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The characterization and quantification of quantum correlations, which play an instrumental role in exploring
and exploiting the quantum world, have been extensively and intensively studied in the past few decades. Of
special prominence and significance are the concepts of entanglement and discord, which are usually regarded as
very distinctive quantum correlations, with the latter going beyond the former. In this work we establish a direct
and natural link between entanglement and discord via state extensions and reveal that entanglement is actually
the intrinsic discord, by which we mean that entanglement is the irreducible residue of discord viewed from
ambient spaces. Our approach, taking into account the contextuality of a quantum state and being of a global
nature, stands in sharp contrast to the local operations and classical communication paradigm of entanglement,
which focuses on the state itself via a local approach. Furthermore, we introduce a figure of merit which, on the
one hand, captures the essence of entanglement, i.e., nonlocality and quantumness of correlations, and, on the
other hand, leads to a quantitative decomposition of total correlations into classical correlations, dissonance, and
entanglement. This demystifies the meaning of entanglement from the perspective of quantum measurements
and provides a unified framework for the interplay of various correlations in terms of quantum measurements
and mutual information.
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I. INTRODUCTION

From both theoretical and experimental perspectives, quan-
tum measurements lie at the heart of quantum mechanics [1]
and remain a versatile and mysterious notion with profound
applications and implications. The uncertainty principle and
the complementarity principle are both manifestations of
essential restrictions imposed by nature on quantum measure-
ments [2–5]. The quantum-to-classical transition and related
decoherence are consequences of quantum measurements
[6–8]. In this work, we show that in a broad sense, the
classification of correlations into separable and entangled can
be put into the framework of an information-theoretic approach
to quantum measurements, which has its early roots in Bohr’s
response to the Einstein-Podolsky-Rosen (EPR) argument
[4,5], in Everett’s work on universal wave function and relative
states [9], and in Lindblad’s investigations of entropy and
quantum measurements [10,11]. The simple yet powerful idea
we advocate here may be summarized as

entanglement = minimal discord,

with the minimal being over all state extensions. Thus,
entanglement may be interpreted as the intrinsic part of
discord for enlarged states. Combining the above idea with
the observation that discord = minimal MID (the minimal
being over all von Neumann measurements and MID stands
for measurement-induced disturbance, i.e., loss of correlations
caused by quantum measurements), we get a more elementary
picture: entanglement = Minimal MID. Here the capital Min-
imal indicates taking minimization over all state extensions
and all von Neumann measurements.

The phenomenon of entanglement, with its inception in
the seminal work of Einstein, Podolsky, and Rosen [12]
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and Schrödinger [13,14], dates back as early as the 1930s.
It is deeply connected to quantum nonlocality [15–17], has
gained prominence only in the last 30 years, and has now
become a central character of quantum information theory [18–
36]. Entanglement is the underpinning of many fundamental
quantum tasks and is often regarded as a synonym of quantum
correlations in early studies. However, since the explicit work
of Ollivier and Zurek [37], Henderson and Vedral [38], Datta
et al. [39], among others, the notion of discord has attracted
increasing interest and is regarded as a more general type
of quantum correlations than entanglement in the sense that
separable states may possess nonvanishing discord, which is
of nonclassical nature. Considerable efforts have been devoted
to the calculation, variations, applications, and operational
interpretations of discord in the last decade [39–72]. See
Ref. [70] for a comprehensive review.

Entanglement and discord share intrinsic similarities as
well as striking differences. Some remarkable relations and
interplay between entanglement and discord have been un-
covered in recent years [55–67]. For example, Cubitt et al.
discovered that even separable states may help to distribute
entanglement [55]. Koashi and Winter revealed a relation
connecting entanglement (between two parties, a and b) with
the discord (between party a and a third party, c, which serves
to purify the state possessed by ab) [56]. The relation was
further investigated by Cen et al. [57]. Adesso and Datta
initiated the study of relations between entanglement and
discord in the Gaussian case [58]. Madhok and Datta provided
an operational interpretation of discord in terms of a quantum-
state-merging protocol [61]. Cavalcanti et al. established a link
between discord and entanglement consumption in quantum
state distribution [62]. Streltsov et al. related discord between
two parties to entanglement between a measurement apparatus
and the system generated by quantum measurements [63].
Piani et al. devised a scheme to activate entanglement between
a system and a local ancilla by use of discord [64], and
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Piani and Adesso defined quantum correlations in terms of
entanglement [65]. Furthermore, Streltsov et al. [66], as well
as Chuan et al. [67], obtained some intrinsic relations between
discord and entanglement distribution.

Most of the above results are in the framework of comparing
entanglement between two parties with the discord involving
a third party (e.g., measurement apparatus). Here we incorpo-
rate entanglement directly into general measurement-induced
disturbance and demonstrate that entanglement is actually
the irreducible discord. This is achieved by a combination
of state extensions and classification of the discord into
two species: the reducible and extrinsic one, which can be
eliminated via state extensions and is thus actually local
quantum correlations, and the irreducible and intrinsic one,
which cannot be eliminated by any state extension and thus
captures really nonlocal quantum correlations. The latter
is precisely entanglement, while the former is dissonance.
A bona fide measure of entanglement follows naturally
from this approach, and various desirable properties of this
measure are established. This further leads to a quantitative
decomposition of total correlations into three parts (classical
correlations, dissonance, and entanglement) and provides a
unified framework for their interplay in terms of quantum
measurements and mutual information.

II. ENTANGLEMENT VERSUS DISCORD

We first recall two prototypical schemes for classifying cor-
relations which lead to entanglement and discord: separable-
entangled versus classical-quantum. A state ρab shared by two
parties a and b is called separable if it can be represented in
a separable form [16]: There exist probabilities pi and local
states ρa

i and ρb
i for parties a and b, respectively, such that

ρab =
∑

i

piρ
a
i ⊗ ρb

i .

Otherwise, it is called entangled (nonseparable). Despite
this formally clear and simple dichotomy, the detection and
quantification of entanglement are extremely difficult and
complicated in general cases. Some prominent measures
of entanglement are the entanglement of formation, the
entanglement cost, the distillable entanglement, the relative
entropy of entanglement, the robustness of entanglement, and
the squashed entanglement [18–32]. A fundamental property
of an entanglement measure is the nonincreasing feature under
local operations and classical communication (LOCC). The
related equivalent characterizations for LOCC monotonicity
are nicely discussed in Refs. [23,24,31].

In contrast to the separable-entangled paradigm, the
classical-quantum scheme stipulates that a bipartite state ρab

is classically correlated (abbreviated as classical) if there
exists a quantum measurement � = {�a

i ⊗ �b
j } which does

not disturb the state in the sense that

ρab =
∑
i,j

(
�a

i ⊗ �b
j

)
ρab

(
�a

i ⊗ �b
j

)
,

where {�a
i } and {�b

j } are von Neumann measurements on
parties a and b, respectively. Otherwise, the state ρab is termed
quantum correlated (abbreviated as quantum). Equivalently,
ρab is classical if and only if there exist orthonormal bases

'a 'b

ab
a b

' : 'a a bb

'a a 'bb

FIG. 1. Relation between the two schemes for classifying bi-
partite correlations: separable-entangled versus classical-quantum.
The original bipartite state ρab between two parties a and b may be
formally extended to a four-partite state ρa′a:bb′

in an ambient space by
appending ancillary systems a′ and b′ (may be correlated) to parties
a and b, respectively, such that the reduced state on ab coincides with
the original state: tra′b′ρa′a:bb′ = ρab. The state ρab is separable if and
only if there exists an extension ρa′a:bb′

which is classical with respect
to the bipartition a′a : bb′. Alternatively, ρab is entangled if and only
if it does not admit such a classical extension.

{|i〉a} and {|j 〉b} of parties a and b, respectively, such
that ρab = ∑

i,j pij |i〉a〈i| ⊗ |j 〉b〈j |, pij � 0. Classical and
quantum correlations can be neatly characterized by local
broadcasting properties [45,50], as well as by monogamy [51].
This scheme for classifying correlations is more closely and
intrinsically rooted in the fundamental and ubiquitous concept
of quantum measurements. To put this into perspective, recall
that ever since the beginning days of quantum mechanics,
the most important and subtle issue is quantum measurement,
and a delimiting line between classical and quantum is usually
formulated in terms of measurement-induced disturbance [42]:
In the classical world, we may perform measurements, at
least in principle, to extract information without disturbing the
measured system, while in the quantum world, a measurement
usually disturbs the measured system except if the system
turns out to be classical. The classical-quantum scheme for
classifying correlations is a special incarnation of this general
idea.

A natural question arises as to the relations between these
two classifications of correlations: separable-entangled versus
classical-quantum. On the one hand, the latter classification is
more broad than the former in the sense that while a classical
bipartite state is separable, the converse is not true: There
are separable states which exhibit (unentangled) quantum
correlations; that is, the notion of quantum correlations is
more general than entanglement. On the other hand, by a
result of Ref. [44], any separable state can be embedded into a
larger classical state with a natural partition: For any separable
state ρab, there is a classical state ρa′a:bb′

(with the bipartition
a′a : bb′) such that

ρab = tra′b′ρa′a:bb′
,

where a′ and b′ are two ancillary systems pertinent to parties
a and b, respectively (see Fig. 1). Any entangled state does
not admit such an extension. Consequently, a bipartite state is
separable if and only if it is a reduced state of a classical state
(with the natural partition), i.e., admits a classical extension.
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This highlights the nature of entanglement as really nonlocal
quantum correlations.

In the classical-quantum dichotomy, the quantum corre-
lations in a bipartite state ρab may be quantified by the
(symmetric) discord as [46,47,60,70]

Q(ρab) := I (ρab) − C(ρab),

where

I (ρab) := S(ρa) + S(ρb) − S(ρab)

is the quantum mutual information [73–75], which is well
established as a natural quantifier of the total correlations in
ρab, S(ρa) := −trρa ln ρa is the von Neumann entropy,

C(ρab) := max
�

I (�(ρab))

is interpreted as the amount of classical correlation [10,11,45–
47,60,70], i.e., the maximum amount of correlation extractable
by local von Neumann measurements � = {�a

i ⊗ �b
j } on ρab,

and �(ρab) := ∑
ij (�a

i ⊗ �b
j )ρab(�a

i ⊗ �b
j ) is the postmea-

surement state. In general, discord and classical correlations
can be defined with respect to measurements on one party
[37,38] or with respect to other distancelike measures [42,70],
which yield the relative entropy of quantumness [48], the
geometric discord [53], etc. Here we restrict ourselves to the
symmetric case with the understanding that the nonsymmetric
scenario can be treated similarly. Concerning the symmetric
classical correlations, an intuitive conjecture of Lindblad [11],
which states that the classical correlations account for at least
half of the total correlations, or, equivalently, correlations are
more classical than quantum, was disproved in Ref. [46]. Wu
et al. studied extensively maximal extractable (i.e., classical)
mutual information and related symmetric discord in the con-
text of complementarity [47], and Lang et al. categorized and
clarified various entropic measures of discord in detail [60].

III. ENTANGLEMENT VIA DISCORD

Based on the observation that entanglement is the irre-
ducible discord, we introduce an entanglement measure as
follows. For any bipartite state ρab, consider any four-partite
state ρa′a:bb′

which is an extension of ρab in the sense that
ρab = tra′b′ρa′a:bb′

. We include the cases when a′ or b′ is
trivial (one-dimensional); that is, the state ρa′a:bb′

may reduce
to ρa′a:b, ρa:bb′

, or ρa:b. Now define a measure of entanglement
as the minimal discord over all state extensions:

E(ρab) := min
tra′b′ ρa′a:bb′=ρab

Q(ρa′a:bb′
),

with the discord Q(·) being taken with respect to the bipar-
tition a′a : bb′. This entanglement measure, which may be
termed the entanglement via discord for convenience, has the
following desirable and remarkable properties:

(1) E(ρab) = 0 if ρab is separable.
(2) If ρab = |�ab〉〈�ab| is a pure state, then E(ρab) =

Q(ρab) = S(ρa); that is, for any pure state, the entanglement
E(ρab) coincides with the discord Q(ρab) and also coincides
with the von Neumann entropy of the reduced state ρa =
trb|�ab〉〈�ab|.

(3) E(·) is dominated by the discord; that is, for any ρab,

E(ρab) � Q(ρab).

(4) E(·) is convex in the sense that

E

(∑
i

piρ
ab
i

)
�

∑
i

piE
(
ρab

i

)
,

where pi are probabilities and ρab
i are bipartite states shared

by parties a and b.
(5) E(·) is dominated by the entanglement of formation

Ef (·); that is, for any ρab,

E(ρab) � Ef (ρab).

(6) E(·) is locally unitary invariant in the sense that

E((Ua ⊗ Ub)ρab(Ua ⊗ Ub)†) = E(ρab)

for any unitary operators Ua and Ub on parties a and b,
respectively.

(7) E(·) is nonincreasing under local partial trace (state
reduction) in the sense that E(ρab) � E(ρa′a:bb′

) for any state
extension ρa′a:bb′

of ρab.
(8) For any local channels (trace-preserving operations) �a

and �b on parties a and b, respectively, it holds that

E((�a ⊗ �b)(ρab)) � E(ρab).

We now outline the reasoning leading to the above results.
(1) This property follows from the theorem in Ref. [44]

concerning the relation between separable states and classical
states, which establishes that a bipartite state ρab is separable
if and only if it can be extended to a certain classical state
ρa′a:bb′

(with respect to the bipartition a′a : bb′).
(2) Since any pure state |�ab〉〈�ab| has only trivial

extensions of the form ρa′b′ ⊗ |�ab〉〈�ab|, the desired result
follows from direct evaluation.

(3) This property follows from the definition since ρab may
be regarded as a (trivial) state extension of itself by regarding
both the a′ and b′ systems to be one-dimensional.

(4) Taking two ancillary systems c and d of the same di-
mension, with orthonormal bases {|i〉c} and {|i〉d}, respectively,
noting that

ρca′a:bb′d :=
∑

i

pi |i〉c〈i| ⊗ ρa′a:bb′
i ⊗ |i〉d〈i|

is a state extension of ρab = ∑
i piρ

ab
i whenever ρa′a:bb′

i is a
state extension of ρab

i for all i (we may assume that all these
extensions exist in the same large Hilbert space without loss
of generality), we have

E(ρab) � Q(ρca′a:bb′d )

= Q

(∑
i

pi |i〉c〈i| ⊗ ρa′a:bb′
i ⊗ |i〉d〈i|

)

�
∑

i

piQ
(
ρa′a:bb′

i

)
.

Now taking the minimum with respect to the state extensions
ρa′a:bb′

i of ρab
i for all i, the desired result follows. The last

inequality follows from direct evaluation and the fact that if
{�a′a

ij ⊗ �bb′
ik } (with fixed i) is an optimal local von Neumann
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measurement for ρa′a:bb′
i to achieve the corresponding discord,

then {|i〉c〈i| ⊗ �a′a
ij ⊗ �bb′

lk ⊗ |l〉d〈l|} is a local von Neumann

measurement on ρca′a:bb′d .
(5) For any pure-state decomposition ρab =∑
i pi |�ab

i 〉〈�ab
i |, by properties (1) and (4), we have

E(ρab) �
∑

i

piE
(∣∣�ab

i

〉〈
�ab

i

∣∣)

=
∑

i

piEf

(∣∣�ab
i

〉〈
�ab

i

∣∣),
which implies the desired result. For the definition and prop-
erties of the entanglement of formation, see Refs. [18,21,31].

(6) This property follows from the fact that local unitary
transforms do not alter the discord.

(7) Since any state extension ρa′′a′a:bb′b′′
of ρa′a:bb′

is neces-
sarily a state extension of the reduced state ρab = tra′b′ρa′a:bb′

,
we have

E(ρab) � min
tra′′a′b′b′′ ρa′′a′a:bb′b′′ =ρab

Q(ρa′′a′a:bb′b′′
)

� min
tra′′b′′ ρa′′a′a:bb′b′′ =ρa′a:bb′

Q(ρa′′a′a:bb′b′′
)

= E(ρa′a:bb′
).

(8) For any local channels �a and �b on parties a and b,
respectively, using the Stinespring dilation representation, we
can write

�a(ρa) = tra′Ua′a(σa′ ⊗ ρa)(Ua′a)†,

�b(ρb) = trb′Ubb′
(ρb ⊗ σb′

)(Ubb′
)†,

where σa′
and σb′

are states on the ancillary systems a′
and b′ and Ua′a and Ubb′

are unitary operators on the
composite systems a′a and bb′, respectively. From the above
two equations and properties (6) and (7), we can show that
E(·) is decreasing under local operations as follows:

E((�a ⊗ �b)(ρab))

= E(tra′b′ (Ua′a ⊗ Ubb′
)(σa′ ⊗ ρab ⊗ σb′

)(Ua′a ⊗ Ubb′
)†)

� E((Ua′a ⊗ Ubb′
)(σa′ ⊗ ρab ⊗ σb′

)(Ua′a ⊗ Ubb′
)†)

= E(σa′ ⊗ ρab ⊗ σb′
)

= E(ρab).

The entanglement measure E(·) is reminiscent of, but
fundamentally different from, the squashed entanglement [26–
28], which involves conditional quantum mutual information.
Many important properties such as additivity, continuity,
monogamy, operational meaning, asymptotic behavior, and
relations to other entanglement measures, remain to be
investigated.

With the above definition of discord and entanglement, we
may interpret the difference

D(ρab) := Q(ρab) − E(ρab)

as a measure of dissonance as introduced by Kavan et al. [48],
and thus, we come to a natural decomposition of quantum
correlations, as quantified by the discord Q(·), into two parts

involving entanglement E(·) and dissonance D(·):
Q(ρab) = D(ρab) + E(ρab).

This in turn yields the separation of the total correlations, as
quantified by the quantum mutual information I (ρab), into
classical correlations C(ρab) plus dissonance D(ρab) plus
entanglement E(ρab):

I (ρab) = C(ρab) + D(ρab) + E(ρab).

Clearly, for any pure state ρab, we have D(ρab) = 0; for
any classical state ρab, we have Q(ρab) = 0, while for any
separable state ρab, we have E(ρab) = 0. In this context,
it is natural to investigate further the relations between the
various correlations. For example, one may ask: Can quantum
correlations exist without classical correlations? Can classical
correlations exist without quantum correlations? While the
answer to the first question in the present context is negative,
that for the second is affirmative. It may happen that C(ρab) >

0, while D(ρab) = 0, E(ρab) = 0, but whenever E(ρab) > 0,
it is necessary that C(ρab) > 0. To summarize, classical
correlations can exist without dissonance or entanglement, and
dissonance can exist without entanglement, but entanglement
and dissonance cannot exist without classical correlations.
Symbolically,

C(ρab) > 0 � D(ρab) > 0, D(ρab) > 0 � E(ρab) > 0,

D(ρab) > 0 ⇒ C(ρab) > 0, E(ρab) > 0 ⇒ C(ρab) > 0,

E(ρab) > 0 � D(ρab) > 0, I (ρab) > 0 ⇔ C(ρab) > 0.

One may wonder whether the entanglement E(ρab) is dom-
inated by the amount of classical correlation C(ρab); that is,
does it hold that E(ρab) � C(ρab)? We leave this question
open and suspect that it might not be true. See Ref. [46] for a
similar problem and its resolution.

The discord measure Q(·) is usually defined via von
Neumann measurements. However, one may also consider
defining a discord measure Qpovm(·) via general positive
operator-valued measures (POVMs) [38], and there are subtle,
albeit minor, differences between Q(·) and Qpovm(·) [76–79].
Since any von Neumann measurement can be realized with
the help of a POVM in an enlarged space consisting of the
original system and an ancillary system, we conclude that it
also holds that the entanglement measure is dominated by this
modified discord measure, i.e., E(ρab) � Qpovm(ρab), which
refines property (3).

Although the entanglement measure is conceptually intu-
itive, its calculation is extremely difficult and at present seems
intractable for general states. Actually, it is well known that
the calculation of discord is a hard and complicated problem,
and analytical formulas are rare. Even for the two-qubit X

state, the original algorithm devised in Ref. [49] is only
approximately correct [77]. It is evident that the evaluation of
the entanglement measure via discord is even harder since now
a further optimization apart from that in the discord enters the
scenario: The optimization in the definition of E(·) is over both
state extensions and von Neumann measurements. However, it
is tempting to seek some explicit formulas of the entanglement
measure for some symmetric states such as the Werner states,
the isotropic states, and the Bell diagonal states. These seem
highly nontrivial, and it is desirable to investigate various
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(lower or upper) bounds of the entanglement for general states.
For this purpose, it will be helpful to first characterize and
construct all state extensions, which is an important open issue
of independent interest.

We have only worked in finite dimensions; it will also be
interesting to consider the continuous-variable setup, such as
the Gaussian scenario.

IV. DISCUSSION

The discord, as the minimal MID and a fundamental
measure of quantum correlations, stems directly from the
pivotal and ubiquitous notions of quantum measurements
and mutual information. Here we have employed the discord
to characterize entanglement as the irreducible discord and
thus have subsumed entanglement into discord. A measure
of entanglement was introduced via minimization of discord
over state extensions. Some fundamental properties of this
measure were demonstrated. This highlights the significance of
interplay between quantum measurements and state extensions
in quantum information science. Apart from further investi-
gation of this connection and related properties of discord
and entanglement, it will be highly desirable to relate and
characterize the Bell nonlocality and quantum steering with
discord and to pursue the role of state extensions in quantum
foundations.

We remark that the method and results of the present
approach can be applied to address the relations between
entanglement and other measures of quantum correlations
such as the relative entropy of quantumness and the geometric

discord, as well as to the nonsymmetric case as in the original
one-side discord.

State extensions are very powerful in addressing conceptual
and fundamental issues of quantum theory and have various
manifestations through operator dilations. We recall that
POVMs can be represented as a reduction of von Neumann
measurements through the Naimark dilation, and open dy-
namics (general channels) can be represented by the reduction
of unitary dynamics via the Stinespring dilation [25,80,81].
Our result of viewing entanglement as a shadow of discord
is also in this spirit and may be useful for providing deep
insights into the nature and manipulation of entanglement.
The philosophy is that whenever we face a mixed state, apart
from concentrating on the state itself and working in the initial
space, it is fruitful to keep an open mind by regarding the state
as a shadow of larger states in ambient spaces. Then many
features in the initial spaces can simply be regarded as shadows
of some simpler structures in the ambient spaces. In this
context, the intricate and subtle interplay between classicality,
quantumness, nonlocality, contextuality, and entanglement
may be recast in new forms, with quantum measurement
explicitly or implicitly in the substratum. State extensions
encode many quantum mysteries.
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[53] B. Dakic, V. Vedral, and Č. Brukner, Phys. Rev. Lett. 105,

190502 (2010).
[54] P. Giorda and M. G. A. Paris, Phys. Rev. Lett. 105, 020503

(2010).
[55] T. S. Cubitt, F. Verstraete, W. Dür, and J. I. Cirac, Phys. Rev.

Lett. 91, 037902 (2003).
[56] M. Koashi and A. Winter, Phys. Rev. A 69, 022309 (2004).
[57] L.-X. Cen, X.-Q. Li, J. Shao, and Y. J. Yan, Phys. Rev. A 83,

054101 (2011).

[58] G. Adesso and A. Datta, Phys. Rev. Lett. 105, 030501
(2010).

[59] D. Girolami and G. Adesso, Phys. Rev. A 83, 052108 (2011).
[60] M. D. Lang, C. M. Caves, and A. Shaji, Int. J. Quantum Inf. 9,

1553 (2011).
[61] V. Madhok and A. Datta, Phys. Rev. A 83, 032323 (2011).
[62] D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M. Piani, and A.

Winter, Phys. Rev. A 83, 032324 (2011).
[63] A. Streltsov, H. Kampermann, and D. Bruß, Phys. Rev. Lett.

106, 160401 (2011).
[64] M. Piani, S. Gharibian, G. Adesso, J. Calsamiglia, P. Horodecki,

and A. Winter, Phys. Rev. Lett. 106, 220403 (2011).
[65] M. Piani and G. Adesso, Phys. Rev. A 85, 040301(R) (2012).
[66] A. Streltsov, H. Kampermann, and D. Bruß, Phys. Rev. Lett.

108, 250501 (2012).
[67] T. K. Chuan, J. Maillard, K. Modi, T. Paterek, M. Paternostro,

and M. Piani, Phys. Rev. Lett. 109, 070501 (2012).
[68] B. Dakic, Y. O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek,

S. Barz, T. Paterek, V. Vedral, A. Zeilinger, Č. Brukner, and P.
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