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Randomized benchmarking is routinely used as an efficient method for characterizing the performance of sets
of elementary logic gates in small quantum devices. In the measurement-based model of quantum computation,
logic gates are implemented via single-site measurements on a fixed universal resource state. Here we adapt
the randomized benchmarking protocol for a single qubit to a linear cluster state computation, which provides
partial, yet efficient characterization of the noise associated with the target gate set. Applying randomized
benchmarking to measurement-based quantum computation exhibits an interesting interplay between the inherent
randomness associated with logic gates in the measurement-based model and the random gate sequences used in
benchmarking. We consider two different approaches: the first makes use of the standard single-qubit Clifford
group, while the second uses recently introduced (non-Clifford) measurement-based 2-designs, which harness
inherent randomness to implement gate sequences.

DOI: 10.1103/PhysRevA.94.032303

I. INTRODUCTION

In the measurement-based model [1], quantum computa-
tion proceeds via adaptive single-site measurements on an
entangled resource state of many qubits such as the cluster
state [2]. The computational power of this model is equivalent
to standard approaches to universal fault-tolerant quantum
computation, assuming that all operations can be implemented
with sufficiently small error [3–5]. Because this model does
not require an on-demand entangling gate, it is appealing for
candidate physical architectures where such gates cannot be
performed deterministically. The leading example is linear-
optical quantum computing (LOQC) [6–8], where the basic
building blocks are single-photon sources, linear optics, and
photon-number resolving detectors with feedforward.

As quantum devices with progressively smaller error rates
are developed, there is a growing need for techniques to
efficiently characterize the noise associated with elementary
components such as logic gates. Although it may sound
desirable, a complete description of the error processes of
a quantum device is prohibitively expensive due to the
exponentially bad scaling in size [9,10]. An additional concern
is how to observe gate errors in the presence of noise from state
preparation and measurement (SPAM), which often dominate.
The randomized benchmarking (RB) protocol [11–13] is a
technique that allows for efficient, partial characterization of a
target gate set while being insensitive to noise from SPAM [14].

Randomized benchmarking performs well with realistic
noise using only small data sets [14–16]. The basic protocol
has been extended to include tests for time dependence, non-
Markovianity [14,15,17,18], robustness to leakage errors [19],
reconstruction of the unital part of general completely positive
trace-preserving (CPTP) maps [20], and extracting tomo-
graphic data from quantum gates [21].
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Here we adapt the original RB protocol to the setting
of measurement-based quantum computation (MBQC). By
combining ideas from RB and MBQC on linear cluster states,
we provide two protocols for estimating the average gate
fidelity for two different single-qubit gate sets. The first gate set
is the single-qubit Clifford group, and the second is the recently
proposed measurement-based exact 2-design [22], which
leverages the intrinsic randomness of MBQC to implement
random sequences of gates. Our schemes fully inherit the
advantages of the RB protocol, namely that the average gate
fidelity can be computed and with low sensitivity to errors
in preparation of the (logical) input and final measurement
readout [13].

The structure of the paper is as follows. We review the
RB protocol and MBQC in Sec. II. We discuss our protocols
for implementing RB on a linear cluster state with the
Clifford group and with the measurement-based 2-designs in
Sec. III.

II. BACKGROUND

Here we review the standard RB protocol [13] and fix our
notation.

A. Preliminaries

Consider a (d = 2n)-dimensional Hilbert space (C2)⊗n

corresponding to an n-qubit system. A unitary operation (gate)
is denoted by U ; the corresponding superoperator that acts on
density matrices ρ is denoted by U(ρ) = UρU †. We denote
U†(ρ) = U †ρU andUm(ρ) = UmρUm†. General (nonunitary)
superoperators are denoted D,E , etc., and in addition we use
Ũ to denote a noisy approximation to the ideal unitary gate
U . Common unitary gates we will see include the X,Y , and Z

Pauli matrices, the Hadamard gate H , the controlled-Z (CZ)
gate (|0〉〈0| ⊗ I + |1〉〈1| ⊗ Z), and single-qubit Z rotations by
θ,Zθ = e−iθZ/2. We will make use of the Clifford phase gate
P := Zπ/2. Here we use “◦” to denote channel composition
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and “©” for right-to-left sequential composition of channels,
i.e., ©n

i=1 Ei(ρ) := En ◦ · · · ◦ E1(ρ).
Quantum states ρ1,ρ2 are commonly compared by their

fidelity F , given by

F (ρ1,ρ2) = (
tr

√√
ρ1ρ2

√
ρ1

)2
. (2.1)

This definition also allows for comparisons between two
quantum gates E1,E2. The gate fidelity between these two gates
is defined to be

F (E1,E2) =
∫

dψF (E1(ψ),E2(ψ)), (2.2)

where the integral is over the set of all pure states with respect
to the uniform measure dψ .

For a noisy implementation Ũ of an ideal unitary gate U ,
the gate fidelity F (Ũ,U) gives a measure of (one minus) the
average case error rate of the gate. While the gate fidelity is
a measure of the average case error, in many applications—
such as computing thresholds for fault tolerance—the worst
case error is the relevant figure of merit [23] (quantified, for
example, by the diamond norm distance between the ideal and
noisy gates). The gate fidelity can be used to bound the worst
case error rate [24–26].

Let G = {Ur,r = 1,2, . . . ,|G|} be a set of ideal (unitary)
gates. For each Ur ∈ G, let Ur be the ideal unitary gate as a
superoperator and Ũr be a noisy approximation to this gate.
The average gate fidelity for the gate set G, denoted F̄G, is
defined to be

F̄G = 1

|G|
|G|∑
r=1

F (Ũr ,Ur ). (2.3)

The RB protocol allows us to characterize the experimental
implementation of a gate set G by estimating the value of F̄G,
provided that G forms a unitary 2-design:

Definition (2-design). A set of unitary gates G = {Ur}r is a
unitary 2-design if, for any quantum channel E , the action of
the twirl of E over G on an arbitrary state ρ is equivalent to
that of the twirl over the entire n-qubit unitary group [27,28],

1

|G|
|G|∑
r=1

U†
r ◦ E ◦ Ur (ρ) =

∫
dUU† ◦ E ◦ U(ρ), (2.4)

where dU is the uniform (Haar) measure.
For n qubits, a commonly used 2-design is the n-qubit

Clifford group [29–31].

B. Randomized benchmarking

We now briefly review RB together with a derivation
(originally due to Magesan et al. [13]) of how RB yields an
estimate of the average gate fidelity. In our review of this
derivation, we relax the condition that the 2-design have a
group structure. This relaxation will be important when we
consider RB in the MBQC case, which will make use of
non-Clifford 2-designs.

The standard RB protocol proceeds as follows. Choose a set
of unitary gates G that forms a unitary 2-design, and for which
the inverse element of any sequence of gates can be efficiently
computed. Choose a sequence length s and a number Ks of gate
sequences for that length. Draw Ks many sequences of s gates

from G uniformly at random. For the ith sequence, 1 � i �
Ks , denote the j th element of the sequence by U

(i)
j , where 1 �

j � s. Note that each U
(i)
j is an element Ur ∈ G from the gate

set. For each sequence, compute U
(i)
s+1 := (U (i)

s U
(i)
s−1 . . . U

(i)
1 )†.

Note that when G does not form a group, U (i)
s+1 /∈ G in general.

Although the sequences are ideally described by noiseless
unitary gates Ur sampled from G, in practice these gates
will be noisy. The noisy gates Ũ (i)

j can be decomposed into

a composition of the ideal unitary gate U
(i)
j followed by an

arbitrary CPTP map D(i)
j , i.e., the noisy gate is described by

Ũ (i)
j (ρ) = D(i)

j ◦ U (i)
j (ρ). (2.5)

Let ψ̃ denote the mixed state describing the noisy preparation
of the ideal state ψ := |ψ〉〈ψ |. The total noisy evolution of
this state under the ith sequence is then

Ũ (i)(ψ̃) :=
s+1
©
j=1

Ũ (i)
j (ψ̃) =

s+1
©
j=1

[
D(i)

j ◦ U (i)
j

]
(ψ̃). (2.6)

At the conclusion of the sequence, a measurement described
by the effects {Ẽψ,1l − Ẽψ } is performed, which is the
noisy implementation of the ideal projective measurement
{|ψ〉〈ψ | ,1l − |ψ〉〈ψ |}. This measurement gives what is known
as the survival probability for the sequence i,

tr[Ẽψ Ũ (i)(ψ̃)]. (2.7)

Its average over all Ks random sequences U (i) results in the
sequence fidelity

FG(s,Ks) := 1

Ks

Ks∑
i=1

tr[Ẽψ Ũ (i)(ψ̃)]. (2.8)

This can be viewed as an estimate of the average defined by the
set of all sequences of length s. As the number of sequences
Ks increases, the sequence fidelity converges to the uniform
average over all sequences,

FG(s) = 1

|G|s
|G|s∑
i=1

tr[Ẽψ Ũ (i)(ψ̃)], (2.9)

where there are a total of |G|s sequences, and each sequence
i is taken with equal weight in order to satisfy the 2-design
condition. A key feature of RB is that it scales well in both the
number of qubits and the sequence length s. This is due to the
fact that FG(s,Ks) converges quickly to FG(s) in the number
of sequences measured Ks [13,14].

Estimating FG(s) for various sequence lengths s can be
used to produce an approximation to the average gate fidelity
F̄G. The original derivation [13] is reviewed in Appendix A,
but presented without the assumption that G is a group. This
derivation yields an exponential decay of the sequence fidelity
as a function of s, of the form

FG(s) ≈ A0(2F̄G − 1)s + B0, (2.10)

where A0 and B0 are nuisance parameters that contain infor-
mation about the noise in state preparation and measurement;
see Appendix A. Equation (2.10) is known as the zeroth-order
expansion of FG(s). By performing the RB protocol above for
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FIG. 1. (a) Cluster state with wire graph (shown left) with an
input state on the leftmost and green node. Measurement angles are
labeled in the center of each node. (b) Measuring the input state in
some basis in the XY plane (i.e., a measurement in the eigenbasis of
Xθ1 = X cos θ1 − Y sin θ1) yields the output shown in the circuit on
the right.

various s, we can fit the zeroth-order model to the measurement
data to find F̄G [16].

Key assumptions in this derivation were that the noise per
gate when decomposed as in Eq. (2.5) is Markovian and that it
has low dependence on which gate was being applied, as well
as on time, i.e., D(i)

j 
 D independent of i,j . It was shown
in Ref. [13] that in this regime, the effect of including gate-
dependent perturbations to the noise D can be neglected for
the purposes of calculating the average gate fidelity. Note that
these assumptions are sufficient but not necessary—we will
impose them later in Sec. III A 1 to establish a regime under
which the zeroth-order model of RB is guaranteed to be valid.

In the case when G is not a group, then the final sequence
inverse U

(i)
s+1 may not be an element of G (and, perhaps,

instead performed by changing the measurement basis). To
directly extend the proof by Magesan et al. [13] to such
cases, we further assume that the noise superoperator D(i)

s+1
corresponding to the sequence inverse (or final measurement)
is independent of the choice of sequence.

C. Measurement-based quantum computation

We now briefly review the measurement-based model for
quantum computation, with a focus on the aspects that will be
used in designing an RB protocol within this model.

In the measurement-based model, the task of building a
quantum computer is broken into two steps: (1) prepare a
cluster state [2] with a suitable graph structure (e.g., a linear
chain for single-qubit gates, or a square lattice for universal
quantum computation); (2) perform single-qubit measure-
ments on this resource, allowing for future measurement bases
to be adaptively changed conditioned on past measurement
outcomes [32].

For the remainder of this article, we focus our attention on
linear cluster states, which allow for sequences of single-qubit
gates in the MBQC model. A linear cluster state is defined on
n qubits with a single-qubit input ψ as

n−1
©
i=1

CZ i,i+1(ψ ⊗ |+〉〈+|⊗n−1), (2.11)

where CZ gates are applied to nearest neighbors with respect
to the linear graph shown in Fig. 1(a).

Quantum computation proceeds via single-qubit measure-
ments in the XY plane of the qubit, as shown in Fig. 1(b).
Measuring the first cluster site in this way and obtaining the

outcome m ∈ {0,1} implements the logic gate

Mθ,m(ψ) := Xm ◦ H ◦ Zθ (ψ), (2.12)

where we recall that X is the superoperator describing the
unitary Pauli X gate, Zθ describes a rotation by θ about the z

axis, and H is the Hadamard gate H .
In the absence of noise, both measurement outcomes are

equally probable. Furthermore, the outputs only differ up to a
Pauli X correction, i.e., Mθ,1 = X ◦ Mθ,0.

Though the gate that gets implemented after each measure-
ment step is probabilistic (either Mθi ,0 or Mθi ,1), the overall
unitary evolution due to several sequential measurements can
still be made deterministic up to a known Pauli gate by using
measurement feedforward, i.e., introducing a time ordering
to the measurements and allowing the choice of the future
measurement bases to depend on the outcomes of prior qubit
measurements [32,33].

An important exception is when θi is an integer multiple of
π/2 ∀i. In this case, the gates are Clifford and changing the
measurement angle is equivalent to flipping the measurement
outcome in postprocessing, i.e., Mn π

2 ,0 = M−n π
2 ,1 for some

integer n. The measurement angles do not need to be chosen
adaptively based on previous measurement outcomes (as is
typically required for non-Clifford gates in MBQC), and so
all such measurements can be performed simultaneously. The
final Pauli gate can be absorbed into the final measurement
process.

III. RANDOMIZED BENCHMARKING IN MBQC

In this section, we first give the basics of implementing RB
on a linear cluster state and then we outline two schemes that
use different 2-designs.

A. RB within the measurement-based model

For some 2-design G, each sequence of gates Ur ∈ G will
be implemented by measurements on a linear cluster state. We
will analyze the use of specific gate sets in Secs. III B and III C,
but first we present an analysis of how RB schemes are
generally performed in MBQC, focusing on how the expected
gate noise matches the noise assumptions imposed in the RB
proof.

Throughout, we assume that the same fixed number of
measurements q are used for all gates in G. (In general, each
Ur ∈ G may require a different number of measurements to
be implemented.) For example, any single-qubit gate can be
implemented by MBQC using q = 3 measurements on a linear
cluster state [1]. As described by Eq. (2.12), the randomness
of the measurement outcomes means that the logic gates
performed in this way will not be deterministic and will depend
on the measurement outcome. The required total length of the
linear cluster state is (s + 1)q + 1. (If instead the sequence
inverse is incorporated into the final measurement, then only
a (sq + 1)-long cluster state is required per run.)

1. Noise in MBQC logic gates

Noisy cluster state preparation, storage, and measurement
will translate into an effective noise channel per gate as
the measurement-based computation proceeds. The RB noise
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FIG. 2. Here we show a small part of a noisy measurement-based quantum computation on a linear cluster state [33]. Perfect state
preparation (p), entangling gate (e), and measurement (m) are all followed or preceded by some corresponding noise channel Dp,e,m. Each
measurement step will implement Mθi,mi

, along with some effective single-qubit gate error Dθi ,mi
. For simplicity, we have assumed that state

preparation and measurement errors are the same for all cluster qubits, and therefore the effective noise channel per measurement step Dθ,m

only depends on the θ and m. Note that such an error model is a generalization of those considered in Refs. [34,35].

assumptions require that the errors on the cluster state be local
so that gate noise from measuring different cluster qubits is
uncorrelated. When the noise is modeled as in the circuit shown
in Fig. 2, Markovian noise in state preparations, entangling
gates and measurements results in an effective Markovian
noise channel per gate.

Now consider decomposing the noisy logical gate Ũ (i)
j as a

sequence of q measurements followed by a noise map as

Ũ (i)
j (θ ,m) =Dseq(q) ◦

q

©
k=1

Mθk,mk
, (3.1)

where Dseq(q) is some total noise channel after an ideal gate
©q

k=1 Mθk,mk
= U (i)

j (θ ,m), and we include a dependence on
θ = (θ1, . . . ,θq) and m = (m1, . . . ,mq).

The noise assumptions also require that Dseq(q) be indepen-
dent of time and the gate being implemented. The validity of
these assumptions will depend on the relevant noise sources
for cluster state preparation and measurement.

2. SPAM errors

As mentioned above, errors that occur in the preparation of
the cluster state can lead to logical errors in the MBQC logic
gates. In addition to these gate errors, MBQC will also have
logical state preparation and measurement (SPAM) errors.
While the logic gates in MBQC can be robustly protected
from many forms of errors by symmetry arguments [36–39],
this is not generally true for SPAM errors and so these can
be expected to dominate in MBQC as they do in many other
implementations of quantum computing. Nonetheless, for the
purposes of RB, a natural choice of input state is ψ = |+〉〈+|,
which is automatically “encoded” on the edge of the linear
cluster state when prepared as in Fig. 1. After the inverse
operation U

(i)
s+1 is applied, the final measurement is in the X

basis.

B. RB using the Clifford group

Here we discuss the first of our protocols for measurement-
based RB, referred to as Clifford RB. The distinguishing feature
of this scheme is that it uses the single-qubit Clifford group C1

as the set G of logic gates. The Clifford group forms a unitary
2-design.

We set the number of measurements per logic gate to be q =
3, as this is the maximum number of measurements required to
implement all arbitrary single-qubit Clifford gates. Note that
this protocol can be straightforwardly extended to any q � 3
by using more measurements per gate. The basic building

block of our scheme is the three-node cluster wire shown in
Fig. 3.

Using the Clifford group simplifies the experimental setup
as all measurement devices need only to be programmed to
measure in either the Pauli X or Y basis since the measurement
angles are all integer multiples of π

2 (see Appendix B for a
gate-to-measurement conversion table). Furthermore, we do
not need to make use of measurement feedforward as the gate
implemented can only differ from the desired case (e.g., mi =
0,∀i) by a known Pauli gate as

U (i)
j (θ ,m) =

3
©
k=1

M 1
2 πnk,mk

= X b1 ◦ Zb2 ◦
(

3
©
k=1

M 1
2 πnk,0

)
, (3.2)

where

b1 = m3 + m2n3 + m1(n2n3 + 1), (3.3)

b2 = m2 + m1n2. (3.4)

As a consequence, each sequence can be measured simultane-
ously in a single time step on a linear cluster state.

The protocol begins by generating a sequence U (i) of length
s from C1 uniformly at random. The inverse is computed in
the case where all measurement outcomes are assumed to be
zero. The corresponding measurements are made on a length-
(3s + 4) linear cluster state, with the final qubit measured
in the Pauli X basis. Repeating this process Ks times and
over different sequence lengths s yields an estimate for the

FIG. 3. Each element of the 2-design (a) is implemented by
making three measurements on the cluster wire [(b) and (c)]. We
require a random sequence of Cliffords in each implementation.
The measurement angles are all integer multiples of π

2 (n,n′,n′′ ∈
{0,1,2,3}). The noise operator per 2-design element Dseq(3) describes
the noise added after three measurements.
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survival probability, from which F̄C1 can be extracted for gates
implemented via three measurements.

From Eq. (3.2), each U
(i)
j (θ ,m) is only implemented

up to a random Pauli gate, i.e., the actual gate imple-
mented with outcomes m = {m1, . . . ,mq} is U

(i)
j (θ,m) ∈

{IU
(i)
j (θ,0),XU

(i)
j (θ,0),YU

(i)
j (θ,0),ZU

(i)
j (θ,0)}. So long as

the angles are chosen uniformly at random from the Clifford
table in Appendix B, the gate implemented will also be
uniformly random, irrespective of the measurement outcomes.
Thus, the indeterminism of the logic gates does not interfere
with this measurement-based RB protocol.

Next we consider the case when the probability of getting
a 0 or 1 for each measurement is equally likely. In particular,
we show how this results in a simplification of the original
Clifford RB protocol.

The role of randomness

In the above, the protocol required random sequences of
Clifford gates. However, as a result of the indeterminacy of
the measurement outcomes, each chosen sequence can result
in one of 4s possible sequences occurring. Thus, much of the
randomness required by the above protocol is redundant.

When each cluster state measurement yields outcome
0 or 1 with equal probability, the scheme can be simpli-
fied. Note that C1 can be factored into right cosets of its
Pauli subgroup (ignoring phases) P1 = {I,X,Y,Z}, i.e., C1 =
∪g∈T1P1g, where T1 := {I,P,H,PH,HP,PHP }. As a result,
a random sequence of C1 elements can be implemented by
initializing the above protocol with only a random sequence
of elements of T1. The larger Clifford group (|C1| = 24) is
generated uniformly from T1 by the additional random Pauli
gate provided that the measurement outcomes are themselves
distributed uniformly.

In general, noise on the cluster state will mean that
measurement outcomes may not occur with equal probability.
In such cases, the full Clifford RB protocol (selecting from C1

rather than T1 at random) can be used.
Alternatively, we can restore uniformity into the measure-

ment outcome distributions to deal with problematic noise
channels. (The alternative measurement-based RB protocol
presented in the next section requires uniformly distributed
measurement outcomes.)

The basic idea is to inject additional randomness into
MBQC in order to restore uniformity in outcomes. At each
measurement step k, we introduce a uniformly random binary
variable ck . When ck = 1, the measurement outcome is flipped,
i.e., mk �→ mk + 1 mod 2, and otherwise it is left alone. We
have effectively defined new measurement outcome variables
m′

k := ck + mk mod 2. This is equivalent to applying a perfect
Pauli Z on the cluster qubit k prior to measurement or,
alternatively, locally swapping the definitions of the positive
and negative X axes. The effective measurement variable
m′

k is a uniformly random binary variable. In order to use
this for MBQC, the feedforward procedure must be adjusted
accordingly. We also note that this trick will modify the
effective noise channel.

Basing this scheme on the Clifford group should allow for
generalization to the multiqubit setting while preserving the
advantages discussed above. For instance, with a universal

cluster state [say, on a two-dimensional (2D) square lattice],
Clifford circuits can still be implemented in a single time
step as there is no need for active feedforward. When the
measurement outcomes are uniformly distributed, random
elements of the n-qubit Clifford group Cn can be generated
by implementing a random element of Tn—a set containing
one element from each coset of the n-qubit Pauli group Pn in
Cn. As in the single-qubit case, each element of Tn will be
implemented along with a random Pauli, generating the full
Clifford group if the measurement outcomes are uniformly
random. Also, the inverse element of an n-qubit RB scheme
can always be efficiently computed as a consequence of the
Gottesman-Knill theorem [40].

C. RB using derandomized 2-designs

As we saw in the previous protocol, the intrinsic ran-
domness of MBQC can be leveraged to simplify the im-
plementation. We now consider an alternative to the single-
qubit Clifford group that extends this idea further: by using
recently proposed measurement-based unitary 2-designs from
Ref. [22], RB can be performed using a single, fixed set
of measurements and relying entirely on the measurement
randomness to implement random gate sequences. We refer
to this protocol as derandomized RB, and it allows for the
characterization of more general non-Clifford logic gates in
the MBQC model.

As with Clifford RB, this scheme does not use any
feedforward. When a linear cluster state is measured with a
repeating pattern of q fixed measurement bases, each set of q

measurements can generate up to 2q distinct unitary evolutions.
A necessary ingredient of this scheme is that some of the

cluster qubits be measured in bases other than integer multiples
of π/2. Otherwise, the implemented gates will only differ by
a known Pauli gate [as in Eq. (3.2)]. As P1 is only a unitary
1-design, so too is the entire gate set, and it is insufficient for
RB.

As shown in Ref. [22], a family of 2-designs can be gener-
ated using cluster states of various lengths. Here we consider
the simplest case: a q = 5 sequence with measurement bases
corresponding to angles

(
θ1,θ2,θ3,θ4,θ5

) =
[
φ1,

π

4
, cos−1

(
1√
3

)
,
π

4
,φ2

]
. (3.5)

The resulting gate set G implements a unitary 2-design
provided that the measurement outcomes are all equally
probable. Note that φ1 and φ2 are free parameters, which we
set equal to zero for simplicity.

In the absence of noise, the gate applied is

U (i)
j (m) =

5
©
k=1

Mθk,mk

=
5
©
k=1

Xmk ◦ H ◦ Zθk
. (3.6)

Define the gate applied when all measurement outcomes are
zero as

Q :=
5
©
k=1

Mθl ,0. (3.7)
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FIG. 4. Each element of the unitary 2-design is implemented
by making five fixed measurements on the cluster wire. The noise
operator per 2-design element Dseq(5) describes the noise added after
five measurements.

Commuting each factor of H ◦ Zθk
to the right in Eq. (3.6), we

get

U (i)
j (m) = Am5

5 ◦ Am4
4 ◦ Am3

3 ◦ Am2
2 ◦ Am1

1 ◦ Q, (3.8)

where

Ai =
(

6−i

©
k=i

H ◦ Zθk

)
◦ Z ◦

(
6−i

©
k=i

H ◦ Zθk

)†
. (3.9)

Note that each Ai is a π rotation about some axis. These are
expressed as 2 × 2 matrices in Appendix C. Therefore, the
structure of each G element is a fixed unitary Q, followed by a
sequence of π flips, which (by construction [22]) must each be
applied with probability 1/2. If noise in the state preparation or
measurement results in a nonuniform probability distribution
of measurement outcomes, then a strategy such as the one
detailed in Sec. III B should be used to restore uniformity.

To use this unitary 2-design to implement a sequence of s

elements for RB, the sequence of measurements in Eq. (3.5) is
repeated s times on a length-(5s + 1) linear cluster state. The
basic idea of this RB scheme is shown in Fig. 4. We will assume
that the inverse is applied via a rotated qubit measurement on
the last cluster qubit.

In this scheme, the sequence of random gates is generated
by the indeterminacy of the measurement outcomes. As a
result, the inverse element is not known a priori. To determine
the sequence inverse, the input state’s evolution must be
dynamically tracked. It is well known that the evolution
of the state of a single qubit can be efficiently simulated
classically [29].

A key advantage of this scheme’s use for RB is that it uses
a fixed repeating pattern of measurement angles. This could
simplify experimental implementations, as the setup would not
have to be substantially changed between different sequences.
This could also reduce noise introduced by the control in cases
where sequences of gates are actively randomized. We note
that some randomness may still need to be injected to restore
uniformity in the measurement outcomes as a result of noise,
as discussed in Sec. III B.

IV. CONCLUSION

As we have shown, the basic machinery of randomized
benchmarking can be translated into measurement-based
quantum computation. Rather than interfering with the ran-
domized benchmarking protocol, the intrinsic randomness

of measurement-based quantum computation can be used to
simplify it by partially (as in Clifford RB) or completely
(as in derandomized RB) eliminating the need for drawing a
random sequence of gates before each run. This work aims
to establish a connection between advances in large-scale
cluster state generation [35,41–43] and theoretical results for
characterizing low-noise quantum devices.

For the benchmarking of gates beyond single-qubit opera-
tions, Clifford RB generalizes naturally to the 2D square-lattice
cluster state, on which the entire multiqubit Clifford group can
be implemented on arbitrary inputs via single-site measure-
ments with angles that are integer multiples of π/2. Feedfor-
ward could still be performed entirely in postprocessing, and
so a sequence of gates can still be implemented by performing
all measurements on the cluster state simultaneously. It is
known that derandomized measurement patterns can produce
approximate t-designs in the multiqubit case [22]; however,
the existence of exact multiqubit measurement-based designs
is an open question. This work further motivates the search for
such ensembles.

An important generalization of this work would be to
characterize the validity of RB under more realistic noise
sources. Such an extension could potentially make use
of higher-order expansions of the derivation by Magesan
et al. [13] in order to deal with gate-dependent noise sources.
An extension highly relevant to linear-optical implementations
would be to find a way to deal with photon loss [8], which is
a non-Markovian (leakage) process. Dealing with this kind
of noise is beyond the scope of our protocol, although recent
theoretical developments have shown that the RB protocol can
be adapted to such cases [15,19].

Another possible extension of this work could be to consider
alternative gate sets G that are suitable for RB and can
be conveniently implemented via MBQC. For instance, the
dihedral RB protocol in Ref. [44] requires rotations about
the Z axis and bit flips (X). Within the measurement-based
model on a linear cluster state, this can be straightforwardly
implemented using two measurement steps per gate, where the
gate specifies the angle on odd qubits and all even qubits are
measured in the X basis. We leave a more detailed analysis to
future work.

Our work has also focused exclusively on cluster states as
the resource for MBQC. Another generalization would be to
develop RB schemes for alternative resource states such as the
Affleck-Kennedy-Lieb-Tasaki (AKLT) state [45–47].
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APPENDIX A: AVERAGE GATE FIDELITY DERIVATION

Here we show how estimating FG(s) is related to F̄G. In
contrast to the original derivation in Ref. [13], we will do so
without assuming G is a group.

By definition,

FG(s) = 1

|G|s
|G|s∑
i=1

tr

{
Ẽψ

s+1
©
j=1

[
D(i)

j ◦ U (i)
j

]
(ψ̃)

}
. (A1)

First, we will assume we are working in a regime where the
noise has little gate and time dependence. The zeroth-order
approximation in RB makes the assumption thatD(i)

j ≈ D,∀i,j

with j � s, which is a good approximation in the limit of low
gate and time dependence on the noise [13]. It also requires
that D(i)

s+1 is independent of the choice of gate sequence U (i),

i.e., D(i)
s+1 ≈ Dinv,∀i. Note that this is automatically satisfied

when G is a group (and therefore, closed under inverses) by
extending the previous assumption to include j = s + 1. The
sum in Eq. (A1) is over all length s sequences of gates from G,
and therefore it can be broken down into s independent sums
as follows:

FG(s) = 1

|G|s
|G|∑

rs=1

· · ·
|G|∑

r1=1

tr

[
ẼψDinv ◦

(
s

©
i=1

Uri

)†

◦
s

©
j=1

[D ◦ Urj
](ψ̃)

]
. (A2)

Next, we need to make use of the following: if we twirl
a channel D with the unitary 2-design G, then we get a
depolarizing channel DD(ρ) = pρ + (1 − p) 1

2I [20,27]. That
is,

1

|G|
|G|∑
r=1

Ur ◦ D ◦ U†
r (ρ) = DD(ρ),∀ρ. (A3)

Crucially, this depolarizing channel has the same average
fidelity as the original channel [13], i.e., F (DD,I) = F (D,I).
Note also thatU ◦ DD(ρ) = DD ◦ U(ρ) for all unitary channels
U . Then the sums implement independent twirls over the first
s noise channels D:

1

|G|s
|G|∑

rs=1

· · ·
|G|∑

r1=1

Dinv ◦
(

s

©
i=1

Uri

)†
◦

s

©
j=1

[D ◦ Urj
](ψ̃) (A4)

= 1

|G|s−1

|G|∑
rs−1=1

· · ·
|G|∑

r1=1

Dinv ◦
(

s−1
©
i=1

Uri

)†
◦ DD

◦
s−1
©
j=1

[D ◦ Urj
](ψ̃) (A5)

= 1

|G|s−1

|G|∑
rs−1=1

· · ·
|G|∑

r1=1

Dinv ◦ DD ◦
(

s−1
©
i=1

Uri

)†

◦
s−1
©
j=1

[D ◦ Urj
](ψ̃) (A6)

· · · = Dinv ◦
(

s

©
i=1

DD

)
(ψ̃), (A7)

where (A7) results from repeatedly twirling a D operator and
commuting the resulting DD leftwards as in (A4)–(A6). Then,

FG(s) = tr

[
ẼψDinv ◦

(
s

©
i=1

DD

)
(ψ̃)

]
(A8)

= tr[ẼψDinv(ψ̃)]ps + (1 − ps) tr[ẼψDinv(I/2)], (A9)

where we get s copies of DD in the first line. Setting A0 :=
tr [ẼψDinv(ψ̃ − I/2)] and B0 := tr [ẼψDinv(I/2)], we get

FG(s) ≈ A0p
s + B0. (A10)

This is known as the zeroth-order expansion of FG(s) [13].
The terms A0 and B0 are nuisance parameters that contain
information about the noise in state preparation and measure-
ment. By performing the RB protocol above for various s, we
can fit the zeroth-order model to the measurement data to find
p [16]. Then, the average fidelity of the depolarizing channel,
and hence D, is simply given by 1

2 (1 + p) [13].
Therefore,

FG(s) ≈ A0(2FG(s) − 1)s + B0. (A11)

APPENDIX B: CLIFFORD ANGLES

Here we provide a list of measurement angles that imple-
ment elements of the single-qubit Clifford group, assuming
that all measurement outcomes are zero. Note that each
element can be written as a product of generators P = (1 0

0 i)
and H = 1√

2
(1 1
1 −1).

To implement the full list of elements, the required
measurement angles are as follows:

Gate θ1 θ2 θ3

I π

2
π

2
π

2

P 0 3π

2
3π

2

P 2 π

2
3π

2
3π

2

P 3 0 π

2
π

2
H 0 0 0
PH 0 π

2 0
P 2H 0 π 0
P 3H 0 3π

2 0
HP 0 0 π

2
PHP π

2
π

2 0
P 2HP 0 π 3π

2
P 3HP π

2
3π

2 0

HP 2 π 0 0
PHP 2 0 3π

2 π

P 2HP 2 0 π π

P 3HP 2 0 π

2 π

HP 3 0 0 3π

2
PHP 3 π

2
3π

2 π

P 2HP 3 0 π π

2

P 3HP 3 π

2
π

2 π

HP 2H π

2
π

2
3π

2

PHP 2H 0 π

2
3π

2

P 2HP 2H π

2
3π

2
π

2

P 3HP 2H 0 3π

2
π

2
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APPENDIX C: 2-DESIGN ELEMENTS

Here we give the A matrices from Sec. III C. These offer a
compact description of one of the unitary 2-designs discussed
in Ref. [22],

A1 =
(

1√
3

− 1
6 (1 + i)(

√
3 + 3i)

1
6 (1 + i)(3 + i

√
3) − 1√

3

)
, (C1)

A2 =
(

1√
3

1√
3
(1 + i)

1√
3
(1 − i) − 1√

3

)
, (C2)

A3 =
(

0 e−i π
4

ei π
4 0

)
, (C3)

A4 =
(

1 0
0 −1

)
= Z, (C4)

A5 =
(

0 1
1 0

)
= X, (C5)

Q = Zπ
4

◦ H ◦ Z
cos−1

(
1√
3

) ◦ H ◦ Zπ
4

◦ H. (C6)

Note that A3 is an element of the Clifford group.
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