thus, if we want to use our criterion for the
identification of spurious resonances we have to ensure that
| �A| � 	 which is the condition giving rise to small tilting
angles.

The regime where this condition holds is easily satisfied
in NV based schemes, which we will comment on below, as
typical couplings to remote spins are around 2π × 20 kHz nm3

r3

(with r being the distance between the NV center and each
nuclear spin), while driving frequencies can be easily selected
around 2π × 30 MHz.

B. Numerical results in NV-based schemes

A widely used sensor spin corresponds to an NV center in
diamond which qualifies itself through long decay and coher-
ence times even at room temperatures [1,2]. The Hamiltonian
of an NV center and its surrounding nuclear spins without
control reads

H = DS2
z − γeBzSz −

∑
j

γjBzI
z
j + Sz

∑
j

�Aj · �Ij , (16)

where Bz represents an external magnetic field applied along
the NV axis, the ẑ direction, D = 2π × 2.87 GHz is the
zero-field splitting, γe,γj are the electronic and nuclear
gyromagnetic ratios respectively, and �Aj is the hyperfine
vector describing the dipolar interaction between the spin-1
NV center and the j th remote spin-1/2 nuclei (S and I

represent the spin-1 and spin-1/2 operators respectively).
The Hamiltonian in Eq. (16) has been cast in the secular
approximation where all terms allowing flip-flop dynamics of
the NV center’s electron spin have been removed. Note that this
approximation is well justified because of the large values of
energy mismatch. We restrict to the subspace containing only
the electronic spin states |ms = 0〉, |ms = 1〉 which we choose
as our sensing qubit [1,2]. By using |1〉〈1| = (σz + 1)/2 and
going to the rotating frame of NV electron spin we arrive at
the Hamiltonian under control,

H ′ =
∑

j

�ωj · �Ij + σz

2

∑
j

�Aj · �Ij − �
σz

2
+ Hc. (17)

where every nuclear spin rotates with its own larmor frequency
| �ωj | = | 1

2
�Aj − γjBẑ|. The control Hamiltonian Hc under

rotating wave approximation is described by Eq. (2).
In Fig. 3 we illustrate the oscillation of spurious peaks

which we use for their detection and discrimination from
real peaks. We present the spectrum that results from the
interaction of an NV center with a remote 13C spin (γC =
2π × 1.0705 kHz/G) at a distance of r ≈ 1.19 nm from the
NV center and located in one of the available diamond
lattice positions. This gives rise to a hyperfine coupling
�A = 2π × (15.0, 6.4, 11.9)T kHz. The applied field strength

of the external magnetic field reads Bz = 100 G. Concerning
the possible error sources we have taken into account that
the nitrogen atom inherent in the NV center might change
the energy splitting of the electronic spin due to a hyperfine
interaction of up to ∼2π × 1 MHz [1,19] when the intrinsic
nitrogen spin is not polarized. The detuning is stable because
of the long T1 time of the nitrogen spin. Therefore, we choose
� = 2π × 1 MHz in our numerical simulations and include a
relatively large 3% error in the Rabi frequency 	 which is
set to be 2π × 30 MHz. We compare the spectra obtained
for AXY-8 which is a robust sequence suitable for quantum
computing and sensing [20,21,24,25] (see Appendix C) and
XY-8 sequences for N = 70 repetitions of the corresponding
protocols, meaning 2800 pulses for AXY-8 and 560 pulses
for XY-8. The AXY sequences provide improved sensing
resolution in a way similar to the proposal in Ref. [26] that
has been experimentally verified in [27]. In addition, the AXY
sequence utilizes the robust composite Knill pulses [8,28] to
compensate pulse errors, which is important when the number
of applied pulses is large.

We choose 	(t) in a way such that the AXY-8 sequence
is assembled with f1 = 4/(5π ) (see Appendix C), while the
coefficient for XY-8 is always fixed, for the first harmonic
contribution, to f1 = 4/π . We run the simulation with three
initial phases φ = 0 and φ = ±π/4. The important parts of
the spectra are shown in Fig. 3. We can clearly distinguish the
spurious peaks from the real peaks. The spurious resonances
in Figs. 3(b)–3(d) change the peak heights under the varying
initial phase which makes them easy to detect. The AXY-8
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(a) (b) (c) (d)

FIG. 3. Simulation of Pφ for a NV center coupled to a single spin employing the XY-8 [blue (solid dark grey)] and AXY-8 [orange (solid
light grey)] sequences and different initial phases of π/4, 0, − π/4 in each row from top to bottom. The graphs in column (a) show the large
resonance for α = 1 and the smaller α = 4/5 resonance. In columns (b)–(d) the spurious peaks for α = 4/3, 2, 4 are displayed respectively.
The α = 1 resonance corresponds to a sensing time of T ≈ 2.4 ms. The green (dark grey) dashed curves represent an XY-8 sequence but with
no error in the Rabi frequency.

sequence shows less amplitude in the α > 1 spurious peaks,
as it reduces the effective coupling to the remote spins by f1

(a fraction of 1/5 as the one of XY-8) and therefore reduces
the tilting angle; in addition it employs rotations around six
axes instead of two as XY-8 does and is therefore more robust
against the accumulation of the fake signal. Also see the green
(dark grey) dashed line which illustrates the sensitivity of XY-8
with respect to errors in the Rabi frequency in comparison
with the blue (dark grey) line. The occurrence for the α =
4/3 resonance [Fig. 3(b)] in the AXY-8 sequence is due to
the large detuning and the high peak at α = 4/5 [Fig. 3(a)]
results because of the larger Fourier coefficient for f5 when
compared to a standard XY sequence with equally spaced
pulses. However, this resonance is also easy to detect.

C. Distinguishing close peaks

Spurious resonances can induce false identification of
detected nuclear spins [19]. For example, 1H has a gyro-
magnetic ratio of γ1H = 2π × 4.2576 kHz/G thus with Bz =
600 G we expect a resonance peak at ≈ 2π × 2.555 MHz.
Unfortunately, NV center based detection of hydrogen suffers
from the natural occurrence of 13C spins in the diamond lattice
[19]. These carbon spins produce a spurious resonance peak
at approximately 1.0057 times the resonance frequency of the
hydrogen spin since their Larmor frequency at this field is
around 2π × 0.642 MHz. Hence their α = 4 resonance will
appear around the Larmor frequency of the hydrogen. As long
as the absence of 13C is not ascertained by independent means,
the detection of hydrogen cannot be achieved unambiguously.
We use our recently introduced AXY-8 sequence and the above
defined criterion to identify the spurious resonances.

For the following simulations we are guided by the data
presented in [19]. Here, a hydrogen spin with �AH = 2π ×

(14.5, 0, 500)T kHz is considered. We assume a carbon spin
with �AC = 2π × (103, 103, 73)T kHz (rC ≈ 0.59 nm) at one
of the possible positions in the diamond lattice surrounding
the NV center. The magnetic field is tuned to Bz = 1836 G.

(a)

(b) (c)

FIG. 4. Simulation of Pφ for an NV center with a hydrogen and
a strongly coupled carbon spin under the control of AXY sequences.
Panels (a) and (b) show results for f1 = 4/(1.2π ) and f3 = 4/(1.2π )
respectively. The arrow in (b) indicates the position of the hydrogen
resonance, while the arrow in (c) marks the 13C resonance. Panels
(b) and (c) show the effect when changing the initial phase from
0 to π/4. All calculations are performed with � = 2π × 1 MHz,
	 = 2π × 20 MHz, and δ = 0.03 × 	tflip. Here, 1920 decoupling
pulses are used which corresponds to a sensing time T ≈ 23.9 μs
for the α = 1 and T ≈ 71.7 μs for the α = 1/3 resonance of the
hydrogen atom.
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Figure 4(a) shows the transition probability in the region
of the expected hydrogen resonance for α = 1 (k = l = 1)
and f1 = 4/(1.2π ) using the parameters mentioned below the
plot. From here it is not clear to which element this peak
has to be assigned, whether this peak indeed represents a real
resonance, or if it is spurious. Increasing the selectivity of
the AXY-8 sequence by changing the sequence to α = 1/3
(k = 1, l = 3) and changing to f1 = 0, f3 = 4/(1.2π ) leads
to the spectrum (b) which clearly shows the resonance peak
of the hydrogen and marks the spurious 13C resonance, which
can be identified undoubtedly by changing the phase as shown
in Fig. 4(c). Again, note that even if there would be no 13C
present, the constant height of the hydrogen peak under the
phase cycling prooves that the peak is a real resonance of a
present interacting spin.

IV. CONCLUSION

We have defined a criterion that allows the identification
of spurious resonances as they appear in widely used dy-
namical decoupling schemes of the XY -family which can be
implemented easily in existing experimental setups as it only
requires a phase change of the applied pulses. To understand
its working mechanism, we calculated the effect of a XY-8
decoupling sequence for detection of a single classical ac field
and motivated the definition by the different leading orders of
the tilting angle of the rotation axis, which is responsible for
the appearance of spurious resonances. A further calculation
verified the validity of the criterion in a quantum setting under
the sufficient condition of a strong enough driving field used for
the π pulses. Later, we applied the criterion to an NV center
coupled to a single spin where we illustrated the working
principle. For a second example, we solved the detection
uncertainty of hydrogen atoms when using NV centers by
employing the AXY-8 sequence.
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APPENDIX A: IDEAL SIGNAL AFTER
A SINGLE APPLICATION

The definitions of the Hamiltonians and sequences in Sec. II
allow us to calculate the first order of the signal in βmax. It turns
out that the corresponding result is independent of the tilting
angle to first order, and hence represents the ideal signal after
the application of a single unit of the XY-8 sequence (eight
pulses):

P
(1)
α,θ = 1

2

(
1 − cos

{
16Bγn

[
cos

(
3π

4α

)
+ cos

(
5π

4α

)

+ cos

(
11π

4α

)
+ cos

(
13π

4α

)]

× sin
(

π
4α

)3
sin

(
4π
α

+ θ
)

ωac

})
+ O

(
β2

max

)
. (A1)

Note that the zeroth-order contribution in βmax (i.e., P
(1)
α,θ with

βmax = 0) is independent of φ. However, higher orders on βmax

can provide a dependence on φ. For βmax = 0, this equation
represents the ideal signal.

APPENDIX B: IMPACT OF THE SECOND ORDER

With the definitions given in Sec. II, we can calculate the
spectrum for a single application of the XY-8 sequence (eight
π pulses) as

P (1)
α ≈

{[
sin

(
π

2α

)
− sin

(
5π

2α

)
+ sin

(
11π

2α

)

− sin

(
15π

2α

)]
cos φ +

[
sin

(
3π

2α

)
− sin

(
7π

2α

)

+ sin

(
9π

2α

)
− sin

(
13π

2α

)]
sin φ

}2

β2
max + O

(
β3

max

)
,

(B1)

which is valid under the assumption γnB/ωac � 1. This result
gives P

(1)
α=3/β

2
max ≈ 9 cos φ2/4 and will thus oscillate under a

changing initial phase. However, after three applications of the
XY-8 sequence (24 π pulses), we obtain the signal

P (3)
α ≈

{
16 cos

( π

4α

)4
[

sin

(
7π

2α

)
− sin

(
9π

2α

)

+ sin

(
23π

2α

)
− sin

(
25π

2α

)
+ sin

(
39π

2α

)

− sin

(
41π

2α

)]2[
cos φ + 2 cos

(
2π

α

)
cos φ − sin φ

+ 2 cos
(π

α

)
(sin φ − cos φ)

]2}
β2

max + O
(
β3

max

)
.

(B2)

Interestingly, for α = 3 we have P (3)
α ≈ O(β3

max). The same
calculation can be done for other odd numbers of α > 1. Con-
secutive applications show that after nα sequences, for α > 1
and n ∈ N, the corresponding signal is again zero, thus for
these resonances no accumulation of phase is accomplished.
Figure 5 shows Eq. (B2) for different values of 1/α and φ. This
sequence requires three times the evolution time as used for
Fig. 2, thus the peaks are much narrower and it can be observed
how the spurious signal accumulation is only present at certain
relations of ωDD/ωac while it is highly phase dependent.

APPENDIX C: AXY PULSE SEQUENCE

The AXY-8 pulse sequence as presented in [20] is an
extension to the XY familiy. Here, each X(Y ) pulse is
replaced by five pulses which form a composite X(Y ) pulse.
The five subpulses are nonequally spaced but the spacing is
symmetric around the third pulse and they obey a specific
phase relation similar to the Knill sequence [8,28], making
the sequence highly robust against pulse errors. In addition,
the sequence allows for single spin addressing as under reso-
nance ω = 2πlfDD with ω the larmor frequency of the target
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FIG. 5. Impact of the second order after three applications of the
XY-8 sequence. The values for the figure are calculated using Eq. (B2)

spin it dictates an evolution with the effective Hamiltonian

H = ms

4
flσz

�I · �a, (C1)

where ms = ±1 is the spin quantum number of the NV
center electron spin 1, �a is the effective coupling vector, and

fl is the Fourier coefficient of the lth term in the Fourier
representation of the applied filter function. By changing the
interpulse spacing of the introduced composite pulses, the first
four coefficients can be controlled as f1 = ξ, f2 = 0, f3 =
0, f4 = 0 where ξπ ∈ (−8 cos π

9 + 4,8 cos π
9 − 4) and the

corresponding pulse times xi
T
2 are given by

x1,2 = 1

2π
arctan

±(2ξπ − 12)w1 + √
3w2

√
6
√

w2 − 96ξw1π ± w2
1

√
3w2

, (C2)

as well as x3 = 1
4 and x4,5 = 1

2 − x2,1 and we defined w1 =
4 − ξπ and w2 = w1[960 − 144ξπ − 12(ξπ )2 + (ξπ )3]. An-
other possibility is set by f1 = 0, f2 = 0, f3 = ξ, f4 = 0
which results in the pulse times

xj = 1

4
− 1

2π
arctan

√
q2

j − 1 (C3)

with the same symmetry conditions as above and qj =
4/[

√
5 + πξ + (−1)j ] and j = 1,2 and ξ ∈ (− 4

π
, 4
π

). These
two possibilities correspond to the resonances α = 1 and
α = 1/3 respectively.
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