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Quantum trajectories under frequent measurements in a non-Markovian environment
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In this work we generalize the quantum trajectory (QT) theory from Markovian to non-Markovian
environments. We model the non-Markovian environment by using a Lorentzian spectral density function with
bandwidth (A), and find a perfect “scaling” property with the measurement frequency (') in terms of the
scaling variable x = At. Our result bridges the gap between the existing QT theory and the Zeno effect, by
rendering them as two extremes corresponding to x — 0o and x — 0, respectively. This x-dependent criterion
improves the idea of using t alone and quantitatively identifies the validity condition of the conventional QT

theory.
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I. INTRODUCTION

The quantum trajectory (QT) given by the stochastic
Schrodinger equation (SSE) for an open system associated
with Markovian dynamics can be interpreted as quantum state
conditioned on continuous observation (monitoring) on the
environment [1,2]. The QT theory of this type has been well
demonstrated and broadly applied [3,4], including the recent
experiments in superconducting solid-state circuits [5—13]. On
the other hand, associated with the non-Markovian dynamics
of open quantum systems, a similar non-Markovian stochastic
Schrodinger equation (nMSSE) has been constructed [14,15].
However, the nMSSE is largely a working tool for unraveling
the non-Markovian dynamics, which cannot be interpreted
as a measurement-conditioned physical quantum trajectory
[16-18]. After careful analysis by Wiseman et al., the nMSSE
might be at most interpreted as a certain “hidden variable”
theory, i.e., taking the complex Wiener variable z, involved in
the nMSSE as an “objective property” which inherently exists
in the environment, rather than as a consequence of continuous
measurements [18].

In this work we consider the interesting problem of how to
construct the physical QT associated with frequent monitoring
on a non-Markovian environment. To be specific, we model
the non-Markovian environment by using a Lorentzian spectral
density function (SDF) with finite bandwidth. We show that
the result is quite different from the nMSSE mentioned above.
Elegantly, via slight modification by involving a “scaling”
variable, the resultant QT formally resembles, but essentially
generalizes, the conventional QT. Our result bridges the
gap between the existing QT [1-4] and the quantum Zeno
effect [19], by rendering them as two extremes which have
quite different predictions [20,21].

Let us consider a two-level atom (qubit) prepared in a
quantum superposition of the ground state (|g)) and exited
state (le)), |W(0)) = agle) + Bolg). Now consider its evolu-
tion under continuous (very frequent) measurements in the
surrounding environment for the spontaneous emission of a
photon. From the celebrated QT theory [1-4], conditioned
on the continuous null-result (no-register of spontaneous
emission) detection, the state would change, following the

simple formula
|W(1) = (aoe”"?le) + Bolg))/ N, (1)

where ' is the spontaneous emission rate and N denotes
the normalization factor. To interpret this result, reasoning
based on informational evolution is sometimes put forward.
That is, no result is a sort of information, so the state can
change according to Bayesian inference, similar to classical
probability theory.

On the other hand, the above continuous null-result quan-
tum motion is prohibited by the quantum Zeno effect [19].
We may briefly summarize the treatment and result as follows.
Starting with |W(0)), let us expand the evolution operator up to
secondorderint,U(t) ~1—iHt — H2r2/2, where t is the
time interval between the successive null-result measurements.
Each null-result measurement would project the wave function
onto the atomic subspace. Consider n subsequent null-result
measurements during time ¢t (withn = ¢/7). Inthe limitt — 0
and ¢ = const, one obtains (see Appendix A for more details)

W) = aole) + folg) = |W(0)). 2)

So we find that the frequent null-result monitoring of the
environment will prevent the change of the state, resulting
thus in the quantum Zeno effect.

Actually, the QT theory leading to Eq. (1) is from unraveling
the Markovian Lindblad master equation. In the Markovian
approximation, one requires a wide-bandwidth environment
(i.e., the bandwidth A — o0). Therefore, any t is long
compared to the environment’s memory time A~!, leading
thus to the exponential decay of population which destroys
the possibility of the Zeno effect. In the case of A — oo,
the above expansion on U(7) is invalid. In order to generate
the Zeno effect, the physical condition is T <« A~!. In the
remainder of this work, we develop a treatment to smoothly
bridge these two extremes and construct the associated QT
theory by introducing an external drive to the atom.

II. SPONTANEOUS DECAY

The two-level atom coupled to the electromagnetic vacuum
(environment) is described by the Hamiltonian

Acg . 1 -
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Throughout this work we set i = 1. Here we introduce the
two-level energy difference A,, = E, — E,, and the atomic
operators o, = le){e| — |g)(gl,0™ = |g)(el,and o™ = |e)(g].
V, is the coupling amplitude of the atom with the environment.
Then, consider the evolution of the entire system, starting with
an initial state |V (0)) = (apole) + Bolg)) ® |vac), where |vac)
stands for the environmental vacuum with no photon. Under
the influence of the coupling, the entire state at time # can be
written as

(W) = a()le) ® [vac) + D e (D)lg) ® 11,505+ )

+ Bolg) ® |vac), “4)

where |1,;0;---) describes the environment with a photon
excitation in the state “r”” and no excitations of other states. The
coefficients have initial conditions of «(0) = ¢y and ¢, (0) = 0.

Substituting Eq. (4) into the Schrodinger equation and
performing the Laplace transform, one can obtain the so-
lution of «(¢) in the frequency domain (see Appendix B
for more details). That is, we replace ), AR =
[dw,D(@)[---1, where D(w,) =3, |Vi[*8(w — wp) —
DoA?/[(w, — wy)> + A?] is the SDF, approximated here by a
finite-band Lorentzian spectrum with w, the spectral center and
A the width [22]. We obtain then the time-dependent amplitude
a(t) = a(t)ag via the inverse Laplace transform as [21]

1

ﬁ(Aw_A*’ — A e, 5)
+ p—

a(t) =

with A, =[A —iE £ \/(A —iE)? —2T'A]/2. Here we in-
troduced the energy offset £ = (E, — E,) — wo and the usual
decay rate in the wideband limit, I' = 27 D.

III. FREQUENT NULL-RESULT MEASUREMENTS

The null-result measurement in the environment, quantum
mechanically, collapses the entire wave function onto the
atomic subspace. After n such null-result measurements with
subsequent time interval T = ¢/n, the final state of the atom is

[W(1)) = [a(t)ole) + Bolg)1/VNa(t), (6)

where a(t) = a"(t) and N, (t) = |a(t)ao|® + | Bo|*. Note that,
uglike the case of the wideband-limit Markovian environment,
|W(r)) differs from the single-null-measurement-collapsed
state at the final moment from |W(z)). It can be proved that
the normalization factor NV, equals also the joint probability
of getting null results in all the intermediate measurements,
ie., (1 =Y, |- ()2 Let us denote N, (1) = pi”(t). Ac-
cordingly, during time (0,#), the probability of detecting a
spontaneous photon is pi”)(t) =1- p(()")(t).

Now let us consider the limit of “continuous” measure-
ments, n — 00, by taking the measurement time interval
7 — 0 and keeping + = nt fixed. Supposing that we increase
the bandwidth A so that the variable x = At remains constant,
we can prove a “scaling” property that the final state becomes
a function of x only. To reveal the full scaling behavior in
the general case, we also assume the energy offset £ = cA
(in usual treatment ¢ = 0). One finds from Eq. (5) that
AL =kA—T/Q«) and A_ =T/(2«) [up to the order of
(I'/A)?], where k =1 —ic. Using (1 — iyt = etz +)
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FIG. 1. (a) Spontaneous emission of a two-level atom coupled
to a non-Markovian environment with finite-bandwidth Lorentzian
spectrum. (b) Effective decay factor of the excited state started with
a quantum superposition ogle) + Bolg), under frequent null-result
measurements in the environment. Scaling behavior is demonstrated
by the remarkable agreement between Eq. (7) (continuous lines)
and a"(t) (symbols) calculated using Eq. (5) with A = 10T (as an
example) and E = w — wy = 0. Recall that t = nt and x = Ar.

and neglecting small terms ~I"/A in exponent, we arrive
at [21]

2

Elegantly, this result reveals an explicit scaling property in
the x = At variable. In Fig. 1(b), by relaxing the conditions
(n — oo and T — 0) for obtaining this analytic formula, we
illustrate the scaling behavior in broad parameter conditions.

- " 1 Cexs 1T
a(t):a(r):exp{—[;—(l—e )KTX:|—} @)

Some remarks about Eq. (7)

(i) The numerical results in Fig. 1(b) for finite A and 7 (e.g.,
the x = 2.0 curve for 7~! = 0.5A) show excellent agreement
with Eq. (7), indicating that we can expect the scaling behavior
beyond the limits n — oo and T — 0. This limiting procedure
is only a mathematical technique leading us to obtain the
analytic result of Eq. (7).

(i) The scaling behavior can be understood via the
time-energy uncertainty relation. Actually, the successive
measurements with time interval 7 in the reservoir will
cause fluctuations of the atom’s level (E,) by an amount ~7 !,
since the result of whether or not a spontaneous emission is
detected in the reservoir allows us to know whether or not the
atom is in the excited state. Then, if we (conceptually) expand
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the width of the reservoir’s SDF by this same amount (i.e., by
~t~1), we can expect the same (identical) decay dynamics.
This is the physical reason for the scaling behavior shown
analytically by Eq. (7) and numerically in Fig. 1(b).

(iii)) Note that the x dependence of the decay dynamics
is the same as the t-dependence for a given bandwidth A
(usually it is difficult to change A in real setups). And,
this t dependence is the essential feature associated with
measurements in a non-Markovian reservoir, which is in sharp
contrast with the conventional t-independent Markovian case.

(iv) From Eq. (7), in the wideband limit, x — oo and
k — 1, one recovers the result a(r) — e ""/? predicted by
the standard QT theory. On the other hand, in the limit of
x — 0, one finds from Eq. (7) that a(¢) = 1, so that the atom
is frozen in its initial state, showing the Zeno effect.

(v) In the Zeno regime 771> A, one may encounter
a “negative-frequency” problem if the central frequency
wp is not much larger than A. In this case (and for the
transition energy A., > wp) the level E, may fluctuate into
the domain of negative frequency of the SDF, thus violating the
condition of the symmetric Lorentzian SDF model and needing
certain modification to Eq. (7). In this work, we assume
a symmetric Lorentzian SDF model under the conditions
Age > wo > A, for the sake of showing a full transition from
the Markovian behavior to the Zeno effect governed by the
unified Eq. (7). In this case, there is no negative frequency
difficulty to affect the validity of Eq. (7).

(vi) From Eq. (7), one can define an effective decay rate

Vet = Ref[1 — (kx) ™' (1 — )] /ic} T, ®)

Note that for the wideband-limit Markovian environment the
exponential decay process implies no effect of the intermediate
null-result interruptions [21]. Equation (8), however, shows
that the decay rate is influenced by the frequent null-result
measurements. This x or t dependence reflects the non-
Markovian effect rooted in Eq. (5), despite that the frequent
measurements cut off the usual non-Markovian correlation
(memory) effect between different t-period evolutions. It is
just the accumulation of the “small” non-Markovian contribu-
tions over t = nt that makes Eqs. (7) and (8) and the associated
QT (to be constructed) generalize the usual Markovian results.

IV. QUANTUM TRAJECTORIES

Corresponding to direct photon detection, let us first
construct the Monte Carlo wave-function (MCWF) approach,
closely along the line proposed in Ref. [1]. Consider the state
evolution under frequent null-result measurements between ¢
and r + At¢, with thus At = nt. The probability with a photon
register in the detector during At is pﬁ”)(At) = |o(®)|*Yerr At.
Under the “scaling” consideration, the effective decay rate yes

is simply given by Eq. (8), or, alternatively, by
verr = [1 = la(An*)/ At

For small At, which implies |a(At)|?> ~ 1, both definitions are
equivalent and coincide with Eq. (8).

In practical simulations, we generate a random number € be-
tweenOand 1.Ife < pi")(At), which corresponds to the prob-

ability of having a photon register in the detector (AN, = 1),

or Yerr = — In[ [a(A1)[*]/At. (9)
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we update the state by a “jump” action
B+ AD) =0 [U@)/ Il e, (10)

where | e || denotes the normalization factor. On the other
hand, if € > pi")(At), which corresponds to the null-result
measurement (NRM) with AN, = 0, we update the state via

the effective smooth evolution
[ (r 4+ AD) = UADIT@)/ || o] - (11)

In terms of a matrix form defined by {«(r + At),B(t +
ADYT = UAD{a(t),B(t)}T, the effective nonunitary evolu-
tion operator reads

aar) 0
U(AL) = 0 N (12)

Noting that At = nt, as above, here we mention again that
a(At) = [a(t)]" which can be Eq. (7) in the limits T — 0 and
n — 00, or can be more generally determined using Eq. (5)
for a(7).

Based on the MCWF approach proposed above, one can
simulate the (stochastic) quantum trajectories under frequent
photon detections in the environment. The ensemble average
over these trajectories of quantum (pure) state corresponds to
the result given by the following master equation [1-4]:

p = —i[Hs,p] + vexDlo " 1p, (13)

where D[e]p = op o' —1{el e p}. Formally, this is an x- or
t-dependent Lindblad-type master equation. However, unlike
its Markovian counterpart, a significant difference lies in the
fact that this equation does not describe the reduced state o(t)
of the (open) quantum system. It is well known that o(¢) is
defined by tracing the environment degrees of freedom from
the entire (system-plus-environment) unitary wave function at
time ¢. Here, “tracing” simply means performing projective
measurements and making an average only at the last moment
t, on the entire unitary wave function evolved from the
same initial state. In contrast to o(¢), the state p(¢) given
by Eq. (13) is the ensemble-averaged state of the system
under successive measurement interruptions. Remarkably, the
successive measurements would destroy the correlation effect
between different t-period evolutions, resulting thus in the
Markovian-Lindblad-type Eq. (13) with, however, an effective
Vetf Tather than a certain “natural” decay rate.

Following Refs. [1-4], we now include external driving

into Eq. (13), via Hg = %oz + Qo,. Note that the validity of
this procedure is rooted in the additivity of the state changes
over the very small time interval (). As a result, there are
two contributions to the state change: one is informational
owing to the continuous measurements, and the other is
physical which is caused by the external driving. Note also
that in general the dissipative two-level atom under driving
is not exactly solvable. The underlying complexity can be
imagined as follows: there are more and more photons emitted
into the reservoir, and the emitted photon can reexcite the
atom. However, in the presence of frequent measurements, the
emitted photon will be destroyed by detectors. During each
successive measurement interval (7), it is reasonable to assume
that there is at most one photon in the reservoir. Therefore, even
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FIG. 2. (a) Two quantum trajectories from the MCWF (black) and
QT equation (red) simulations. The blue arrows indicate quantum
“jumps” owing to “direct” detection of the spontaneous emission
of the atom. (b) Ensemble average of 2000 MCWF and QT equation
trajectories and the result (green curve) from the master equation p =

—i[Hs,p] + verD[o ~]p. Parameters used in the simulation: Q =
0.1, ' =1.0,x=0.2,and E = 0.

in the presence of external driving, Eq. (13) is valid under the
above considerations.

Instead of the direct detection of the spontaneous emis-
sion considered above, one can also adopt the so-called
homodyne detection scheme by mixing the emitting photons
with a classical field with modulating phase ¢ [2,3]. The
measurement result (optical current) of this type can be
expressed as [2,3] I,(t) = /Yerr(o e ¢ + o tel?) /2 + E(1),
where (---) = Tr[(---)p(?)] and &(¢) is the Gaussian white
noise associated with quantum jumps. In this measurement
scheme, the detection result is a sum of the classical
reference field and the photon emitted by the atom. The
“jump” (knowledge change of the atom state) associated
with the photon register in the detector is relatively weak,
developing thus a “diffusive” regime because of the mix
of the reference field. Through a careful analysis [2,3], the
difference of the detected result (in single realization) during
(t,t + dt) from the expected one using the earlier p(¢) is
characterized by & (¢)dt in the expression of I,(¢). Conditioned
on I,(t), the state evolution is given by the diffusive QT
equation [2,3]

p = —i[Hs,pl + verrDlo " 1p + /Verr Hle o 1pE(1),
(14)

where H[e]p = ep + p o/ —(e + of)p. Essentially, Eq. (14)
generalizes the existing QT equation by accounting for the
measurement frequency (v = 1/7) in the effective “sponta-
neous” emission rate Yegr.

In Fig. 2(a) we display two representative quantum trajec-
tories from the MCWF and the diffusive QT equation (14).

PHYSICAL REVIEW A 94, 032130 (2016)

We see that the former type of quantum trajectory reveals a
drastic “quantum jump” owing to the direct detection for the
spontaneous emission, while the latter type has no such jump
onto the ground state |g). However, as expected, an ensemble
average of each type of quantum trajectories (over 2000) gives
the same result of Eq. (13), as demonstrated in Fig. 2(b).

V. SUMMARY AND DISCUSSIONS

We have constructed a scheme to generalize the QT theory
from Markovian to non-Markovian environments. Taking the
specific model of Lorentzian SDF, we revealed a perfect
scaling property between the spectral bandwidth and the
measurement frequency. Our result bridges the gap between
the existing QT and the quantum Zeno effect by rendering
them as two extremes.

While leaving the possible existence of scaling behavior
an open question for some non-Lorentzian SDFs, the main
conclusion above is valid in general. Following the procedures
in this work, one can develop similar generalized QT theory by
numerically obtaining the a(At) in Eq. (9), rather than using
the analytic Egs. (7) and (8). In Appendix C, we outline the
solution scheme for an arbitrary SDF.

Unlike the Markovian counterpart, the ensemble average
of the proposed QTs does not describe the reduced state
given by tracing the environment degrees of freedom from
the entire (system-plus-environment) unitary wave function.
Since the successive measurements in the QT destroy the
correlation (memory) effect between different free evolutions,
the ensemble-average state also differs from the one resulting
from averaging the nMSSE discussed in literature [14—
18]. For a non-Markovian environment, as pointed out by
Wiseman et al. [16,18], the nMSSE is not consistent with
any physical quantum trajectories (i.e., having no physical
interpretations).

For the relevance of the present work to possible ex-
periment, we may refer to the partial collapse quantum
measurement of the solid-state superconducting qubit [23-25].
The changed state reported there is conditioned on a projective
null-result at the final time ¢, but not on “continuous” or
“frequent” null result over the interval (0,¢). For the Markovian
environment, both results are identical; however, for the
non-Markovian case, this is not true. Possible experiment may
be guided by Eq. (7) or Eq. (8), via the scaling variable
x. As an alternative demonstration, one may perform a
large-derivation analysis on the emitted photons from driven
atoms [26]. From the present work, we expect that if we alter
the detection interval 7 for the spontaneous emissions, the
statistics of the emitted photons will be drastically different.
We would like to leave this interesting problem for future
investigation.
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APPENDIX A: ZENO EFFECT
FOR SUPERPOSITION STATE

Consider the superposition state |W(0)) = (aple) +
Bolg)) ® |vac). After small time t the wave function becomes

(1)) = [ao(1 —iHT — H*T?/2+ -+ -)le)

+ Bolg)] ® |vac). (A1)

The null-result measurement in the environment implies that
the wave function is projected on the atomic subspace,
|W(7)) — O |W(r)), where Q = (le)(e| + [g)(g))/N and N

is a normalization factor. Therefore,
W) = O |W(0)) = [ao(1 — KT2)le) + Bolg)1/N1, (A2)

where K =), V2 and ./\/12 =1- 20{3 K12, with V, the
atom-environment (the rth mode) coupling amplitude. After
n subsequent null-result measurements during time ¢, with
n =t/t, we find

W) = [ao(1 — KT°)'|e) + Bolg)1/Ni.
where A, = /1 —2na2K v Thus in the limit T — 0 and

t = const, we obtain the result of Eq. (2) in the main text,
[W,) — [\W(0)).

(A3)

APPENDIX B: SOLUTION FOR SPONTANEOUS EMISSION

Substituting Eq. (4) in the main text into the Schrodinger
equation, i9,|W(¢)) = H|WV(¢)), and performing the Laplace
transformation, f (w) = fooo f(@)exp(iowt)dt, we obtain the
following system of algebraic equations:

(@ — EJ&@) — ) V,&(w) = iao,  (Bla)

[0 — (Eg + 0)]E (@) — V/'a@(w) = 0. (B1b)

The right-hand side of the first equation reflects the initial
condition. Substituting ¢, (w) from Eq. (B1b) into Eq. (Bla),
we obtain

(w — E,)d(w) — F(w)a(w) = iay, (B2)
where
_ D(w,)
Flw) = / (B + o) (Ey + o) do,. (B3)

Rather than the wideband limit for the “Markovian” reservoir,
in this work we consider a finite-band spectrum by taking the

PHYSICAL REVIEW A 94, 032130 (2016)

SDF D(w,) in the Lorentzian form,

D) =Y |V *8(, — @) > DoA* /(0 — w0)* + A%,
(B4)

with wy the spectral center, Dy the spectral height, and A the
spectral width. We obtain then

AT/2

Fl@)= (w—wy— Eg)+iA’

where I' = 21 Dy. (BS)

Substituting this result into Eq. (B2), we find the amplitude
&(w). The time-dependent amplitude is obtained via the inverse
Laplace transform, a(t) = [ &@(w)e "*'dw/(27). Then, we
obtain «(t) = a(t)ap, with an explicit expression of a(t) given
by Eq. (5) in the main text.

APPENDIX C: SOLUTION SCHEME
FOR NON-LORENTZIAN SDF

For the Lorentzian SDF, as shown above, we can first
solve Eq. (B2) in the frequency domain, then obtain the
analytic solution of «(f) by means of an inverse-Laplace
transformation. However, for arbitrary SDF D(w,), this strat-
egy does not work. Instead, we can solve Eq. (B2) for «(r)
numerically (and directly) in the time domain. For this purpose,
an inverse-Laplace transformation to Eq. (B2) yields

ia(t) = Eea(t)+/ dt' F(t —t)a(t), (CDH
0

where

oo
do 0,
Ft—1) = / 22 71001 F()
oo 2T

= —i / dw, D(w,) e @ TEN=1 Q)

Here we have employed the well-known convolution formula
in the Laplace transformation and the following result related
to inverse-Laplace transformation:

o0
do _, :
/ E2 il — (, + Ep)) ! = —i e @ EN (€3
o 2T

In practice, for a given SDF D(w,), one can first carry out
F(t —t) in advance, via Eq. (C2); then, one can numerically
integrate Eq. (C1) to obtain a(¢). With this result at hand, it
is straightforward to develop the generalized QT theory, by
numerically generating the a(At¢) in Eq. (9), rather than using
the analytic Egs. (7) and (8). We have examined this numerical
scheme on the Lorentzian SDF and found excellent agreement
with the analytic solution. The same success can be anticipated
when applying to arbitrary non-Lorentzian SDFs.
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