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We explore a distinguishability D and a visibility V , satisfying the relation D2 + V 2 = 1, to measure a single
electron’s particlelike and wavelike behaviors, respectively. For several typical one-dimensional nonuniform
lattice systems, we find that D2 is less than, equal to, and greater than V 2 for delocalized, critical, and localized
states, respectively. In this sense, the Anderson transition can be viewed as a transition from relatively more
particlelike behavior to relatively more wavelike behavior.
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I. INTRODUCTION

An electron moving in a lattice system may exhibit fully
particlelike behavior if it is completely localized at a site or
fully wavelike behavior if it is uniformly distributed at all
sites. However, it is generally in intermediate states and it
has both particlelike and wavelike properties, i.e., the wave-
particle duality. For a long time, many works have focused on
the transition from particlelike behavior to wavelike behavior
[1–3].

In fact, the wave-particle duality is embodied in Bohr’s
principle of complementarity [4]. Though the two different
properties cannot be simultaneously observed or measured, to
some extent this duality can be mathematically evaluated by
some uncertainty relations, e.g., the Heisenberg uncertainty
relation [5–7], the entropic uncertainty relation [8–10], and
some novel uncertainty relations [11,12]. For the Heisenberg
uncertainty relation, formulated as �x�p � �/2, the rela-
tively smaller is �x, the relatively more particlelike behavior
a quanton exhibits. However, in some cases both �x and
�p may be relatively smaller or larger. Therefore, we cannot
compare two quantons’ particlelike or wavelike properties.
Recently, in the context of interferometry, the well-known
inequality that D2 + V 2 � 1 was found to quantify the wave-
particle duality, where D is the path distinguishability (particle
nature) or which-path information and V is the visibility (wave
nature) of the interference pattern behind the interferometer
[13–15]. Fortunately, the equality that D2 + V 2 = 1 holds for
pure states [13–15]. In this situation, it is easier to compare
one quanton’s particlelike or wavelike properties to the other
quanton’s corresponding properties. Subsequently, extensive
efforts have been devoted to the study of this wave-particle
duality [16–19].

On the other hand, it is well known that Anderson
localization is one of the most important and interesting
phenomena in solid-state physics, which predicts electron
localization in disordered (lattice) systems [20,21]. Moreover,
this phenomenon has also been observed in many branches of
physics, such as in light waves, sound waves, and matter waves
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[21]. For electron systems, Anderson transitions, i.e., metal-
insulator transitions or delocalization-localization transitions,
have received the most attention [21–26]. Historically, electron
states without electron-electron interaction in some famous
one-dimensional (1D) models have been extensively studied.
For example, there are only localized states in the 1D Anderson
model with uncorrelated random potential, and there is no
mobility edge (ME) separating localized and extended states
[27,28]. All states are extended, critical, or localized in the 1D
Harper model, depending on the potential strength [29–32].
MEs have been found in the 1D slowly varying potential
(SVP) model [33–35]. Although almost all works support these
conclusions, some controversial arguments exist. For instance,
in the Harper model, a gradual transition from extended to
localized states is found in a potential zone near the critical
potential [36], and MEs may also exist [37–39]. For the SVP
model, power-law decaying states appear close to the ME on
the metallic side [40]. Therefore, it is worthwhile to develop
new techniques to understand the localization properties in
these models.

In this work, inspired by the distinguishability D and the
visibility V that characterize the wave-particle duality of a
photon in interferometers, we develop two similar quantities
to quantify particlelike and wavelike behaviors of a single
electron in 1D lattice systems. The results state that the
transition from particlelike to wavelike behavior is related
to the Anderson transition. At the same time, these studies
provide additional evidence supporting the corresponding
controversial arguments.

The rest of the paper is organized as follows. In Sec. II, we
introduce the distinguishability D and the visibility V in 1D
single-electron lattice systems. In Sec. III, we analyze D and V

in the Anderson, the Harper, and the SVP models, respectively.
Finally, we give a summary of our main results.

II. DISTINGUISHABILITY AND VISIBILITY IN
SINGLE-ELECTRON LATTICE SYSTEMS

Generally, for a single electron in 1D lattice systems, the
corresponding tight-binding Hamiltonian can be described
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by

H =
N∑

i=1

εic
†
i ci − t

N∑

i=1

(c†i ci+1 + H.c.), (1)

where εi is the on-site potential and t is a nearest-neighbor
hopping integral and can be taken to 1 without loss of
generality. c

†
i (ci) is the creation (annihilation) operator at the

ith site, and N is the lattice size. The general wave function,
i.e., eigenstate |β〉 with eigenenergy Eβ for the Hamiltonian
in Eq. (1) can be written as the superposition

|β〉 =
N∑

i=1

φ
β

i |i〉 =
N∑

i=1

φ
β

i c
†
i |0〉, (2)

where |0〉 is the vacuum and φ
β

i is the amplitude of the βth
wave function at the ith site.

Before we introduce the distinguishability D and the
visibility V for a single electron in 1D lattice systems, we first
recall them for a single photon in two-path interferometers
[16–19]. The two-path superposition state of photons inside
the interferometer is

�1,2 = ψ1a
†
1|0〉 + ψ2a

†
2|0〉, (3)

where a
†
k denotes the creation operators of the modes in path

k, and ψk is the corresponding amplitude. The operator of
distinguishability is given by [19]

D̂1,2 = a
†
1a1 − a

†
2a2

〈a†
1a1〉 + 〈a†

2a2〉
, (4)

and that for visibility is given by

V̂ ′
1,2 = a

†
1a2e

iθ + a
†
2a1e

−iθ

〈a†
1a1〉 + 〈a†

2a2〉
, (5)

where ak denotes the annihilation operators of the modes
in path k, the phase parameter θ is controlled by the phase
shifter in the interferometer, and the denominator is for
normalization. The two expectation values can be calculated,
i.e., the distinguishability D1,2 = |〈D̂1,2〉| and the visibility
V1,2 = |〈V̂ ′

1,2〉|max by θ . Here, V1,2 is the maximal value of V̂ ′
1,2

at a proper θ . D1,2 and V1,2 are used to quantify the particlelike
information and wavelike informations, respectively. For pure
states, the equality that D2

1,2 + V 2
1,2 = 1 holds.

To adapt D1,2 and V1,2 for electrons, we straightly map
paths 1 and 2 for a photon in the interferometer to sites
i and j for an electron in lattice systems, respectively.
The corresponding a

†
1(a1) �−→ c

†
i (ci) and a

†
2(a2) �−→ c

†
j (cj ).

Therefore, with Eqs. (4) and (5) and eigenstate |β〉 for an
electron in Eq. (2), the local distinguishability Di,j and
visibility Vi,j between two sites, i and j , can be calculated.
For nonuniform systems, the value of Di,j (Vi,j ) depends on
sites i and j . For eigenstate |β〉, we define a site-averaged
distinguishability squared,

D2 = 2

N (N − 1)

N∑

i,j (i<j )

D2
i,j , (6)

and a site-averaged visibility squared,

V 2 = 2

N (N − 1)

N∑

i,j (i<j )

V 2
i,j . (7)

As we focus on D2 and V 2 in the rest of the paper, henceforth,
we omit “site-averaged” and “squared” for simplicity. To
demonstrate Eqs. (6) and (7) intuitively, we give three
examples. For a localized state where φ

β

i = δii0 (i0 is a given
site), D2 = 1 and V 2 = 0; i.e., it exhibits fully particlelike
behavior. For an extended state where φ

β

i = 1√
N

for all i,

D2 = 0 and V 2 = 1; i.e., it exhibits fully wavelike behavior.
For the two cases, the values of D2 and V 2 are independent
of the lattice sizes. For an extended state where φ

β

i ∝ sin(ki)
and k = 2π/N , D2 = 0.363 745 89 . . . , 0.363 416 58 . . . , and
0.36338204 . . . at N = 103,104, and 2 × 105, respectively. In
the finite-size analysis, D2 = 0.363 379 91 . . . as N −→ ∞.
Though its value depends on the lattice sizes, D2 < V 2 always
holds for extended states, where V 2 = 1 − D2.

III. RESULTS

In what follows, we study the distinguishability D2 and
visibility V 2 in the Anderson, the Harper, and the SVP
models, respectively. In numerical calculations, we directly
diagonalize the Hamiltonian in Eq. (1) with the periodic
boundary condition to find all eigenenergies Eβ and the
corresponding eigenstates |β〉. For all these numerical results,
the relation D2 + V 2 = 1 always holds and we do not mention
it unless necessary.

A. Anderson model

For the 1D Anderson model, the on-site potential εi in
Eq. (1) is a random variable uniformly chosen within the
region [−W/2,W/2], where W characterizes the strength of
the disordered potential [20]. It is known that all the eigenstates
are localized [27,28]. The average one-particle localization
length can be approximately ξ ∼ 105t2/W 2 for energy at the
band center [23].

Eigenstates with eigenenergies Eβ ∈ [−0.001,0.001] are
considered. We plot the spectrum-averaged distinguishability
D2 and visibility V 2 in Fig. 1(a) for lattice sizes N = 1000,
3000, and 4500, respectively. Enough disorder realizations
have been taken. It shows that for a fixed lattice size N ,
D2 increases with disordered potential strength W , while V 2

decreases with W . There is a crossover at a relatively smaller
Wcr between the two curves for D2 and V 2 versus W , where
D2 = V 2 = 0.5. The larger is N , the smaller Wcr is. This is
a finite-size effect. For this, we define a reduced localization
length ξr = ξ/N for every W . We plot D2 and V 2 versus ξr

in Fig. 1(b). It shows that the date of D2 (V 2) obtained from
different lattice sizes collapse roughly onto a single curve.
The two curves for D2 and V 2 cross over at ξ cr

r ≈ 1.6, i.e.,
the localization length ξ is of the same order as the system
size N . In this case, electrons occupy almost the whole space
and thus the system is “metallic.” We find that D2 > V 2

when ξr < ξ cr
r , while D2 < V 2 when ξr > ξ cr

r . This means
that particlelike properties are larger than wavelike ones for
“insulated” regions, and vice versa for metallic regions.
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FIG. 1. For the Anderson model, (a) D2 (filled symbols) and V 2 (open symbols) as functions of W , and (b) D2 (filled symbols) and V 2

(open symbols) as functions of the corresponding ξr , respectively.

B. Harper model

For the Harper model [29–32], the on-site potential in
Eq. (1) can be taken by εi = λ cos(2πσi), where σ is an irra-
tional number. In our calculations, we choose σ = Fm−1/Fm

and lattice size N = Fm, where the Fibonacci numbers Fm =

Fm−1 + Fm−2. Thus, the periodic approximant can be obtained
for the quasiperiodic potential. Almost all works support the
conclusions [29–32] that all eigenstates are extended for λ < 2
but localized for λ > 2. The metal-insulator transition occurs
at λc = 2. However, some studies take different perspectives
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FIG. 2. Some quantities for the Harper model at λ = 0.6. (a) D2 (blue symbols) and V 2 (green symbols) as functions of Eβ at lattice sizes
N = 987, 2584, and 6765, respectively. (b) Partial enlarger at the crossover points of D2 and V 2 in (a) for N = 6765. (c) The corresponding
γ versus Eβ . (d) The corresponding ξPR versus Eβ ; the line is for the function ξPR = 0.4169. The lattice size N = 6765 for (c) and (d). Due to
symmetry, only the Eβ half is shown.
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[36–39]. For example, Sun and Wang found a gradual
transition from extended to localized states when λ is near λc;
i.e., localized states may exist when λ < λc [36]. Few other
groups have discussed the possibility that MEs may exist when
λ < λc [37–39].

We take λ = 0.6 as an example. Some related quantities
are plotted in Fig. 2. In detail, Fig. 2(a) shows the variation of
the distinguishability D2 and visibility V 2 with eigenenergies
Eβ . Here, lattice sizes N = 987, 2584, and 6765 are used as
examples. They show that D2 < V 2 in some energy regions
and D2 > V 2 in others. According to our discussion of the
Anderson model in Sec. III A the states are localized when
D2 > V 2; i.e., localized states exist when λ < λc. Due to the
finite-size effect, the relation that D2 < V 2 for some states (for
example, Eβ is near −1.8577) becomes D2 > V 2 as the lattice
size increases. In other words, they are “extended” at relatively
smaller lattice sizes, while they are localized at relatively larger
ones. For N = 6765, a partial enlarger at the crossover points
of D2 and V 2 is plotted in Fig. 2(b). The crossover points
correspond to MEs.

To compare the result from D2 and V 2 with that from
traditional quantities, we study the Thouless exponent [22]
and the participation ratio [23], which are given by γ (E) =
1
N

∑
β,E 
=Eβ

ln |Eβ − E| and PR = (
∑

i φ2
i )2

N
∑

i φ4
i

, respectively. We

define the inverse participation ratio ξPR = 1/PR. It is known
that γ (PR) is proportional to the inverse of the localization
length. The corresponding results are plotted in Figs. 2(c) and
2(d), respectively. There, N = 6765 is used as an example
and the results are similar for larger lattice sizes. The line in
Fig 2(d) represents the function ξ ∗

PR = 0.4169, which is the
mean values of all ξPR at the crossover points in Fig. 2(a). We
find that on the whole, γ is near 0 and ξPR is relatively larger
for states with D2 < V 2, while γ is greater than 0 and ξPR

is relatively smaller for states with D2 > V 2. Therefore, our
results are consistent with the findings [37–39] that MEs may
exist when λ < λc = 2. The values of the MEs in Fig. 2 are
consistent with those obtained by theoretical and numerical
analysis in Ref. [39]. We also have studied D2 and V 2 for
λ > λc and find that D2 > V 2 for all states, which means that
they are all localized. Therefore, from all these studies, we can
conclude that D2 is less than, equal to, and greater than V 2 for
delocalized, critical, and localized states, respectively.

C. Slowly varying potential model

For the SVP model, the on-site potential in Eq. (1) can be
written as εi = λ cos(παiυ), where λ, α, and 0 � υ � 1 are
positive numbers which completely define the tight-binding
problem [33–35]. For 0 < υ < 1, there are two MEs at
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FIG. 3. For the SVP model, D2 (blue symbols) and V 2 (green symbols) as functions of Eβ for lattice sizes N = 1000, 3000, and 6500,
respectively. (a) λ = 1.5, (b) λ = 2.0, and (c) λ = 2.01. Inset in (a): Partial enlarger for Eβ near −0.5; the red line is for the function Eβ = −0.5.
Inset in (b): λ = 1.995.
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Ec = ±(2.0 − λ) provided that λ < 2.0. Extended states are
in the middle of the band (|E| < 2.0 − λ) and localized states
are at the band edge ( 2.0 − λ < |E| < 2.0 + λ). For λ > 2.0,
all states are localized.

For the on-site potential εi in the model, we set πα = 0.2
and υ = 0.7, which is the same as in Refs. [33–35]. We plot the
distinguishability D2 and visibility V 2 versus eigenenergies
Eβ in Figs. 3(a)–3(c) at λ = 1.5, 2.0, and 2.01, respectively.
Here, lattice sizes N = 1000,3000, and 6500 are used as
examples. Figure 3 shows, similarly to Fig. 2(a), that due
to the finite-size effect, for some states the relation D2 < V 2

becomes D2 > V 2 as the lattice size increases. These states are
localized in the relatively larger lattice system. In what follows,
we discuss only the result for N = 6500. Figure 3(a) shows that
there is a crossover at Ecr

β ≈ ±0.4966 between the two curves
for D2 and V 2 versus Eβ . As the relation D2 + V 2 = 1 always
holds, at the crossover point D2 = V 2 = 0.5. It also shows that
when |Eβ | < |Ecr

β |, D2 < V 2; i.e., there are fewer particlelike
properties than wavelike ones. For other Eβ , D2 > V 2; i.e.,
there are more particlelike properties than wavelike ones. In
the case λ = 1.5, the ME value of MEs Ec = ±0.5, which
is shown by the red line in the inset in Fig. 3(a). The inset
shows that Ecr

β is a little less than Ec. Varga et al. have found
that power-law decaying states appear close to the ME on
the “metallic” side [40]. Such power-law decaying states are
localized in lattices of infinite sizes. Our results agree with
their finding. The inset in Fig. 3(b) shows that for λ∗ = 1.995,
D2 = V 2 as Eβ nears 0. For the same reason just mentioned
[40], λ∗ is not exactly equal to 2.0. For λ > λ∗, we find that
D2 > V 2 for all states. The result for λ = 2.01 as an example is
shown in Fig. 3(c). In that situation, there are more particlelike
properties than wavelike ones.

IV. DISCUSSION AND CONCLUSIONS

For the Harper and the SVP models, the Shannon informa-
tion entropy in position space and that in momentum space
have been provided to distinguish delocalized, localized, and
critical states [26]. At the same time, the inverse participation

ratio in phase space has been studied for the Harper and the
Anderson models [41–43]. It was found that some important
features of quantum states remain observable in phase space,
while they may be lost in position or momentum space. These
studies shed light on Anderson transitions. The corresponding
results agree with the traditional conclusions [29–35]. The
Shannon information entropy and the inverse participation
ratio are one-site-averaged quantities, while the distinguisha-
bility D2 and the visibility V 2 are two-site-averaged quantities.
In other words, D2 and V 2 take into account the correlation
of wave functions on different lattice sites. Here, our results
also support the points taken by some works from different
perspectives [36–39]. In this sense, we give another view of
existing discrepancies for these models.

On the other hand, the wave-particle duality is an important
principle in quantum theory. According to the fringe visibility
in a two-way single-photon interferometer, the inequality
D2 + V 2 � 1 has been derived to quantify the wave-particle
duality, where D is the distinguishability and V is the
visibility. Inspired by it, we adapt them to measure a single
electron’s particlelike and wavelike behaviors, respectively.
We numerically calculated D2 and V 2 for eigenstates in three
well-known 1D lattice systems, i.e., the Anderson, the Harper,
and the SVP models. The relation D2 + V 2 = 1 always
holds. In combination with existing results on the electronic
localization properties in the three models, we have found that
D2 < V 2, D2 = V 2, and D2 > V 2 for delocalized, critical,
and localized states, respectively. In this sense, the Anderson
transition can be viewed as a transition from relatively more
particlelike properties to relatively more wavelike ones, which
supports the conclusions in Refs. [1–3]. In fact, the transition
of a quanton from a particle to a wave nature is a fundamental
and unsolved subject. Our study has perhaps shed further light
on it.
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