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65-516 Zielona Góra, Poland
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We discuss a model comprised of a chain of three Kerr-like nonlinear oscillators pumped by two modes of
external coherent field. We show that the system can be treated as nonlinear quantum scissors and behave as a
three-qubit model. For such situation, different types of tripartite entangled states can be generated, even when
damping effects are present in the system. Some amount of such entanglement can survive even in a long-time
limit. The flow of bipartite entanglement between subsystems of the model and relations among first-order
correlations, second-order correlations, and the entanglement are discussed.
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I. INTRODUCTION

Quantum correlations, including quantum entanglement,
seems to be one of the most intriguing problems of con-
temporary physics. Such correlations play a crucial role not
only in searching for the answers to the most fundamental
questions concerning laws ruling quantum reality, but also in
more practical applications such as those related to quantum
information theory. As the bipartite entanglement and other
forms of quantum correlations seem to be well understood,
such correlations in systems containing three and more sub-
systems still need thorough investigation. Therefore, finding
physical models that are helpful in the research in this field
and, on the other side, that are general enough to be applied in
various physical realizations is a very important problem.

Good candidates for such models are those involving
quantum Kerr-like nonlinear oscillators. The effective Hamil-
tonians describing such systems involve terms with third-order
susceptibilities (Kerr-like nonlinearities). Quantum Kerr-like
models are widely discussed in numerous applications. For
instance, they were considered as a source of non-Gaussian
motional states of trapped ions [1] and of the superposition
of coherent states [2,3], and were discussed in the context of
Bell’s inequality violations [4]. Moreover, Kerr-like oscillatory
models were the subject of numerous papers related to
quantum chaos problems (for instance, see [5]).

Importantly, models described by the Hamiltonians in-
volving Kerr-type nonlinearities can be found in various, not
necessarily optical, physical systems. Such nonlinearities are
applied in the description of nanomechanical resonators and
various optomechanical systems [6–11], boson trapped lat-
tices [12–14], Bose-Einstein condensates [15], Bose-Hubbard
chains [14,16], and in circuit QED models [17,18] (also
involving superconducting systems [19]).

One of the key problems related to quantum informa-
tion theory is quantum state engineering allowing for the
finite-dimensional states’ generation. Such states can also
exhibit such interesting properties as the ability to produce
various kinds of quantum correlations, including quantum
entanglement. Physical systems involving at least two separate
components characterized by the third-order susceptibilities
(Kerr-like nonlinearities) are those which allow for the creation

of such quantum states. Although such multimode systems can
be found in various physical situations, they are referred to as
Kerr-like couplers—their evolution is governed by the same
effective Hamiltonians as the usual optical Kerr couplers (a
discussion of such optical systems can be found, for instance,
in [20], including review paper [21]).

As it was shown in [22], Kerr-like couplers can be treated as
nonlinear quantum scissors (NQS) [23]. NQS systems exhibit
such evolution for which only some limited number of n-
photon states is involved. After such truncation of the wave
function, a coupler playing the NQS role can be treated as a
two-qubit [22], two-qutrit [22], or qutrit-qubit [22] model. It
was also shown there that various maximally entangled states
can be generated by such systems, including not only the usual
Bell states but also generalized ones [24].

In fact, in NQS models, we observe so-called photon
(phonon) blockade effects. At this point, one should mention
that such effects have also been widely discussed. For instance,
they have been observed in systems involving an optical
cavity with a trapped atom (Caltech experiment [25]), a
quantum dot coupled to a photonic crystal resonator (Stanford
experiment [26]), a superconducting qubit coupled to a
transmission-line resonator (ETH-Zurich experiment [27]),
and in a superconducting circuit (Princeton-NIST experi-
ment [19]). Moreover, quite recently, an experiment with a
microwave cavity coupled to the superconducting qubit was
performed [28].

Kerr-like oscillators were also discussed in the context
of various special quantum states appearing in the tripartite
systems. For instance, three nonlinear oscillators mutually
coupled to each other were used as a source of entangled
W states [29]. It is particularly important because recently
tripartite and multipartite entanglement have become one of
the most intriguing features discussed in the literature (for
instance, see [15,30]).

The main aim of the present paper is to show how various
types of quantum correlations can appear during the evolution
of a chain of Kerr-like oscillators externally pumped by
coherent fields. In particular, we are interested in the generation
of tripartite entangled states belonging to various classes. It
appears that for such system, during its evolution, depending
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on the strengths of the internal and external coupling strengths,
Greenberger-Horne-Zeilinger (GHZ), W, and other types of
entangled tripartite states can be generated. Moreover, we
show that bipartite entangled states are generated not only for
the subsystem involving two directly interacting oscillators,
but also for oscillators interacting only via the third one.
The degree of this entanglement is not fragile to the internal
interactions strength. To check how the quantum correlations
discussed are fragile for dissipation effects, the dynamics of a
Kerr-type chain is also studied for the two models of external
reservoirs: amplitude- and phase-damping ones. It appears that
in the amplitude-damping reservoir in the steady-state limit,
even for relatively large damping constants, some amount of
tripartite entanglement can be left in the system.

In the literature, we can find discussion concerning
problems of relations among the correlation functions (of
the first and second order) and entanglement obtained in
various quantum systems, such as atomic ensembles in high-Q
cavities [31] or some optomechanical systems [32]. It was
shown there that the entanglement is sensitive to the first-order
coherence between the studied modes and that they are not
simultaneously present in the system. The problem of such
relation for the tripartite system will also be discussed in
the present paper. We shall also focus on the second-order
correlation function with reference to both two- and tripartite
entanglement.

II. THE MODEL AND SOLUTIONS

We discuss a model of three identical nonlinear Kerr-like
quantum oscillators. They are coupled to each other by linear
interaction and form a chain of oscillators (see Fig. 1)—one
central oscillator and two boundary ones. Moreover, two of
them (boundary oscillators) are excited by an external coherent
field. The system is governed by the following effective
Hamiltonian:

Ĥ = Ĥnl + Ĥi + Ĥe, (1)

where

Ĥnl = χ

2
(â†

1)2â2
1 + χ

2
(â†

2)2â2
2 + χ

2
(â†

3)2â2
3 (2)

describes the free evolution of the oscillators, and

Ĥi = (εâ†
1â2 + ε∗â†

2â1) + (εâ†
2â3 + ε∗â†

3â2) (3)

FIG. 1. Scheme of the model. A chain of nonlinear oscillators
which are coupled mutually by linear interaction of the strength ε.
Two (boundary) oscillators are excited by an external coherent field
(the coupling strength is labeled α).

represents the internal interaction within pairs of two subse-
quent oscillators (1 − 2 and 2 − 3), whereas

Ĥe = αâ
†
1 + α∗â1 + αâ

†
3 + α∗â3 (4)

describes the interaction with the external field. The operators
â
†
j and âj (j = 1,2,3) are bosonic creation and annihilation

operators corresponding to the three modes 1, 2, and 3,
respectively. The parameter ε describes the strengths of linear
couplings between modes 1 − 2 and 2 − 3, where we assume
that both couplings (1 − 2 and 2 − 3) are equal to each other,
and the parameter ε is assumed to be real, i.e., (ε = ε∗). The
strengths of the excitations of oscillators 1 and 2 by an external
field are identical and are described by α, where α = α∗. We
deal here with bosonic systems commonly applied in quantum
optics. Nevertheless, it is worth noting that nontrivial coupling
between the boson’s degree of freedom can also be important
in condensed-matter physics, where the superconducting state
is often observed (for instance, see [33]).

To describe the system’s evolution for the case when
damping effects are neglected, we shall apply the standard
Schrödinger-equation solution method. Therefore, we define
the following three-mode wave function defined in an n-photon
Fock states basis:

|ψ(t)〉 =
∞∑

i,j,k=0

Cijk(t)|i〉1 ⊗ |j 〉2 ⊗ |k〉3

≡
∞∑

i,j,k=0

Cijk(t)|ijk〉, (5)

where Cijk are complex probability amplitudes corresponding
to the states |ijk〉.

If we assume that external excitation and coupling between
oscillators are weak if compared to the nonlinearity parameters
(α,ε � χ ), then the system’s evolution remains closed within
a finite set of n-photon states. For such situation, the system
behaves as nonlinear quantum scissors (NQS) (for instance,
see [34] and review paper [23]) and its wave function is defined
in finite-dimensional Hilbert space [35]. What is interesting
is that the NQS effect is, in fact, equivalent to the photon
(phonon) blockade [9,19,25,36]. For the situation discussed
here, we also assume that the system’s evolution starts from
the vacuum state |000〉 and hence it is limited to only eight
states |ijk〉, i,j,k ∈ {0,1}. Consequently, the truncated wave
function can be expressed in the following form:

|ψ(t)〉cut = C000(t)|000〉 + C001(t)|001〉 + C010(t)|010〉
+C011(t)|011〉 + C100(t)|100〉 + C101(t)|101〉
+C110(t)|110〉 + C111(t)|111〉. (6)

Such cutting of Hilbert space, and hence the wave function, is
related to the fact that the Hamiltonian (2) generates unevenly
spaced energy levels, where the vacuum and one-photon
states are degenerate, with their energies equal to zero. For
the situation considered here, those states are resonantly
coupled to each other by weak, zero-frequency couplings,
and are dominant in the system’s evolution. To describe
the contribution of two- (and more) photon states, we need
higher-order perturbative solutions (see [37]). Then, applying
the standard procedure, we find equations of motion for our
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system’s dynamics. As |ψ(t = 0)〉 = |000〉, these equations
lead to the following formulas determining the time evolution
of the probability amplitudes:

C000(t) = 1

8α4 + 2ε4
{4α4 − 2α2ε2 + 2ε4

+α2[A1 cos(ω1t) + A2 cos(ω2t)]},

C001(t) = C100(t) = −iα

2

[
sin(ω1t)

ω1
+ sin(ω2t)

ω2

]
,

C010(t) = α

8α4 + 2ε4
[−2ε3 + A3 cos(ω1t) + A4 cos(ω2t)],

C011(t) = C110(t) = −iα

2

[
sin(ω1t)

ω1
− sin(ω2t)

ω2

]
,

C101(t) = α

8α4 + 2ε4
[−4α3 + 2αε2 + A3 cos(ω1t)

+A5 cos(ω2t)],

C111(t) = α2

8α4 + 2ε4
[4αε + A1 cos(ω1t) − A2 cos(ω2t)],

(7)

where two frequencies ω1 and ω2 are defined as

ω1 =
√

4α2 + 4αε + 2ε2,
(8)

ω2 =
√

4α2 − 4αε + 2ε2,

and we have defined the following parameters:

A1 = 2α2 − 2αε + ε2, A2 = 2α2 + 2αε + ε2,

A3 = 2α3 − αε2 + ε3, A4 = −2α3 + αε2 + ε3,

A5 = 2α3 − αε2 − ε3. (9)

What should be emphasized is that although the nonlinearity
constant χ does not appear here as a result of the fact that
eigenenergies corresponding to the vacuum and one-photon
states are equal to zero, the process of cutting of the wave
function requires the presence of the nonlinearity.

We see that two frequencies ω1 and ω2 appear in our
solution. To get regular and periodic solutions, we have
to choose the values of these frequencies carefully and
concentrate on the cases for which the ratio between them
fulfills some special conditions. Thus Fig. 2 shows that the
ratio changes its value from 1 to ≈2.4. At this point, the
most promising values are 1 and 2. However, the cases when
ω1/ω2 = 1 correspond to the situations when α = 0 (we have
no external excitation) or ε → 0 (internal interactions between
oscillators are neglected), and are not interesting for us. Thus,
the cases when ω1/ω2 = 2 seem to be more promising and
therefore we shall concentrate on them in this paper. From
Fig. 2, we see that the assumed ratio between two frequencies
can be achieved for two situations. Indeed, it can be shown that
when the strengths of interactions α and ε fulfill the relation

ε = 12 α

10 ± √
28,

(10)

the condition ω1/ω2 = 2 is achieved. For these two situations,
our system exhibits periodic behavior with periods T deter-
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1

1.5
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2.5

α/ε

ω
1
/
ω

2

FIG. 2. The ratio ω1/ω2 as a function of α/ε calculated from the
analytical solution given by Eq. (8).

mined by the formula

T =
√

5 ± √
7π

2α
, (11)

respectively.
To validate the exactness of the NQS approximation, we

have solved the Schrödinger equation numerically, assuming
that 10 n-photon states are involved in the evolution for each
mode of the field. Next, we have compared numerical results
with those derived from our analytical formulas (valid for
2 ⊗ 2 ⊗ 2-dimensional Hilbert space). In particular, we have
calculated the fidelity between the cut wave function |ψ〉cut

defined in Eq. (6) and the “full” wave function obtained from
numerical analysis. Thus, Fig. 3 shows the deviation of the
fidelity F (t) = |〈ψ(t)|ψ(t)〉cut| from the unity for one of the
two cases in which we are interested. For the second value of
ε, 1 − F (t) dependence is similar. We see that such deviations
are of the order of ∼10−5 and, hence, we can assume that the

0 0.5T T 1.5T
0

1

2

3
x 10−5

time

1
−

F

FIG. 3. Time evolution of the parameter 1 − F (t) for α =
0.001χ , ε = 12α

10+√
28

. Time is measured in units of T =
√

5+√
7π

2α
.

032304-3



J. K. KALAGA et al. PHYSICAL REVIEW A 94, 032304 (2016)

NQS approximation works well and gives sufficiently accurate
results for our purposes.

III. FIRST- AND SECOND-ORDER CORRELATION
FUNCTIONS AND TRIPARTITE ENTANGLEMENT

The quantumness of the physical system can be revealed, for
example, in the generation of various quantum correlations. We
will analyze the quantum properties of the coupled nonlinear
system using first and second-order correlation functions (g(1)

and g(2)), and bi- and tripartite entanglement.
Quantum correlations and their relations to entanglement

creation can be found, for example, in considering the atomic
ensemble in high-Q cavity [31], an optomechanical system
composed of a cavity mode interacting with three bosonic
modes obtained in an optical lattice [32], other optomechanical
systems such as a cavity with an oscillating mirror and filled
with atoms [38], or a nanomechanical resonator coupled
to a superconducting microwave cavity mode [39]. It was
also suggested there that whenever the first-order correlation
(coherence) between the two considered modes is present,
there is no entanglement between these modes.

The degree of coherence (amplitude correlation) can be de-
fined with the use of the first-order correlation function [40,41],

g
(1)
jk = |〈â†

j âk〉|
〈â†

j âj 〉 1
2 〈â†

kâk〉 1
2

, (12)

where j,k label the system’s modes and when j �= k, the g(1)

function describes cross coherence between the two modes.
The first-order correlation function takes values from zero
to unity. If g

(1)
jk = 1, one can observe coherence between

the modes j and k; if it is zero, coherence is not present.
Second-order correlation (intensity correlations) is expressed
by [40,41]

g
(2)
jk = 〈â†

j â
†
kâj âk〉

〈â†
j âj 〉〈â†

kâk〉
. (13)

For correlated modes, function g
(2)
jk takes values greater than

unity; for uncorrelated modes, it is equal to unity; and it takes
values smaller than unity if the modes are anticorrelated. For
the system of the three coupled nonlinear oscillators initially
prepared in a vacuum state, and evolving according to the
Schrödinger equation, the following relation between the am-
plitudes is satisfied: C001 = C100 and C011 = C110. Due to this
symmetry, cross coherence and the second-order correlation
function between the boundary and central oscillators (b-c) are
equal to each other (g(1)

12 = g
(1)
23 and g

(2)
12 = g

(2)
23 ).

As a measure of two-mode entanglement, we apply the one
which is based on the negative partial transposition criterion
(NPT criterion)—the negativity [42,43]. If ρ

Ti

ij describes the
partial transposition (with respect to i mode) of the density
matrix for the system, then the negativity is defined as a sum
of absolute values of all the negative eigenvalues calculated
for ρ

Ti

ij ,

Nij (ρ) =
∑

l

μl

(
ρ

Ti

ij

)
, (14)

where ρij = Trk(ρijk). Negativity is able to distinguish be-
tween separable and entangled states for the systems 2 ⊗ 2
or 2 ⊗ 3 and takes values between 0, for separable states,
and 1, for maximally entangled ones, for such systems. The
evolution of all the discussed types of quantum correlations
for bipartite systems is presented in Fig. 4 for the two
previously chosen values of ε; see Eq. (10). For both values of
coupling ε, the bipartite entanglement is created alternately
for b-c oscillators and b-b ones. Therefore, the boundary
modes, even though not coupled to each other, can create
entangled states via the interactions with the central oscillator.
The degree of entanglement between boundary oscillators
is not sensitive to the coupling strength ε. On the contrary,
the degree of entanglement created by b-c oscillators is
directly dependent on ε. By changing the value of internal
interactions, one can influence the degree of neighboring
bipartite entanglement, and additionally the degree of tripartite
entanglement (discussed later).

It is known that intermode correlations of the second
order are related to the process of bipartite entangled states
creation. In the chain of nonlinear oscillators, the second-order
correlations in boundary modes are connected to entanglement
between them if these modes are not additionally correlated (or
anticorrelated) with the mode of the central oscillator. On the
other hand, entanglement between the modes of b-c oscillators
can arise if they are anticorrelated and no correlations between
the boundary oscillators are present. What is also worth
stressing is the relation between the first-order correlation
functions and bipartite entanglement mentioned in [32]. In the
chain of two-qubit systems, first-order coherence is connected
with the lack of entanglement when the system periodically
returns to its initial vacuum state (for times distant by
one period: T value). During the exchange of entanglement
between the pairs of oscillators, one can find that the maximum
entanglement between the b-b modes (not directly interacting
with each other) is created when there is no coherence between
them. The opposite is observed for interacting modes.

The whole system is composed of three oscillators (three
modes of the field) and, as it was already shown, each of them
can evolve as a two-level system. As a consequence, each
oscillator can be treated as a qubit, and the whole system as a
three-qubit one. In this section, we will analyze our system’s
ability to produce tripartite entanglement and identify different
classes of three-qubit entangled states.

Whereas the entanglement of bipartite systems is well
understood, it is recognized that the entanglement of tripartite
quantum states is not a trivial extension of its bipartite
counterpart [44].

Dür et al. [45] have classified three-qubit states according
to their equivalence types under stochastic local operations
and classical communication (SLOCC). Thus, they have
proposed three classes of the three-qubit states: full separable
states (labeled here as I), biseparable states (II), and full
tripartite entanglement states (III). On the other hand, for the
pure three-qubit states, two inequivalent kinds of tripartite
entanglement are distinguished, represented by the GHZ
and W states [45]. The GHZ state has only full tripartite
entanglement and the entanglement disappears if any one of
the three qubits is traced out—the remaining two are always
in a separable state. On the other hand, for the W states,
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FIG. 4. Time evolution of (a) first-order and second-order correlation function on the top, and reduced (considered here) and tripartite
(discussed in the next section) negativities on the bottom for α = 0.001χ , ε = 12α

10+√
28

. (b) The same as in (a), but for ε = 12α

10−√
28

. Time is
measured in units of T .

bipartite entanglement is present; and when one of the qubits
is removed by the tracing procedure, the other two remain
maximally entangled. However, one should keep in mind that
the classification proposed in [45] does not include some
other states, such as the so-called star-shaped states [46,47].
Therefore, Sabı́n and Garcı́a-Alcaine have proposed in [48]
an extended classification that includes both pure and mixed
states. To be more specific, the classification scheme proposed
in [48] divides the class of tripartite entangled states into the
following four subtypes:

(i) Subtype III-0 that contains the states for which all
bipartite entanglements disappear [all reduced negativities
Nij = 0; see Eq. (14)]. The well-known representative state
belonging to this subtype is the GHZ state. For that reason, the
states from this class are called GHZ-like states.

(ii) Subtype III-1 for which only one of the reduced
negativities is nonzero, whereas the remaining two are zero
valued.

(iii) Subtype III-2 contains star-shaped states for which two
reduced negativities have nonzero values.

(iv) Subtype III-3. To this subtype belong the so-called W-
like states characterized by three nonzero reduced negativities.

To sum up the above description, all possible classes of
the tripartite entanglement and their relation to the reduced
bipartite negativities has been presented in Table I. It is worth
emphasizing that the Dür et al. classification scheme contains
states of the two types only. These are types III-0 and III-3.

Now, in order to classify the various types of entanglement
which can be generated by the system, we follow the path
proposed in [48] applying the geometrical average of three
negativities,

N (ρ) = (N1−23N2−13N3−12)
1
3 , (15)

as a good measure of full tripartite entanglement. The param-
eters Ni−jk are the bipartite negativities for the three-mode
density matrix ρijk , where the partial transpose is made
for the mode (subsystem) i. By contrast to other tripartite
entanglement measures (see, for instance, [49,50]), the one
defined in (15) is always equal to zero for the states belonging
to the classes I and II (according to the classification proposed
by Dür et al.), and has nonzero values for all subtypes of
tripartite entanglement listed above.

The time evolution of negativities describing tripartite en-
tanglement for the two chosen coupling strengths is presented

TABLE I. The types of full tripartite entanglement.

Type of tripartite Reduced Generated
entanglement entanglement state

III-0 Nij = Njk = Nik = 0 GHZ-class state
III-1 Nij �= 0, Njk = Nik = 0
III-2 Nij �= 0, Njk �= 0, Nik = 0 starlike state
III-3 Nij �= 0, Njk �= 0, Nik �= 0 W-class state
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in Fig. 4. It is seen that for both values of ε, three-qubit entan-
gled states are generated. We have already shown that coupling
strength influences the degree of two-qubit entanglement
between b-c oscillators, but we may also conclude that this
influence on the formation of three-qubit entanglement is more
pronounced. Even though Bell-like states are obtained with
probabilities that do not exceed 40%, the three-qubit entangled
states are obtained (for the same values of the interaction
strengths) with probabilities higher than 80%; see Fig. 4.

For both ε values, during the evolution in time, different
types of tripartite entangled states can be obtained. For times
equal to 0.5 of the oscillation period (t = 0.5T ), we have
identified the entangled state of the whole system as being
the III-1 type (Table I)—for those moments of time, only
boundary oscillators are entangled, but the system as a whole
can be found in an almost maximally entangled state; see
Fig. 4. The b-b oscillator pair is correlated and both of the
b-c oscillators pairs are not correlated. The entangled W state
is generated with a smaller probability; as seen from Fig. 4,
all of the two-qubit pairs are entangled and all of them are
correlated (g(2)

12,23 > 0 and g
(2)
13 > 0).

A smaller interaction between the boundary and central
oscillators results in smaller probabilities of the obtained
tripartite entangled state; see Fig. 4. For other times, for which
one can observe entanglement between all of the oscillators,
the system can be found in III-3-type states, i.e., W states.
Adequate fidelities corresponding to different three-qubit
entangled states are presented in Fig. 5.

For a smaller b-c interaction, when tripartite negativity
reaches its maximum, all three reduced negativities are
nonzero (III-3 type of tripartite entanglement). We can
conclude that this class of tripartite entanglement is associated
with production of a W-class state; see Fig. 5(a). As seen from
Fig. 4, the W-class state is obtained when all oscillator pairs
are anticorrelated. Additionally, the generation of III-1-type
states is also connected with second-order correlations present
only in the modes corresponding to boundary oscillators.
For larger interaction between the oscillators [Fig. 5(b)],
the maximum of tripartite entanglement is associated with
production of the states (|0〉2 ± |1〉2)(|00〉13 ± |11〉13).

If we compare our results with the ones presented in [29]
for the system of three mutually coupled Kerr-like oscillators
with no external excitation, for which the authors reported the
possibility of producing entangled W states, we can see that
the dynamics in our model is richer and the system is able to
produce other types of three-qubit entangled states with high
probabilities.

The results presented so far concern the two values of inter-
actions between the neighboring oscillators that correspond to
regular and periodic solutions. If the values of ε are different,
the evolution of correlation functions and entanglement will
be more complicated. But it appears that it is possible to
obtain values of negativity describing tripartite entanglement
slightly less than unity—meaning that an almost maximally
entangled three-qubit state (MES) is generated. That can be
obtained by slightly detuning the value of ε from one of
the regular solutions. The results are seen in Fig. 6, which
presents all of the two-qubit negativities and a three-qubit one
[note that the time is scaled in the same units of T , as in
Fig. 5(b) for periodic behavior]. The states that are generated
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FIG. 5. Time evolution of fidelities corresponding to the same
states and tripartite negativity for α = 0.001χ for (a) ε = 12α

10+√
28

,

T =
√

5+√
7π

2α
and (b) ε = 12α

10−√
28

. Time is measured in units of T =√
5−√

7π

2α
.

are 1√
2
(|000〉 ± |111〉) and 1√

2
(|010〉 ± |101〉). Unfortunately,

they are slightly perturbed by states |001〉 and |100〉 and
the result is that we cannot produce a maximally entangled
GHZ state (III-0 in Table I) with probability 1. Additionally,
once this state is generated, the two-qubit entangled states are
produced simultaneously for boundary and between boundary
and central oscillators. Due to the fact that they oscillate
with slightly different frequencies, in time we will observe
the previously mentioned flow of entanglement between the
oscillator’s pairs and production of other types of three-qubit
entangled states.

IV. DAMPED SYSTEM

A. Amplitude damping

In this section, we shall discuss how damping processes
influence our system’s dynamics. In particular, the time
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N13
N

FIG. 6. Time evolution of reduced and tripartite negativities for
ε = 12α

10−√
28

+ 	, 	 = −0.6α. Time is measured in units of the period
T , used in Fig. 5(b).

evolution of the first- and second-order correlation functions
as well as bi- and tripartite entanglement will be considered.

When amplitude damping is assumed (for the zero-
temperature bath), the system’s evolution is governed by the
following master equation [41,51]:

dρ̂

dt
= −1

i
(ρ̂Ĥ − Ĥ ρ̂)

+
3∑

j=1

κj

2
(2âj ρ̂â

†
j − â

†
j âj ρ̂ − ρ̂â

†
j âj ), (16)

where we have introduced damping parameter κj (j = 1,2,3)
describing the interaction with a zero-temperature bath for the
modes 1, 2, and 3, respectively. For simplicity, we assume that
all damping parameters appearing here are the same for all
of the modes, i.e., κ1 = κ2 = κ3 = κ and κ = 0.1α. The same
as for the cases discussed in previous sections, the system
is excited in two modes and α = 0.001χ (only boundary
oscillators 1 and 3 are excited). Moreover, since the results
corresponding to the two considered values of the excitation
strength ε are very similar to each other, we shall concentrate
on the case when ε = 12α

10−√
28

(stronger internal interaction
case). We shall mostly discuss two cases: one corresponding
to the periodic solution, i.e., for ε = 12α/(10 − √

28), and
the second which corresponds to the situation presented
in Fig. 6, when ε = 12α/(10 − √

28) + 	 and the system
exhibits quasiperiodic behavior.

When our system is influenced by an external zero-
temperature bath, its behavior changes considerably from that
corresponding to the nondamped cases. In Fig. 7, we show the
time evolution of the negativities describing both bi- and tri-
partite entanglement ({N12 = N23,N13} and N , respectively).
Figure 7(a) corresponds to the case when ω1 = 2ω2, i.e.,
the system evolves periodically, whereas Fig. 7(b) shows the
system’s evolution when internal coupling constant ε is slightly
perturbed by 	 = −0.6α (for such situation, we get maximal
value for the tripartite negativity for the nondamped case;

0 2T 4T 6T 8T
0

0.2

0.4

0.6

0.8

1

time

N12 = N23
N13
N

0 0.5T T
0

(b)

(a)

0 2T 4T 6T 8T
0

0.2

0.4

0.6

0.8

1

time

N12 = N23
N13
N

0 0.5T T
0

FIG. 7. Time evolution of the reduced and tripartite negativi-
ties for α = 0.001χ , (a) ε = 12α

10−√
28

, (b) ε = 12α

10−√
28

+ 	, where
	 = −0.6α. The amplitude-damping parameter κ = 0.1α. Time is

measured in units of T =
√

5−√
7π

2α
.

see Fig. 6). Moreover, when the internal coupling constant is
perturbed, our system exhibits quasiperiodic evolution. Thus,
we see that N exhibits damped oscillations and tends to its
final nonzero value (∼0.16). It differs from zero, so tripartite
entanglement does not disappear during the entire time of
the system’s evolution. Moreover, the maximal value of N

is reached for the time t = T/2 and its value ∼0.7. At the
same moment of time, N13 also becomes maximal (∼0.3),
whereas N12 = N13 are equal to zero. In consequence, we
do not observe bipartite entanglement between neighboring
oscillators, whereas the entanglement between two boundary
oscillators reaches its maximum (one should remember that
it does not mean that we generate a maximally entangled
state here). For such a situation, the state of the III-1 type
is generated. It is the state |0〉2 ± |1〉2)(|00〉13 ± |11〉13) with
some addition of the states |001〉, |100〉, |011〉, and |110〉, and
hence maximal value of N < 1. Moreover, we observe the
sudden death of entanglement [52] and its rebirth [53] for all
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cases of bipartite entanglement represented by the negativities
Nij (i = {1,2}, j{2,3}). In the long-time limit, we see that
final values of the negativities N and N13 reach some nonzero
values, whereas the entanglement represented by N12 = N23

disappears.
When the internal coupling is equal to 12α

10−√
28

+ 	, where
	 = −0.6α [Fig. 7(b)], we see behavior similar to that
observed for the situation presented in Fig. 7(a). For this
case, we observe slightly greater value of the maximum of
N � 0.8 and damped oscillations of all negativities. As in the
previous case, the sudden death of bipartite entanglement and
its rebirth represented by all reduced negativities are present in
the system’s evolution, and N tends to its final nonzero value
again. However, due to the fact that two slightly different
frequencies govern the time evolution of the model, some
dephasing appears in the system, and when N reaches its first
maximum, all of the reduced negativities become practically
equal to zero. Consequently, this maximum of N corresponds
to the generation of the tripartite entangled state of the type
III-0, contrary to the situation depicted in Fig. 7(a), where the
entanglement of type III-1 was present. Moreover, we see that
for time t → ∞, all reduced negativities describing bipartite
entanglement tend to zero.

Quantum correlations and, hence, the characteristics of
our system’s steady state strongly depend on the value of
the damping constant. Thus, Fig. 8 shows the dependence
of all negativities considered here and correlation functions
on the value of κ (expressed in the units of external coupling
α). Figure 8(a) depicts how first- and second-order intermode
correlation functions change their final values with increasing
value of κ (for the periodic and quasiperiodic cases, those
dependences are almost identical). We see that for the very
weak damping case, all g(1) functions are close to zero, so
we do not observe first-order correlations. However, as κ

increases, when κ/α >∼ 5, all functions practically become
equal to unity. If we look at second-order correlations, the
situation is more complicated. For small values of κ , they are
greater than 1 and we observe intermode anticorrelations for
all modes of the field. Those anticorrelations increase to reach
their maximal values and then start to fall down with increasing
κ . For the correlations between the two boundary oscillators’
modes (1 and 3), some range of the values of κ exists for
which anticorrelations are observed. However, for κ >∼ 5,
we observe tiny and vanishing correlations again. Correlations
between two neighboring modes (1 − 2 and 2 − 3) reach their
maximum for greater value of κ if we compare it with that
corresponding to the maximal value of g

(2)
13 . Then, the values

of g
(2)
12 and g

(2)
23 decrease and become negative for the same

value of κ when anticorrelations between the modes 1 − 3
disappear. What is interesting is that although the correlations
described by g

(2)
13 practically disappear for stronger damping,

anticorrelations described by g
(2)
12 and g

(2)
23 remain in the system

even for large values of κ .
Figures 8(b) and 8(c) show long-time values of the tri-

and bipartite negativities, corresponding to the various values
of damping constant κ (expressed in the units of external
coupling strength α). Figure 8(b) corresponds to the case when
the system’s dynamics is periodic (ε = 12α

10−√
28

), whereas for
the situation presented in Fig. 8(c), internal coupling strength

5 10 15 20
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g(1)
12 = g(1)

23
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23

g(1)
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2 4 6 8 10
0
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(a)

0 2 4 6 8 10
0

0.03
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0.09

0.12

0.15

0.18

κ/α

N12 = N23

N13

N13

4
0

III−2III−0

III−3 III−2 III−3III−2 −

FIG. 8. Steady-state solutions for (a) the intermode correlation
functions g(1) and g(2) and for the negativities (full tripartite N

and reduced bipartite Nij ) vs the value of the damping parameter
where (a),(b) ε = 12α

10−√
28

and (c) ε = 12α

10−√
28

+ 	 (	 = −0.6α). The
external coupling strength α = 0.001χ .

is perturbed, i.e., ε = 12α

10−√
28

+ 	, where 	 = −0.6α (for
this case, our system exhibits quasiperiodic behavior). In
Fig. 8(b), we see that although the tripartite entanglement
decreases with growing value of κ (when κ/α <∼ 4.5), the
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TABLE II. Different types of full tripartite entanglement gener-
ated for a long-time limit for the cases when (a) ε = 12α

10−√
28

and (b)

ε = 12α

10−√
28

+ 	, where 	 = −0.6α.

Damping parameter Type of tripartite entanglement

(a)
κ < 0.4α III-1
0.4α < κ < 4.5α III-3
4.5α < κ < 4.8α III-2
4.8α < κ < 5.1α

5.1α < κ < 5.4α III-2
κ > 5.4α III-3

(b)
κ < 0.65α III-0
0.65α < κ < 0.82α III-2
0.82α < κ < 3.14α III-3
3.14α < κ < 3.53α III-2
3.53α < κ < 3.94α

3.94α < κ < 4.67α III-2
κ > 4.67 III-3

negativities describing bipartite entanglement can increase for
such situation, and for some values of the damping constant
they reach their maximal values. When κ/α <∼ 5.4 [see
Table II and the inset in Fig. 8(b)], three various classes of the
tripartite entangled states can be generated depending on the
value of κ , and for κ/α � 5, no entanglement is produced—all
the negativities are equal to zero. In general, if we look at
the values of the negativities describing two- (N12 = N23,
N13) and tripartite (N ) entanglement, we can identify various
regions for which one or more of them are equal to zero.
Thus, we can identify various classes of tripartite entangled
states corresponding to different values of κ (Table II shows
approximate values of κ for which the steady states of our
system belong to various classes of the tripartite entangled
state). In particular, for the situation presented in Fig. 8(b),
they are III-1, III-2 (starlike), and III-3 (W-class) states. It
is seen from Fig. 8(b) that the highest values of all bipartite
negativities can be found when ∼0.5κ/α < ∼2. For such a
situation, tripartite negativity N is relatively high as well, so
the W state can be generated with better efficiency than for the
cases when other classes of states are produced. Nevertheless,
applying various strengths of damping, we can switch the final
system’s state from one belonging to the particular class to
another.

Figure 8(c) corresponds to the situation when internal
coupling ε is perturbed, i.e., ε = 12α

10−√
28

+ 	 (	 = −0.6α).
For such situation, the system evolves quasiperiodically and,
hence, we observe some dephasing effect as a result of the
appearance of two different frequencies in the system’s dynam-
ics. Consequently, different types of the bipartite entanglement
represented by the reduced negativities disappear (or reappear)
for different values of κ/α as we compare them with their
counterparts from Fig. 8(b), and other types of the entangled
states are generated [see Table II(b)]. We see that our system
is able to produce various types of tripartite entanglement and
is fragile on the values of the parameters describing it. So, by
the appropriate tuning of the parameters, we can switch the

final state of the system from one kind of state to another.
Moreover, what is interesting is that for the weak damping
case, tripartite negativity can increase with growing value of
κ/α. When we observe this feature, bipartite entanglement is
absent—reduced negativities are equal to zero. Moreover, as
seen in Figs. 8(b) and 8(c), there exists for both cases some
range of the values of the damping constant for which the
final state of the system is not entangled—all of the negativ-
ities describing tri- and bipartite entanglement are equal to
zero.

B. Phase damping

In this section, we consider the influence of phase damping
on the generation of various tripartite entangled states. When
we include phase-damping effects, the system does not lose its
energy and populations of the states represented by diagonal
matrix elements do not decay. For such cases, decoherence
effects and, hence, entanglement losses can be observed. This
is an effect of decay of other than diagonal matrix elements.
Decoherence induced by the phase-damping reservoir is
related to random changes in the relative phases of superposed
states during the system’s time evolution. Moreover, dephasing
processes can lead to other interesting phenomena, such as
sudden death of entanglement and/or its reappearing.

To describe phase-damping effects, we apply the following
master equation [41,51]:

dρ̂

dt
= −1

i
(ρ̂Ĥ − Ĥ ρ̂)

+
3∑

j=1

κj

2
[2â

†
j âj ρ̂â

†
j âj − (â†

j âj )2ρ̂ − ρ̂(â†
j âj )2], (17)

where κj (j = {1,2,3}) is a damping parameter corresponding
to the modes 1, 2, and 3, respectively. Analogously, as for the
cases discussed in the previous section where the system was
amplitude damped, we assume here that damping parameters
are the same for all modes κ1 = κ2 = κ3 = κ and are equal to
0.1α, and the excitation strength α = 0.001χ . Moreover, we
consider two cases when the internal coupling parameter ε =

12α

10−√
28

and ε = 12α

10−√
28

+ 	 (	 = −0.6α), as in the previous
cases.

Thus, Fig. 9(a) shows the time evolution of all the nega-
tivities considered here when ε = 12α

10−√
28

+ 	 (	 = −0.6α)
(the system evolves periodically). It is seen that thanks to
the presence of the phase damping, both effects, i.e., sudden
death of entanglement and entanglement revival, are present
in the system. These two phenomena can be observed for the
bipartite and tripartite entanglement as well. In a long-time
limit, all negativities disappear, so the entanglement of any
kind does not survive, contrary to the case of the amplitude
damping discussed in the previous section (see nonzero values
of the negativities for the steady state in Fig. 8). In this limit,
all eight states involved in the system’s evolution are equally
populated with the same probability equal to 0.125.

Nevertheless, for shorter times, a considerable amount
of tripartite entanglement can be generated. For t = T/2,
tripartite negativity N reaches its greatest maximum and
slightly exceeds 0.8. At the same moment of time, reduced
negativity N13 becomes maximal, whereas the negativities
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FIG. 9. Time evolution of the reduced and tripartite negativities
for (a) ε = 12α

10−√
28

and (b) ε = 12α

10−√
28

+ 	, where 	 = −0.6α. Time

is measured in units of T =
√

5−√
7π

2α
, phase-damping parameter κ =

0.1α, and α = 0.001χ .

N12 = N23 describing entanglement between two neighboring
oscillators (modes) become equal to zero. For such situation,
we generate the III-1 class state |0〉2 ± |1〉2)(|00〉13 ± |11〉13),
which is slightly perturbed by |001〉, |100〉, |011〉, and |110〉.
Thanks to the periodic evolution of the system, at the next
maxima of N , we see the similar situation, although the
degree of the entanglement becomes smaller and smaller as
we reach successive maxima. Additionally, when all of the
reduced negativities describing bipartite entanglement differ
from zero and N �= 0 as well, W-type states are generated.
When we decrease internal coupling (ε = 12α

10−√
28

+ 	 where
	 = −0.6α), we observe a similar behavior of our system,
albeit some irregularities appear in the time evolution of the
negativities. Moreover, analogously to the situation depicted
in Fig. 7, the maximal value of N describing tripartite
entanglement increases and becomes equal to �0.9. What
is interesting is that all reduced negativities Nij ({i,j} =
{1,2,3}) after some period of time when they exhibit irregular

oscillations (for t >∼ 4T ) become equal to zero, and we
observe sudden death of bipartite entanglement without its
revival.

V. SUMMARY

We have discussed the model of a chain of three nonlinear
oscillators excited by two external coherent fields. In partic-
ular, we were interested in a time evolution of the quantum
correlations present in the system and the possibility of gen-
eration of the entangled quantum states, which are especially
interesting from the point of view of quantum information
theory. As the model consists of the three oscillators, we have
discussed both the bi- and tripartite entanglement.

We have shown that under some conditions, our model
can be treated as nonlinear quantum scissors and evolves
within a set of eight states |ijk〉, where {i,j,k} = {0,1}. As
a consequence, the system considered here can be treated as a
three-qubit system. We have shown that such system can be a
source of entangled two-qubit and three-qubit states, including
maximally entangled ones. For the case of the two-qubit
entanglement, one can observe not only its flow between the
pairs of oscillators, but also that the entanglement can be
created even between two oscillators which are not directly
coupled together. We have also discussed the connections
between the first- and second-order correlation functions, and
various relations between those correlations and creation of
the entanglement.

The possibility of creation of tripartite entanglement in our
model was discussed as well. It has been shown that it is
possible to obtain an almost maximally entangled three-qubit
state if only the pair of externally excited oscillators is
entangled, and we observe only second-order correlations
between the modes corresponding to these two oscillators.
Moreover, the states of W type are created if all the two-qubit
subsystems are entangled and g(2) functions indicate either
correlations for all subsystems or anticorrelations for all of
them. We have shown that it is also possible to generate the
state which is very close to the GHZ state.

We have also considered long-time solutions and discussed
their dependence on the strength of damping effects. For the
amplitude-damping case, we can observe sudden death of the
bipartite entanglement and its sudden revivals, whereas for the
phase-damping case, the phenomenon of sudden death can be
observed for both the bi- and tripartite entanglement.

What is most important is that different classes of tripartite
entangled states can be obtained in a stationary state limit, and
the type of the final entangled state strongly depends on the
values of the parameters describing the system. Consequently,
we can “switch” the final state of the system by adiabatic tuning
these parameters. Moreover, there is a range of damping con-
stant values for which none of the three-qubit entangled states
(and none of two-qubit ones) is created in the steady-state limit.

We believe that all of those facts and the generality of
our model allows for the conclusion that physical systems
governed by the effective Hamiltonian describing our model
can be not only a potential source of various bi- and tripartite
entangled states, but also an interesting finding concerning
various types of quantum correlations and the relations among
them.
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[4] M. Stobińska, H. Jeong, and T. C. Ralph, Phys. Rev. A 75,

052105 (2007).
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78, 013810 (2008).
[9] Y. X. Liu, A. Miranowicz, Y. B. Gao, J. Bajer, C. P. Sun, and F.

Nori, Phys. Rev. A 82, 032101 (2010).
[10] P. Rabl, Phys. Rev. Lett. 107, 063601 (2011).
[11] H. Wang, X. Gu, Y. X. Liu, A. Miranowicz, and F. Nori, Phys.

Rev. A 92, 033806 (2015).
[12] L. A. Wu, A. Miranowicz, X. B. Wang, Y. X. Liu, and F. Nori,

Phys. Rev. A 80, 012332 (2009).
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A. Miranowicz and W. Leoński, ibid. 39, 1683 (2006); A.
Kowalewska-Kudłaszyk and W. Leoński, Phys. Rev. A 73,
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