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Two-dimensional ion crystals in radio-frequency traps for quantum simulation
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The computational difficulty of solving fully quantum many-body spin problems is a significant obstacle to
understanding the behavior of strongly correlated quantum matter. Experimental ion trap quantum simulation
is a promising approach for studying these lattice spin models, but has so far been limited to one-dimensional
systems. This work argues that such quantum simulation techniques are extendable to a two-dimensional (2D)
ion crystal confined in a radio-frequency (rf) trap. Using appropriately chosen parameters, driven ion motion due
to the rf fields can be made small and will not limit the types of quantum spin models that can be experimentally
encoded. The rf-driven motion is calculated to modestly reduce the stability region of a 2D crystal and must
be considered when designing the 2D trap. The system will be scalable to 100+ quantum particles, far beyond
the realm of classical intractability, while maintaining the traditional ion trap strengths of individual-ion control,

long quantum coherence times, and site-resolved projective spin measurements.
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I. INTRODUCTION

Quantum spin models are indispensable tools for describing
the complex behavior of quantum condensed-matter systems.
They are a universal language for characterizing quantum
magnetism and the behavior of quantum systems near phase
transitions [1,2], and they can potentially shed light on the
physics that underlie exotic new materials [3] or high-T¢
superconductivity [4,5]. Yet, most spin models have not been
“solved,” meaning that it is not possible to write down analytic
expressions describing the locations of critical points, the
character of different phases, or how an arbitrary initial state
will evolve in time. While numeric simulations have made sub-
stantial progress investigating specific configurations [6-8],
quantum many-body problems in general become intractable
beyond only a few dozen spins due to the exponential scaling
of Hilbert space dimension with system size [9]. Typically,
such problems become even more computationally difficult as
the dimensionality of the spin system is increased [8—11].

Quantum simulation, in which the many-body problem
of interest is encoded within a well-controlled experimental
quantum system [12,13], has proven an increasingly powerful
technique for studying the behavior of interacting quantum
spins. Such quantum simulators should be easily reconfig-
urable and contain widely tunable parameters, so that they may
investigate a broad variety of problems in disparate physical
regimes [ 14]. Recent advances have used collections of trapped
ions to investigate quantum phase transitions [15-20], explore
open quantum systems [21-23], witness the growth of quantum
correlations and entanglement [24,25], and directly measure
the many-body energy spectrum [26,27] in systems of up to
~20 fully coupled spins.

In all cases, however, experiments have been restricted to
one-dimensional (1D) ion chains emulating one-dimensional
spin models. Although effective two-dimensional (2D) sys-
tems can be realized in a 1D chain by applying appropriate
decoupling pulses and Trotterized sequences [28], this ap-
proach scales very poorly due to the large number of required
quantum gate operations. By instead constructing an ion trap
quantum simulator with native 2D interactions, one can begin
to address many of the open topics in quantum many-body

2469-9926/2016/94(3)/032320(7)

032320-1

physics that become important in two dimensions, such as
geometric frustration [29,30], exotic phases of matter (such
as spin glasses [31] and liquids [3]), and the relationship
between entanglement, frustration, and high-7¢ superconduc-
tivity [3,4,10,32].

It would be strongly desirable for such a 2D trapped
ion quantum simulator to retain the traditional 1D ion trap
strengths: full control at the single-particle level, site-resolved
measurements and readout, and spin-spin coupling rates that
are fast compared to the decoherence rate. However, current
efforts to build 2D trapped ion systems in Penning traps [33]
and microfabricated arrays [34,35] have yet to solve issues of
individual ion addressing and slow coupling rates, respectively.
Here, I propose the use of standard radio-frequency (rf) Paul
traps for use in 2D quantum simulation experiments. I will
show that it is possible to choose appropriate trap parameters so
that the ions’ driven motion—called micromotion—will have
a negligible effect on the outcome of a quantum simulation,
even for hundreds of trapped ions. With such parameters,
the ions will remain individually addressable and resolvable,
with spin-spin coupling rates comparable to those seen in 1D
experiments.

The paper is organized as follows. Section II reviews the
standard rf Paul trap and introduces a choice of trap parameters
that leads to a 2D triangular lattice of ions. Section IIT explicitly
investigates the effects of micromotion on the crystal described
in Sec. II, calculating the shift in equilibrium ion positions, the
change in normal mode structure, and an updated stability
criterion for achieving a 2D structure within an rf trap. Having
developed this full analysis including micromotion, Sec. IV
shows how the crystal can be used to perform quantum
simulations of 2D spin models with strong coupling rates.
Section V offers an outlook for future experiments and some
concluding remarks.

II. 2D PAUL TRAPS

An rf Paul trap may be operated in a regime such that the
trapped ion Coulomb crystal self-assembles in a 2D plane.
We will investigate this regime here within linear Paul traps
with four segmented blades (one of the most common trap
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designs [25,36-39]), though the results are equally applicable
for other trap geometries [40,41]. For a typical “blade”-style
trap, the central segments of two opposing blades are driven
with an rf voltage Vj at frequency €2,, while the other two
central segments are held at rf ground. The outer electrode
segments are biased with a dc voltage Uy. Near the center of
the trap, the potential can be written as [42]

Vo cos(€2,1)
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where d and z are the radial and axial trap dimensions and « is
a geometric factor of order unity. When cooled to milli-Kelvin
temperatures, ions trapped in this potential behave as though
they were in a three-dimensional harmonic pseudopotential:
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where the radial and axial trapping frequencies are given by
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with Q the ion charge, m the ion mass, and ¢ = 20 V()/mdgﬂl2
the Mathieu “g” parameter. Typically, a small asymmetry is
introduced in the electrode structure to break the degeneracy
of the x and y axes, thereby preventing a zero-frequency
rotational mode and providing a unique minimum-energy
configuration; for the numeric simulations to follow, the radial
trap frequency asymmetry is set to be 0.2% (which does not
significantly affect the transverse mode frequencies).

If the radial trap frequencies w, are much stronger than the
axial frequency w, (the typical regime for most experiments),
the ions will form a 1D chain along the central trap axis. As
w, is increased (while holding w, and the number of ions
fixed), the linear chain passes through a series of structural
phase transitions into new configurations: zig-zag, helical,
and ultimately a 2D triangular lattice in the radial plane [43].
This final arrangement, which is desired for the 2D quantum
simulation experiments proposed here, requires that w, be
large compared with w,, with the ratio scaling weakly with
the number of ions N in the trap [43]:

2 S (2.264N)4, &)
Hence, a 100-ion system requires an axial frequency >4
times larger than the radial frequencies. From Eq. (3), a large
axial frequency can be achieved by increasing the voltages
Uy applied to the outer trap segments. However, if the dc
voltage Uy is too large compared with the rf voltage Vj, this
has a destabilizing effect on the crystal: the radial frequency
[Eq. (3)] becomes imaginary, and ions no longer have bound
trajectories. The ion trap voltages, frequencies, and sizes thus
must be carefully chosen in order to achieve a stable and
robust 2D planar crystal. The full stability regime for a 2D ion
lattice in an rf trap, which depends on the axial and radial trap
frequencies as well as the number of ions, will be calculated
and shown in Sec. IIIC.
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For the numeric simulations presented in upcoming sec-
tions, I choose the following set of trap parameters: dy =
70 = 200 um, , = (27w) x S0MHz,Vy, =440V, and k Uy =
13V, which result in radial and axial trap frequencies of
w, = (2r) x 510 kHz and w, = (27) x 3.04 MHz. These
parameters lie squarely within the stability regime for a 2D
crystal of Yb' ions and are all straightforward to achieve in
the laboratory. However, before implementing such a trap for
quantum simulation experiments, we must first consider the
effects of rf-driven motion on the 2D ion crystal.

III. EFFECTS OF MICROMOTION

For a 2D crystal in a linear Paul trap, each ion is subject
to rf-driven micromotion with an amplitude proportional
to the ion’s distance away from the central trap axis. For
several types of ion trap experiments, even small amounts
of micromotion can have significant harmful effects: it can
lead to large systematic Doppler shifts in ion-based atomic
clocks [44,45], and it can substantially reduce the fidelities
of quantum gates during a quantum computation (in the ab-
sence of advanced micromotion-correcting protocols) [46,47].
Nevertheless, many successful experiments do not depend sen-
sitively on micromotion amplitude [48-52], and ion Coulomb
crystals of up to 10°-10° particles have been confined in rf
Paul traps [53,54].

This section will demonstrate that for carefully chosen
parameters (such as those introduced above), micromotion
effects on 2D quantum simulation experiments are both pre-
dictable and small. This result is enabled by the orientation of
the 2D crystal: there is effectively no micromotion amplitude in
the axial (transverse) direction, since the ions are compressed
to a single plane at the axial trap center. By utilizing the
axial modes of motion for quantum simulation protocols,
one can thus sidestep the large effects of micromotion in the
radial plane. Nevertheless, four residual effects in the axial
plane must still be considered: (1) a shift in the equilibrium
ion positions, (2) the resolvability of ions due to radial
micromotion amplitude, (3) shifts in the axial normal mode
frequencies, and (4) an altered stability region for maintaining
a 2D crystal. These effects are each explored in detail below.

A. Equilibrium positions and micromotion amplitude

In the absence of micromotion, finding the equilibrium
positions for a 2D ion crystal proceeds similarly to the 1D
case. In the radial plane, the potential experienced by the ions
has contributions from the trap voltages as well as the Coulomb
interaction:

1 1
Vix,y) = Z <§mwfx,2 + Emw%yf)

i
2

+3 ¢ 5)

= dmeoy/(xi — X2 + (i — V2

The equilibrium positions are the set of coordinates {x;, y;} that
minimize the energy. Although direct numerical minimization
is possible for small system sizes, finding the equilibrium
configuration for larger numbers often requires the use of
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FIG. 1. Equilibrium ion positions in the proposed rf Paul trap for (a) 20 ions and (b) 100 ions. Results were obtained with a molecular-
dynamics simulation that included the effects of micromotion. The insets show the micromotion directions and amplitudes, which are small

compared to the interion spacing.

molecular-dynamics simulations with added dissipation [55];
this is the approached used for calculations here.

In the presence of micromotion, there is no longer an
“equilibrium” position; the radial coordinates of each ion vary
in time as

F(t) = 1y + 71 cos(§2,t) + > cos(2Q,t) + - - - (6)

where 7y is the ion’s average position, and the higher-order
terms indicate the amplitude of the motion at the nth harmonic
of the drive frequency €2;. Following [46,47], each of these
amplitudes 7, for each ion can be extracted by self-consistently
solving the equations of motion within the full trap potential
of Eq. (1).

The calculated central positions 7y for a 20- and 100-
ion crystal, using the parameters introduced in Sec. II and
including micromotion, are shown in Figs. 1(a) and 1(b).
The crystals self-organize into a 2D triangular lattice, with
a 4.3-um average interion spacing for the 100-particle case.
When accounting for micromotion, the positions are found to
shift by an average of only 0.08 um—a very small change that
would not be noticeable with standard imaging techniques and
will not have any foreseeable consequences for 2D quantum
simulations.

The amplitude of the radial micromotion is also important
to consider; large amplitude excursions could obscure the
individual ion positions, preventing quantum spin readout.
The amplitudes of the micromotion-induced terms in Eq. (6)
may be written as || = ¢ /2 and |#»| = ¢?/32 [42,56], where
q =20QVy/md3Q? is the Mathieu parameter. Since g < 1
for any stable rf trap, the first-order amplitude dominates the
time-dependent part of Eq. (6), and smaller ¢ parameters are
advantageous for minimizing the micromotion amplitude. For
the trap settings proposed in Sec. II, g = 0.125; for the 100-ion
case, this leads to a micromotion amplitude of 1.4 um for the
most radially extended particle—still small compared to the
4.3-pum interion distance (see Fig. 1 insets). Since the radial
extent of the 2D crystal scales as ~d~/N /2 for N particles with
separation distance d, the maximum micromotion amplitude
scales as ~gd~/N /4. If we demand that this amplitude be
smaller than half the interion distance (d/2), this constrains
the maximum number of trapped ions to be N ~ 4/¢>, which
is N = 250 for the chosen trap parameters.

B. Normal mode structure

To calculate the normal mode frequencies of an ion
crystal, one typically expands the Coulomb potential around
the equilibrium positions to second order, then diagonalizes
the resulting matrix to find the eigenfrequencies and eigen-
modes [57]. However, the presence of micromotion in the
radial plane can have a notable effect on the axial mode
frequencies and eigenfunctions (even though there is no axial
micromotion), and must be taken into account [47]. As we will
see, the primary effect of radial micromotion is to decrease the
frequencies of all axial modes, except for the center-of-mass
(COM) mode, with the low-frequency modes experiencing the
largest shift.

To second order, the axial potential experienced by the ions
is given by

)

where r;; = /(x; — x;)> + (y; — y;)*. Due to the radial mi-
cromotion, the ion position differences r;;(¢) are dynamic
[Eq. (6)], which implies that the axial normal mode frequencies
will also inherit a time dependence. However, since €2; > w,,
it is sufficient to consider the expectation value of the potential
V(z) over one period of micromotion, and diagonalize this
resulting matrix to find the normal mode eigenfrequencies.
The results of this calculation are shown in Fig. 2(a),
along with several representative mode eigenfunctions, for 100
trapped ions. Here, the highest-frequency axial (transverse)
motion corresponds to the COM mode (just as in the 1D
case) and remains unchanged in the presence of micromotion.
However, Fig. 2(b) shows that all other mode frequencies are
suppressed under micromotion; for the lowest (zig-zag) mode,
the reduction is more than 0.5 MHz (~30%). This change
in mode structure will not impede 2D quantum simulations;
rather, its effect will be to increase the effective spin-spin
interaction range between ions in the lattice (as will be shown
in Sec. IV). When quantum simulating spin models that are
sensitive to the specific value of interaction range, one must
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FIG. 2. (a) Calculated spectrum of axial mode frequencies (in-
cluding micromotion effects), along with several mode eigenfunc-
tions, for a 100-ion crystal using the parameters in Sec. II. The
highest-frequency mode is the center-of-mass motion (no spatial
variation), while lower-frequency modes vary on shorter and shorter
length scales. (b) Radial micromotion induces a frequency shift in
the axial normal modes, compared to the no-micromotion case. The
center-of-mass mode is left unchanged, while the lower-frequency
modes are shifted downwards by progressively larger amounts.

thus take into account this micromotion-induced frequency
shift.

C. Stability region

Consider a 1D linear ion chain, which is characterized
by a set of transverse normal mode frequencies. If the axial
frequency w, is increased while holding all other parameters
fixed, the ions will be pushed closer together, and all transverse
mode frequencies (except for the COM) will shift downwards.
Eventually, the chain will undergo a structural phase transition
and “buckle” at the center; this corresponds to the lowest
transverse mode (i.e., the zig-zag mode) shifting downwards
to zero frequency.

Analogous effects occur for 2D planar ion crystals: when
the radial confinement becomes too strong compared to the
axial confinement, the zig-zag transverse mode crosses zero
frequency, and the crystal buckles into three dimensions. This
effect has been well described in [43], which led to the scaling
law in Eq. (4). However, this earlier analysis did not explicitly
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FIG. 3. Stability region for a 2D planar ion crystal, using the
trap parameters of Sec. Il and w, = 0.5 MHz. Red points show the
calculated boundary in the absence of micromotion, in agreement with
Eq. (4) (red dashed line). When micromotion effects are included, the
entire region below the blue points becomes unstable. This stability
boundary is also found to exhibit weak power-law scaling with the
number of ions (blue dashed line).

consider rf traps, where micromotion can have significant
impacts on crystal stability.

The previous section (as well as Fig. 2) demonstrated that
micromotion itself causes a downward shift in the transverse
mode frequencies. This observation implies that micromotion
can have a destabilizing effect: the zig-zag mode can be
pushed to zero frequency, even for crystals that are “stable”
according to Eq. (4). Thus, one must carefully calculate the
mode structure—including micromotion—before concluding
that the ions will remain in the desired planar geometry.

Figure 3 shows the boundary between stable and unstable
2D planar crystals, using the trap parameters of Sec. II with
o, = 0.5 MHz, when micromotion is ignored (red points)
and included (blue points). As argued above, the stability
region including micromotion is reduced when compared
with the predictions of Eq. (4). As before, the boundary
scales weakly with the number of ions N; now, w,/w, x
NO-272001 (compared to N2 previously). The primary effect
of micromotion is thus a multiplicative increase in the ratio
w./w, required for stability; a very rough rule would be to
calculate the needed frequency ratio via Eq. (4), then add 45%
to account for effects of micromotion.

IV. GENERATING 2D SPIN-SPIN INTERACTIONS

By loading Yb™ ions into the trap described above, one can
engineer an effective 2D many-body spin system for quantum
simulations. As in 1D ion trap experiments, effective spin
qubits can be encoded in the hyperfine ground states [58—60],
which are first-order insensitive to external magnetic field
noise and can yield coherence times of over 10 min [61]. If the
ions are irradiated with an appropriate frequency of laser light,
the spin-dependent fluorescence from each ion allows for a
high-fidelity measurement of the projected spin state [60,62].

The effective spin qubits within each ion can be cou-
pled together by applying spin-dependent optical dipole
forces [63,64]. These forces are induced by global, far-detuned
Raman transitions at 355 nm that virtually excite the collective
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FIG. 4. The normal modes determine the spin-spin couplings J;;
[Eq. (9)], which are shown for an edge spin (a) and a central spin (b)
in a 100-ion array using the trap parameters detailed in the text. For
these parameters, the couplings fall off algebraically with distance as
~1/r%, with « tunable between zero and three. Panel (c) shows this
power-law decay for the edge spin chosen in (a).

modes of ion motion. If the wave-vector difference between
the two Raman beams Ak lies along the axial direction of
the trap, this will excite the axial motional modes w?, (the
desired direction to avoid problematic micromotion effects).
The two beams should contain a pair of beat-note frequencies
symmetrically detuned from the hyperfine splitting by a
frequency w, which is comparable to the center-of-mass
axial frequency. When a resonant carrier interaction is added,
this arrangement results in an effective transverse-field Ising
Hamiltonian [65,66]:

HIsing = Z

i<j

Jjoiol + B Z o) (8)

where h has been set to 1, B is an effective transverse magnetic
field, and the long-range spin-spin couplings are given by
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where €2 is the carrier Rabi frequency, and b;,, is the normal
mode eigenvector component of the ith ion in mode m.

Having calculated the mode frequencies w?, and eigen-
functions b;,, using the techniques outlined in Sec. III, the
complete spin-spin coupling matrix J;; follows immediately
[Eq. (9)], and is shown in Figs. 4(a) and 4(b) for two different
spins in the 2D lattice. Here, the carrier Rabi frequency is
set to 2 = (27) x 1.5 MHz, and the laser detuning p was
chosen to be blue of the center-of-mass axial mode by approx-
imately 3Q,/hAk?/2mw, = (27) x 350 kHz (ensuring that
residual phonon effects are kept small [17]). These proposed
parameters yield a nearest-neighbor antiferromagnetic spin-
spin coupling of approximately (27) x 1 kHz (which is
nearly an order of magnitude faster than typical decoherence
rates [24,25]), as well as along-range coupling that decays with
distance r as ~1/r>. In general, by choosing different values of
1, long-range interactions can be continuously tuned to decay
with distance as any power between 1/r° and 1/r3 [66].

V. CONCLUSIONS

This work has argued that rf Paul traps with appropriately
chosen parameters can serve as a scalable platform for
developing 2D quantum simulation experiments. In such traps,
the ions self-assemble into a triangular lattice with tunable,
long-range couplings given by Eq. (9). As pictured in Fig. 5,
it would also be possible to shelve specific ions in electronic
states outside of the qubit subspace, allowing for multiple types
of effective lattice configurations [67]. The residual effects of
micromotion in 2D traps can be well characterized, leading
to a slightly longer spin-spin interaction range and a reduced
(but still easily achievable) 2D trap stability region. It should
be straightforward to achieve several hundreds of ions for use
in these experiments, limited by the ability to individually
resolve and address the atoms (see Sec. IIl A) and the ability
to stably confine large numbers in a 2D configuration using
reasonable laboratory voltages (see Fig. 3).

Using an appropriate combination of Raman laser frequen-
cies, amplitudes, and phases, it will be possible to quantum
simulate a diverse toolbox of spin-model Hamiltonians. Ising
couplings naturally occur as a result of the applied spin-
dependent force [65], and have been demonstrated in numerous

2 N _y
Jj = Q2 hAk bimb jm . 9) 1D quantum simulation experiments [16-20,26]. Recently,
2m ey 12— (o) 1D simulations have also demonstrated an XY spin model by
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FIG. 5. By using a focused laser beam to shelve specific ions in uncoupled spin states, one can realize a variety of different lattice geometries.
Four examples are depicted here: (a) Kagomé, (b) honeycomb, (c) rectangular, and (d) spin ladder. Blue circles are participating ions, empty
circles are “hidden” ions, and black lines indicate the nearest-neighbor spin-spin couplings on each participating lattice site.
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applying a large resonant Raman transition in conjunction with
the Ising interaction [24,25]. While not yet experimentally
demonstrated, it should also be possible to realize full Heisen-
berg spin-spin interactions of the form H =Y J;;0; - 6,
following the ideas proposed in Refs. [68,69]. These 1D
advances can be directly applied to 2D quantum simulations,
since they both fundamentally operate by coupling Yb™
ions together through collective motional modes. With the
ability to apply a variety of different spin Hamiltonians,
along with tunable spin-spin coupling strengths J;;, one can

PHYSICAL REVIEW A 94, 032320 (2016)

fully implement a quantum simulator to explore many of the
important open questions in 2D quantum many-body physics.
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