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All two-qubit states that are steerable via Clauser-Horne-Shimony-Holt-type
correlations are Bell nonlocal
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We derive an inequality that is necessary and sufficient to show Einstein-Podolsky-Rosen (EPR) steering in a
scenario employing only correlations between two arbitrary dichotomic measurements on each party. Thus the
inequality is a complete steering analogy of the Clauser-Horne-Shimony-Holt (CHSH) inequality, a generalization
of the result of Cavalcanti et al. [E. G. Cavalcanti, C. J. Foster, M. Fuwa, and H. M. Wiseman, JOSA B 32, A74
(2015)]. We show that violation of the inequality only requires measuring over equivalence classes of mutually
unbiased measurements on the trusted party and that in fact assuming a general two-qubit system arbitrary pairs
of distinct projective measurements at the trusted party are equally useful. Via this it is found that for a given
state the maximum violation of our EPR-steering inequality is equal to that for the CHSH inequality, so all states
that are EPR steerable with CHSH-type correlations are also Bell nonlocal.
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Einstein-Podolsky-Rosen (EPR) steering characterizes the
apparent ability to nonlocally affect a quantum state, the central
problem in the infamous EPR argument [1], that aimed to
show that quantum mechanics is incomplete. That argument
considered an entangled state shared between two distant
parties, and proceeded to show that by measuring one or
another of two noncommuting observables on the local system
the distant system is left in different possible sets of quantum
states, an effect that Schrödinger later termed “steering” [2].
These allow the experimenter to predict the result of measuring
one or another of two noncommuting observables at the distant
system. But since the systems no longer interact, EPR argued,
the local choice of measurement cannot affect the “elements
of reality” associated with the distant system. Thus both quan-
tities should have simultaneous reality, which EPR believed
would be described by a theory more complete than quantum
mechanics. However, the possibility of such a local hidden-
variable (LHV) description was ruled out by Bell in 1964 [3].

In 1989 Reid derived variance inequalities that are violated
with EPR correlations for continuous variable systems [4] and
this was extended to discrete variables in [5]. Wiseman, Jones,
and Doherty (WJD) introduced a notion of steering as the in-
ability to construct a local hidden state (LHS) model to explain
the probabilities of measurement outcomes [6]. In quantum-
information terms, EPR steering can be defined as the task for
a referee to determine whether two parties share entanglement,
when one of the parties is untrusted and using only classical
communication [6]. Based on this, EPR-steering inequalities
were defined in [7], with the property that violation of any
such inequality implies steering. It was shown in [6,8] that the
set of steerable states, that is, states for which there exist local
measurements that produce violation of a steering inequality,
are strictly a subset of entangled states and a superset of states
that violate a Bell inequality (Bell-nonlocal states). In partic-
ular the set of Bell-local Werner states that are unsteerable
was found but no clear connection between the set of mixed
steerable states and Bell nonlocal states has been determined.
Experiments on entangled photon pairs [9–19] have produced
violations of steering inequalities thus demonstrating the EPR

paradox; in particular [20] reported loophole-free steering
inequality violation, analogous to the much sought-after
loophole-free Bell inequality violation, that was reported for
the first time only this year [21]. The WJD formalism has also
had application in quantum information theoretic tasks such as
one-sided device-independent quantum key distribution, quan-
tum teleportation, and subchannel discrimination [22–24].

Recently, the authors of [25] derived an EPR-steering ana-
log of the Clauser-Horne-Shimony-Holt (CHSH) inequality,
that is, an inequality that is necessary and sufficient to demon-
strate EPR steering in a scenario involving only correlations
between two dichotomic measurements on each subsystem.
However, this inequality requires that measurements by the
trusted party (the “steered” party) be mutually unbiased. Here
we produce a necessary and sufficient steering inequality in
the same CHSH scenario as [25], that applies to any pair of
projective measurements at the trusted party. This is presented
in Sec. II with a full proof in Appendix A. In Appendix B the
set of unsteerable correlations for arbitrary dichotomic positive
operator-valued measures (POVM’s) is found though a simple
necessary and sufficient inequality cannot be constructed for
this case. In Sec. III it is shown that the inequality is violated
if and only if an inequality involving mutually unbiased
measurements is also violated. This fact is used in Sec. IV
to find the maximum violation of this EPR-steering inequality
for a given bipartite state, which turns out to be equal to the
maximum violation of the CHSH inequality for the given
state as calculated in [26]. The inequalities have the same
right-hand side, hence we find an equivalence between steering
and nonlocality for this scenario. Thus the known distinction
between the sets of Bell-nonlocal and steerable states cannot
be determined with CHSH-type correlations alone.

I. NECESSARY AND SUFFICIENT STEERING
INEQUALITY

Here we develop the EPR-steering formalism, following the
notation of [25], and develop the necessary and sufficient EPR-
steering inequality for the CHSH scenario with a full proof in
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Appendix A. Through a similar process the boundary of the
set of unsteerable correlations can be found for dichotomic
POVM’s as we show in Appendix B. We have a pair of
isolated systems, one at Alice and the other at Bob. We denote a
measurement at Alice’s (Bob’s) system as A (B), chosen from
a the set of observables Dα , (Dβ) in the Hilbert space of Alice’s
(Bob’s) system, with outcomes labeled by a ∈ Lα(b ∈ Lβ). A
state W shared between Alice and Bob is defined as Bell local
or it has a LHV model if and only if it is the case that ∀a,b,A,B

the joint probability distributions can be written in the
form

P (a,b|A,B; W ) =
∑

λ

℘(λ)℘(a|A,λ)℘(b|B,λ) (1)

where ℘(λ) is a probability distribution over hidden variables
λ ∈ �, ℘(a|A,λ) is the probability of outcome a for measure-
ment A given λ, and likewise for ℘(b|B,λ).

A state W is unsteerable or it has a local hidden variable-
local hidden state (LHV-LHS) model if and only if all joint
distributions have the form

P (a,b|A,B; W ) =
∑

λ

℘(λ)℘(a|A,λ)P (b|B; ρλ) (2)

where now it is further assumed that λ determines a local
quantum state ρλ for Bob, and P (b|B; ρλ) is the quantum
probability of outcome b if B is measured on ρλ. Since
those probabilities are given by a quantum state, they must
be constrained by uncertainty relations.

This scenario has an operational meaning: Bob wishes to
verify if W is entangled given joint distributions of outcomes
between Alice’s and Bob’s measurements, but assuming
only Bob’s outcomes are “trusted” as arising from quantum
measurements. Here it is not possible to determine entan-
glement via state tomography as only Bob’s measurements
are trusted, however showing that not all distributions can be
expressed as Eq. (2) is sufficient to show entanglement. The
scenario in which both Alice’s and Bob’s measurements are
untrusted would require testing the joint distributions for Bell
nonlocality.

The set of correlations in Eq. (2) forms a convex set [7] so
we can express it in terms of its extreme points as

P (a,b|A,B) =
∑

χ

∫
dξ℘(χ,ξ )δa,f (A,χ)〈ψξ |�B

b |ψξ 〉 (3)

where �B
b is a projector for outcome b of measurement B, χ

is a parameter that determines all values of A via a function
f (A,χ ), and ξ determines a pure state ψξ for Bob.

In constructing an EPR-steering inequality analogous to
the CHSH inequality, we assume Alice and Bob can choose
between two measurements {A,A′} and {B,B ′}, respectively,
with possible outcomes a,b ∈ {1,−1}. We consider the
ordered set of correlations (〈AB〉,〈A′B〉,〈AB ′〉,〈A′B ′〉) ob-
tained in such an experiment, where 〈AB〉 = P (a = b|A,B) −
P (a = −b|A,B) and similarly for the other terms. These are
the same correlations appearing in the CHSH inequality, and
we want to ask what we can say about the steerability of a state
using only this information. A LHV-LHS model can reproduce
these correlations if and only if there exists a probability

distribution ℘(χ,ξ ) such that they can be expressed as

〈AB〉 =
∑
χ

∫
dξ℘(χ,ξ )

[
2pA

1 (χ ) − 1
][

2pB
1 (ξ ) − 1

]
(4)

where pA
1 (χ ) = ℘(1|A,χ ) and pB

1 (ξ ) = P (1|B,ψξ ).
For Alice there are four extreme values of χ , which we

label as χ ∈ {1,2,3,4} corresponding, respectively, to pA
1 =

pA′
1 = 1, pA

1 = 1 − pA′
1 = 1, pA

1 = 1 − pA′
1 = 0, pA

1 = pA′
1 =

0. {B,B ′} are quantum projective measurements, which can
be written as B = 2 �B

1 − I , where �B
1 is the projector onto

the +1 eigenstate of B, and similarly for B ′. Following [25],
let μ = Tr{�B

1 �B ′
1 } and the possible pairs of probabilities

(pB
1 (ξ ),pB ′

1 (ξ )) with pB
1 (ξ ) = 〈ψξ |�B

1 |ψξ 〉 form an ellipse,
which can be parametrized as

2pB
1 (ξ ) − 1 = cos(ξ + β), (5)

2pB ′
1 (ξ ) − 1 = cos(ξ − β) (6)

where β = arctan(
√

1−μ√
μ

) with 0 � β � π/2. It turns out that

if {B,B ′} are dichotomic POVM’s then (pB
1 (ξ ),pB ′

1 (ξ )) also
form an ellipse, as we show in Appendix B, and so via a proof
similar to that presented here the set of unsteerable correlations
can be found for POVM’s but an analogous inequality does not
exist. Varying ξ and χ , the possible values for the integrands
in Eq. (4) for each correlation are given by

χ = 1 χ = 2
〈AB〉 cos(ξ + β) cos(ξ + β)
〈A′B〉 cos(ξ + β) − cos(ξ + β)
〈AB ′〉 cos(ξ − β) cos(ξ − β)
〈A′B ′〉 cos(ξ − β) − cos(ξ − β).

(7)

The correlations for χ = 3(4) can be obtained from those
for χ = 1(2) by making ξ → ξ + π , and so it is sufficient
to consider χ = 1,2. Thus the vector of correlations has a
LHV-LHS model if and only if they can be written as a convex
combination of the vectors given by the columns on Eq. (7).
Let C1 be the convex hull of the χ = 1 column of Eq. (7) and
C2 that for χ = 2.

Then the set C of all vectors of correlations in which each
correlation is of the form of Eq. (4) is the convex hull of the
union of C1 and C2. In the basis

e1 = (1,1,0,0), e2 = (0,0,1,1),
(8)

e3 = (1, − 1,0,0), e4 = (0,0,1, − 1),

the vectors making up the boundaries of C1 and C2

have form cos(ξ + β)e1 + cos(ξ − β)e2 and cos(ξ + β)e3 +
cos(ξ − β)e4, respectively.

Now the curve (x,y)=(cos(ξ + β),cos(ξ − β)) is an ellipse
which can also be expressed as

x2 + y2 − 2xycos(2β) = sin2(2β). (9)
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This leads to the conjecture that for v = (v1,v2,v3,v4) in
the basis {ei} we have v ∈ C if and only if

1

sin(2β)

(√
v2

1 + v2
2 − 2v1v2cos(2β)

+
√

v2
3 + v2

4 − 2v1v2cos(2β)
)

� 1. (10)

In the original basis this is

1

sin(2β)
(
√

u1 + √
u2) � 2 (11)

where

u1 = 〈(A + A′)B〉2 + 〈(A + A′)B ′〉2

− 2 cos(2β)〈(A + A′)B〉〈(A + A′)B ′〉, (12)

u2 = 〈(A − A′)B〉2 + 〈(A − A′)B ′〉2

− 2 cos(2β)〈(A − A′)B〉〈(A − A′)B ′〉. (13)

In other words, Eq. (11) is the necessary and sufficient
inequality for the four correlations considered to have LHV-
LHS models, for arbitrary measurements on Bob’s side. It is
thus an analog of the CHSH inequality for EPR steering. It
reduces to Eq. (21) in [25] for β = π

4 which corresponds to
μ = 0.5. The full proof of this conjecture is in Appendix A.

II. EQUIVALENCE CLASSES OF MEASUREMENTS

While arbitrary dichotomic projective measurements can
be made on Bob’s side, there are actually equivalence classes
of measurements B ′, for fixed A,A′, and B, for which all B ′ in
the same class result in the same left-hand side of Eq. (11), as
we will now show. Each equivalence class can be associated
with a measurement mutually unbiased to B. Then optimizing
the inequality over measurements, for a given state, only
requires optimizing over mutually unbiased measurements by
Bob. Bob’s measurements are trusted and thus in accordance
with quantum mechanics they are Hermitian operators, and by
convention have ±1 eigenvalues. B ′ can then be expressed as

B ′ = (2μ − 1)B + 2
√

μ
√

1 − μB ′′ (14)

where B ′′ is an operator mutually unbiased to B. Since
cos(2β) = 2μ − 1 and sin(2β) = 2

√
μ

√
1 − μ, we can

rewrite u1 and u2 in Eq. (11) in terms of A,A′,B,B ′′ as

u1 = sin2(2β)(〈(A + A′)B〉2 + 〈(A + A′)B ′′〉2), (15)

u2 = sin2(2β)(〈(A − A′)B〉2 + 〈(A − A′)B ′′〉2). (16)

Substituting in Eq. (11) we obtain√
〈(A + A′)B〉2 + 〈(A + A′)B ′′〉2

+
√

〈(A − A′)B〉2 + 〈(A − A′)B ′′〉2 � 2. (17)

This is equivalent to Eq. (11) for measurements A,A′,B,B ′′
with β = π

4 , as should be for mutually unbiased measurements
B,B ′′.

Hence, if an arbitrary set of dichotomic variables {A,A′} by
Alice and {B,B ′} by Bob is measured and Bob’s measurements
are trusted, the four correlations between variables {A,A′} and

{B,B ′} are consistent with a LHV-LHS model if and only if
the four correlations between variables {A,A′} and {B,B ′′} are
consistent with a LHV-LHS model, where B ′′ is the mutually
unbiased measurement to B determined by B ′′ = B ′−(2μ−1)B

2
√

μ
√

1−μ
.

So the demonstration of steering in this scenario implies
violation of Eq. (11) for some pair of mutually unbiased
measurements by Bob. Equation (11) implicitly contains μ as a
variable, which depends on B and B ′ set by the experimentalist,
but the equivalent inequality (17) does not depend on μ. Given
a B, each B ′ is mapped to a particular B ′′ (mutually unbiased
to B) and the independence of μ means that each B ′′ defines an
equivalence class containing an infinity of B ′ observables each
mapped to B ′′. Then the inequality Eq. (11) for a particular B ′
is not only equivalent to Eq. (17) but is equivalent to an infinity
of inequalities involving the same A,A′,B and some B ′ from
the equivalence class to which B ′ belongs.

III. STATES STEERABLE VIA CHSH-TYPE
MEASUREMENTS ARE NONLOCAL

We now show that if a two-qubit quantum state violates the
steering inequality (17) for some set of measurements then it
also violates the CHSH inequality, possibly with another set of
measurements. It was shown above that Eq. (17) is violated by
some quantum state if and only if the steering inequality (11),
for general measurements of the type in the CHSH scenario,
is also violated. This means, since the inequality is necessary
and sufficient, that a state demonstrates steering via general
CHSH-type correlations if and only if it violates the CHSH
inequality. Therefore all states that demonstrate steering via
CHSH-type correlations are Bell nonlocal.

Every bipartite state involving two qubits can be written in
the form

ρ = 1

4

(
I ⊗ I + r · σ ⊗ I + I ⊗ s · σ +

3∑
n,m=1

tmnσn ⊗ σm

)
(18)

where, in the notation of [26], I is the identity operator, {σn}3
n=1

are Pauli matrices, r and s are vectors in R3, and r · σ =∑3
i=1 riσi , tmn = Tr(ρσn ⊗ σm) forms a matrix denoted Tρ .
We seek to find the maximum value of the steering

inequality (17) for this state. Unlike the CHSH inequality this
steering inequality is nonlinear so its left-hand side cannot be
replaced by the expectation value of a single operator. Defining
A = â · σ , A′ = â′ · σ , B = b̂ · σ , B ′ = b̂′ · σ , where â, â′, b̂,
b̂′ are unit vectors in R3, the left-hand side of Eq. (17) can be
written in the form

ESteer =
√

(̂b,Tρ (̂a + â′))2 + (̂b′,Tρ (̂a + â′))2

+
√

(̂b,Tρ (̂a − â′))2 + (̂b′,Tρ (̂a − â′))2. (19)

Defining orthonormal vectors ĉ, ĉ′ by

â + â′ = 2 cos θ ĉ,

â − â′ = 2 sin θ ĉ′ (20)
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where θ ∈ [0, π
2 ] we can express Eq. (19) as

ESteer = 2(cos θ

√
‖Tρ ĉ‖2 + sin θ

√
‖Tρ ĉ′‖2) (21)

where Pythagoras’s theorem has been used on the orthogonal
components of Tρ (̂c) and Tρ(ĉ′) in the b̂ and b̂′ directions.
The disappearance of b̂,b̂′ in the expression (21) shows that
the left-hand side of Eq. (17) is independent of measurements
on Bob’s side, assuming the inequality applies to two qubits.
Ultimately this means that verifying steering using two fixed
measurements on Alice’s side only requires choosing any pair
of different measurements on Bob’s side.

Maximizing ESteer we find

max(ESteer) = max
ĉ,̂c′,θ

{2(cos θ

√
‖Tρ ĉ‖2 + sin θ

√
‖Tρ ĉ′‖2)}

= max
ĉ,̂c′

{2
√

‖Tρ ĉ‖2 + ‖Tρ ĉ′‖2}. (22)

In the last step above we maximize over angle θ keeping
fixed ĉ,ĉ′, and the optimal angle is

θmax = tan−1 ‖Tρ ĉ′
max‖

‖Tρ ĉmax‖ (23)

where ĉmax and ĉ′
max are the vectors that maximize ‖Tρ ĉ‖2 +

‖Tρ ĉ′‖2. This is exactly the maximum of the CHSH inequality
calculated in [26]. Since both inequalities have a right-hand
side of 2, a state ρ violates our CHSH-type steering inequality
if and only if it also violates the CHSH inequality, possibly for
different sets of measurements. Explicitly, this violation occurs
iff the sum of the squares of the largest eigenvalues of Tρ is
greater than 1 [26]. As an example, a Werner state Wη violates
the CHSH inequality for η > ηCHSH = 1√

2
[26], and therefore

this result implies that it is steerable under CHSH correlations
above this same threshold for η, confirming the result shown
in [27] (however there it was not demonstrated that on Bob’s
side only mutually unbiased bases need to be considered).
This “equivalence” between steering and Bell nonlocality
applies generally to dichotomic POVM measurements by
Bob since the optimal measurements to show steering are
some projective measurements (as a dichotomic POVM can
be regarded as being a classically postprocessed projective
measurement [28]).

IV. DISCUSSION

The connection between steering and Bell nonlocality
shown above is surprising since it was established in the
seminal papers on the subject [6,8] that steerable states
are a strict subset of Bell nonlocal states. While all pure
entangled states are Bell nonlocal, and hence also steerable,
a strict hierarchy exists between entangled, steerable, and
Bell-nonlocal mixed states in general. But we see that if
CHSH-type correlations demonstrate that a state is steerable
then that state must also be Bell nonlocal so in a sense
the hierarchy is collapsed for these types of correlations.
Furthermore the independence of the left-hand side of the
steering inequality on Bob’s measurements means it is only
necessary to vary over Alice’s measurements to verify that the
state is Bell nonlocal using this technique.

We also note that if we can demonstrate steering in one
direction then the state is Bell nonlocal, and therefore steering
can also be demonstrated in the other direction. Thus there is
no one-way steering in this scenario, in the sense of [29]. It was
shown in [12] both theoretically and via an optical experiment
that there exist Bell-local Werner states which violate a
steering inequality involving three dichotomic measurements
on either side. More recently, Bowles et al. [30] have shown
that some Bell-local states are one-way steerable with two
projective measurements at the untrusted site and tomographic
measurements on the trusted site.

The present results would suggest that indeed at least three
measurements at the trusted site are required for one-way
steering. However, our inequality is necessary and sufficient
when using the correlation data only—it is known that for
some two-qubit states which are not detected by this inequality
steering can be detected using also the information about
the marginals, not available from only the correlations [31].
The question then becomes whether some of those steerable
states are also Bell local and one-way steerable. It would
be interesting to derive an inequality that is necessary and
sufficient for this general case where the marginals are also
taken into account. Further work could explore necessary
and sufficient steering inequalities that involve more than
two measurement variables on each party or more than two
outcomes for each measurement.

The results above provide a partial answer to this fun-
damental question: for a given measurement scenario (i.e.,
number of parties, settings, and outcomes) what are the
optimal measurements to verify if an arbitrary quantum state
is steerable? For the CHSH-type scenario the answer to
the question above is any pair of distinct arbitrarily chosen
measurements on Bob’s side and the measurements made
by Alice corresponding to âmax and â′

max constructed from
θmax and the ĉmax and ĉ′

max that maximize ‖Tρ ĉ‖2 + ‖Tρ ĉ′‖2

(eigenvectors of TρT [26]). Recently in [27] a computational
optimization over measurements on both sides was performed
to find the maximum violation of Eq. (17) over the space of
bipartite pure entangled qubits and amount of violation of
the inequality over a class of Werner states, but we now see
that it would have been sufficient to keep measurements on
Bob’s side fixed. This independence on Bob’s measurements
removes a major challenge in achieving practical nonlocality
witnesses; for example in [14] the demonstration of steering
inequality violation required substantial steps to account for
nonmutually unbiased measurements.

For pure states the connection between joint measurability
(compatibility) of Alice’s observables and Bell nonlocality
was examined in [32] and recently extended to steering
in [33,34]. The latter works suggest that two measurements
at Alice are incompatible if and only if they can be used
to demonstrate steering, while the former work suggests
that two incompatible measurements enable CHSH inequality
violation. The findings in our paper also show a kind of
independence from measurements on Bob’s side (they are
only required to be incompatible) and it is interesting that
our approach via steering inequalities gives similar insights to
their derivations using a reduced-state/“assemblage” picture.
But as we allow the state to be mixed, so we include entangled
unsteerable states, the criterion on Alice’s measurements to
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demonstrate steering with CHSH correlations is stronger than
incompatibility, specifically that Eq. (22) must be larger than 2.

In conclusion we have produced a general necessary and
sufficient steering inequality for CHSH-type correlations on
two qubits. The violation of the inequality for a given set
of measurements implies the violation of an inequality with
mutually unbiased measurements on the trusted side; hence
only mutually unbiased measurements need to be examined,
as in [25]. Interestingly, we are then able to prove that if any
bipartite state is shown to be steerable via such measurements
then it is also Bell nonlocal. Future work in this direction
would find necessary and sufficient inequalities for more
than two parties and several POVM’s on each site to further
illuminate the differences between steerable and Bell nonlocal
states. Can the distinction be shown with two d-outcome
measurements, or do we need three measurements? What
minimum measurements are required to demonstrate this
distinction for higher-dimensional bipartite systems?

Note added in proof. Recently [35] found a related result in
the restricted context where Bob’s measurements used to test
steering are mutually unbiased. This, however, leaves open
the possibility that arbitrary qubit measurements by Bob can
discriminate steering from Bell nonlocality. We establish the
equivalence between steering and Bell nonlocality for the most
general CHSH scenario, that is, two dichotomic measurements
by both parties. More recently, the authors of [36] also showed
this steering-Bell nonlocality equivalence but only for T states,
i.e., states in which r = s = 0 in Eq. (18), so that Alice
and Bob’s reduced states are mixed states. They also gave
a geometric meaning of the maximum inequality violation in
terms of the steering ellipsoid. Similarly to our paper they
extended it to arbitrary states in [37], but without deriving a
generalized steering inequality.

ACKNOWLEDGMENTS

The authors acknowledge Curtis Broadbent, for prompting
the question on connecting Bell nonlocality and steering, and
useful discussions and feedback from Cyril Branciard, Andrew
Doherty, Michael Hall, and Howard Wiseman. We also
thank an anonymous referee for suggesting further research
directions based on this work. P.G. acknowledges support from
the ARC via the Centre of Excellence in Engineered Quantum
Systems (EQuS), Project No. CE110001013.

APPENDIX A

We prove here a theorem that results in the necessary and
sufficient EPR-steering inequality for the CHSH scenario, that
is, Eq. (11).

Theorem. Let C1, C2 be convex sets in four dimensions and
in separate planes spanned by the axes i.e., C1 ⊆ span(e1,e2)
and C2 ⊆ span(e3,e4) where e1,e2,e3,e4 are basis vectors
of four-dimensional space. If the boundaries of the sets
are conic sections represented by Cartesian equations that
only contain quadratic terms, i.e., C1 can be described as
f (x1,x2) = ax2

1 + bx2
2 + cx1x2 � r1 and C2 as g(x3,x4) =

a′x2
3 + b′x2

4 + c′x3x4 � r2, then the convex hull C of C1 and
C2 has the form√

f (v1,v2) +
√

f (v3,v4) � max[
√

r1,
√

r2]. (A1)

Proof. Let h1 = (v1,v2,0,0), h2 = (0,0,v3,v4), and v =
(v1,v2,v3,v4) = h1 + h2. If v is in the convex hull of C1 and
C2 then v = p1w1 + p2w2 where p1 + p2 = 1 and w1 lies in
C1 and w2 lies in C2. Hence, with the assumption that C1 ⊆
span(e1,e2) and C2 ⊆ span(e3,e4) where e1 = (1,0,0,0),e2 =
(0,1,0,0),e3 = (0,0,1,0),e4 = (0,0,0,1),

w1 = h1

p1
, (A2)

w2 = h2

p2
. (A3)

And as w1 lies in C1 and w2 lies in C2,

f

(
v1

p1
,
v2

p1

)
� r1, (A4)

g

(
v3

p2
,
v4

p2

)
� r2. (A5)

Since f (v1,v2) and g(v3,v4) only contain quadratic terms this
implies

1

p2
1

f (v1,v2) � r1, (A6)

1

p2
2

g(v3,v4) � r2. (A7)

Putting these together we get√
f (v1,v2) +

√
f (v3,v4) � p1

√
r1 + p2

√
r2 (A8)

� max[
√

r1,
√

r2] (A9)

where p1 + p2 = 1 has been used in the last line. Applying
this to our situation where the boundaries for both C1 and C2

have the form of Eq. (9) we obtain Eq. (10) as desired.
In Appendix B of [25] a proof is provided that only points

in C satisfy the LHV-LHS inequality in that paper. The proof
can be applied in whole to inequality (10) since the inequality
satisfies the properties crucial to the proof: it is of the form
f (v) � 1 where f (v) is a convex function and its upper bound
of 1 is obtained for points v ∈ C that can be expressed as a
convex combination of a point on the boundary ∂C1 of C1 with
a point on the boundary ∂C2 of C2. The latter statement is seen
from the derivation above since the inequality (10) achieves
the bound 1 if and only if f ( v1

p1
, v2
p1

) = r1 and g( v3
p2

, v4
p2

) = r2,
i.e., w1,w2 lie on the boundaries of C1 and C2, respectively.

Hence only points in C satisfy Eq. (10), which in the
measurement basis is Eq. (11). Thus Eq. (11) is indeed the
necessary and sufficient EPR-steering inequality for arbitrary
measurements in the CHSH scenario.

APPENDIX B

We examine here the case where B and B ′ are dichotomic
POVM’s measured by Bob.

An arbitrary dichotomic POVM element associated with
outcome 1 for observable B can be expressed as

E1|B = λ1|B |1〉〈1| + λ2|B |2〉〈2| (B1)

= kB |1〉〈1| + λ2|BI (B2)
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where 0 � λ2|B � λ1|B � 1 are eigenvalues of E1|B , |1〉 and
|2〉 are corresponding orthonormal eigenstates, and kB =
(λ1|B − λ2|B).

Likewise for observable B ′

E1|B ′ = k′
B |1′〉〈1′| + λ2|B ′I. (B3)

Decompose |1′〉 in the eigenbasis of E1|B ,

|1′〉 = √
μ|1〉 +

√
1 − μeiφ|2〉, (B4)

as well as the pure state received by Bob:

|ψ〉 =
√

μ′|1〉 +
√

1 − μ′eiφ′ |2〉. (B5)

Then the probability p(1|B) of outcome 1 when measuring B is

pB
1 = 〈ψ |E1|B |ψ〉 = kBμ′ + λ2|B (B6)

so that

μ′ = p(1|B) − λ2|B
kB

. (B7)

Then for B ′ the probability of outcome 1 is

pB ′
1 = 〈ψ |E1|B ′ |ψ〉 = k′

B |〈ψ |1′〉|2 + λ2|B ′

= k′
B

{
μ′μ + (1 − μ′)(1 − μ)

+ 2
√

μ′(1 − μ′)μ(1 − μ) cos(φ′ − φ)] + λ2|B ′

= λ2|B ′ + k′
B

kB

[(
pB

1 − λ2|B
)
μ

+ [
kB − (

pB
1 − λ2|B

)]
(1 − μ)

+ 2
√(

pB
1 − λ2|B

)[
kB − (

pB
1 − λ2|B

)]
μ(1 − μ)

× cos(φ′ − φ)

}
. (B8)

Now let y = pB ′
1 , x = pB

1 , α = λ2|B ′ , β = k′
B

kB
, γ = λ2|B,

δ = kB + λ2|B . The boundary of the curve pB ′
1 versus pB

1
according to Eq. (B8) is achieved with cos(φ′ − φ) = ±1, i.e.,
cos(φ′ − φ)2 = 1. Then the boundary has the form

y = α + β[(x − γ )μ + (δ − x)(1 − μ)

± 2
√

(x − γ )(δ − x)μ(1 − μ) cos(φ′ − φ)

= α + r(x − γ ) + s(δ − x) ± t
√

(x − γ )(δ − x) (B9)

where r = βμ,s = β(1 − μ),t = 2β
√

μ(1 − μ).
Then rearranging

[(s − r)2 + t2]x2 + 2(s − r)xy + y2

+ [2(s − r)(rγ − sδ − α) − t2(δ + γ )]x

+ 2(rγ − sδ − α)y + [(rγ − sδ − α)2 + t2γ δ] = 0,

(B10)

let

A = (s − r)2 + t2 = β2(1 − 2μ)2 + 4β2μ(1 − μ) = β2,

(B11)

B = (s − r) = β(1 − 2μ) (B12)

C = 1, (B13)

D = (s − r)(rγ − sδ − α) − t2(δ + γ )

2
, (B14)

F = rγ − sδ − α, (B15)

G = (rγ − sδ − α)2 + t2γ δ. (B16)

So Eq. (B10) is in the form

Ax2 + 2Bxy + Cy2 + 2Dx + 2Fy + G = 0. (B17)

Equation (B17) describes an ellipse in terms of the variables
x,y, i.e., pB

1 ,pB ′
1 . We will now calculate its semiaxis lengths,

center, and counterclockwise angle of rotation from the x axis
to the major axis based on the formulas in [38].

XC , the x coordinate of the ellipse center, is

XC = CD − BF

B2 − AC
=

−t2(δ+γ )
2

(s − r)2 − [(s − r)2 + t2]

= 1

2
(δ + γ ) = kB

2
+ λ2|B. (B18)

For projective measurements kB = 1,λ2|B = 0 which implies
XC = 1

2 as expected.
YC , the x coordinate of the ellipse center, is

YC = AF − BD

B2 − AC
= t2(rγ − sδ − α) + (s−r)(δ+γ )t2

2

(s − r)2 − [(s − r)2 + t2]

= −
[

(r + s)(γ − δ)

2
− α

]
= k′

B

2
+ λ2|B ′ . (B19)

For projective measurements k′
B = 1,λ2|B ′ = 0 which implies

YC = 1
2 as expected.

The semiaxis lengths are given by

a± =
√

2(AF 2 + CD2 + GB2 − 2BDF − ACG)

(B2 − AC)[±
√

(A − C)2 + 4B2 − (A + C)]
.

(B20)

Now we can write

A = B2 + t2, (B21)

D = BF − t2l

2
, (B22)

G = F 2 + t2l′ (B23)

where l = δ + γ,l′ = δγ . The numerator under the square root
of Eq. (B20) is then

2

[
(B2 + t2)F 2 +

(
BF − t2l

2

)2

+ (F 2 + t2l′)B2

−2BF

(
BF − t2l

2

)
− (B2 + t2)(F 2 + t2l′)

]
= 2t4

(
l2

4
− l′

)
= 2t4

(
(δ + γ )2

4
− δγ

)
= 2t4k2

B.

(B24)
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And the denominator under the square root of Eq. (B20) is

[B2 − (B2 + t2)][±
√

(B2 + t2 − 1)2 + 4B2−(B2+t2+1)]

= −t2[±
√

(β2 + 1)2 + 16β2μ(μ − 1) − (β2 + 1)]

= −t2

{
±

√[(
k′
B

kB

)2

+ 1

]2

+ 16

(
k′
B

kB

)2

μ(μ − 1)

−
[(

k′
B

kB

)2

+ 1

]}
. (B25)

Hence, substituting the value for t,

a± = 2
k2
B

k′
B

√
μ(1 − μ)

√
−2

S
(B26)

where

S = ±
√[(

k′
B

kB

)2

+ 1

]2

+ 16

(
k′
B

kB

)2

μ(μ − 1)

−
[(

k′
B

kB

)2

+ 1

]
. (B27)

For projective measurements kB = k′
B = 1 so

a± = 2
√

μ(1 − μ)

√
−2

±2
√

1 + 4μ(μ − 1) − 2

= 2
√

μ(1 − μ)

√
−1

±|2μ − 1| − 1
. (B28)

If μ = 0.5 then a±=
√−1

−1 =1 as expected.
The counterclockwise angle of rotation from the x axis to

the major axis is

φ = 1

2
cot−1

(
A − C

2B

)
= 1

2
cot−1

(
β2 − 1

2β(1 − 2μ)

)
= 1

2
cot−1

(
k′2
B − k2

B

2kBk′
B(1 − 2μ)

)
. (B29)

For projective measurements and μ �= 0.5 we get φ =
1
2 cot−1(0) = π

4 .
The general parametric form of the ellipse in terms of the

above is

x = XC + a cos(ξ ) cos(φ) − b sin(ξ ) sin(φ)

= XC + T cos(ξ + κ), (B30)

y = YC + a cos(ξ ) sin(φ) + b sin(ξ ) cos(φ)

= YC + T ′ cos(ξ + κ ′) (B31)

where

T =
√

a2 cos2(φ) + b2 sin2(φ), (B32)

κ = tan−1

(
b

a
tan(φ)

)
, (B33)

T ′ =
√

a2 sin2(φ) + b2 cos2(φ), (B34)

κ ′ = tan−1

(
a

b
tan(φ)

)
. (B35)

This implies

2pB
1 (ξ ) − 1 = 2

(
XC + T cos(ξ + κ) − 1

2

)
, (B36)

2pB ′
1 (ξ ) − 1 = 2

(
YC + T ′ cos(ξ + κ ′) − 1

2

)
. (B37)

Then the vectors making up the boundaries of C1 to C4 in
the basis (8) have the form

C1 : 2
(
XC + T cos(ξ + κ) − 1

2

)
e1

+ 2
(
YC + T ′ cos(ξ + κ ′) − 1

2

)
e2, (B38)

C2 : 2
(
XC + T cos(ξ + κ) − 1

2

)
e3

+ 2
(
YC + T ′ cos(ξ + κ ′) − 1

2

)
e4, (B39)

C3 : −{
2
[
XC + T cos(ξ + κ) − 1

2

]
e1

+ 2
[
YC + T ′ cos(ξ + κ ′) − 1

2

]
e2

}
, (B40)

C4 : −{
2
[
XC + T cos(ξ + κ) − 1

2

]
e3

+ 2
[
YC + T ′ cos(ξ + κ ′) − 1

2

]
e4

}
. (B41)

Each of these correlation boundaries are elliptical and

for the projective case (A = XC = 1
2 ) C1 and C3 reduce to

cos(ξ + κ)e1 + cos(ξ − κ)e2 and C2 and C4 to cos(ξ + κ)e3 +
cos(ξ − κ)e4 as we have seen before. The equation of the
boundary of C1 and C3 can be found as follows: Let m =
2pB

1 (ξ ) − 1 = 2x − 1, i.e., x = m+1
2 and n = 2pB ′

1 (ξ ) − 1 =
2y − 1, i.e., y = n+1

2 . Then from Eq. (B17) we get

A

(
m + 1

2

)2

+ 2B

(
m + 1

2

)(
n + 1

2

)
+ C

(
n + 1

2

)2

+ 2D

(
m + 1

2

)
+ 2F

(
n + 1

2

)
+ G = 0. (B42)

So,(
A

4

)
m2 +

(
C

4

)
n2 +

(
B

2

)
mn +

(
A + B

2
+ D

)
m

+
(

B + C

2
+ F

)
n = −

(
A + C

4
+ B

2
+ D + F + G

)
.

(B43)

For projective measurements this reduces to Eq. (9). The
equation for C2 and C4 involves replacing m by −m and n

by −n.
For the general POVM case C1 and C3 lie in the same plane

but are distinct sets as with C2 and C4. The convex hull C of
the sets is the convex hull of C5 and C6 where C5 is the convex
hull of C1 and C3 and C6 is the convex hull of C2 and C4. The
boundary of C5 consists of the two outer common tangents to
the ellipses C1 and C3 and the outer arcs of the ellipses that
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connect with the tangents, and C6 has the same equation for
its boundary as C5 (but in an orthogonal plane). The boundary

is piecewise defined so that C cannot be expressed as a simple
inequality for the general POVM scenario.
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