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Synchronizing quantum and classical clocks made of quantum particles
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We demonstrate that the quantum corrections to the classical arrival time for a quantum object in a potential
free region of space, as computed in Phys. Rev. A 80, 030102(R) (2009), can be eliminated up to a given order
of � by choosing an appropriate position-dependent phase for the object’s wave function. This then implies that
we can make the quantum arrival time of the object as close as possible to its corresponding classical arrival
time, allowing us to synchronize a classical and quantum clock, which tells time using the classical and quantum
arrival time of the object, respectively. We provide an example for synchronizing such a clock by making use of
a quantum object with a position-dependent phase imprinted on the object’s initial wave function with the use of
an impulsive potential.
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I. INTRODUCTION

Time’s status as a quantum mechanical observable has been
a subject of intense study in recent years [1–16]. This attention
given to the role of time in quantum mechanics has allowed
the development of models for quantum clocks, which are
described mathematically by quantum time distributions or
equivalently by the expectation values of the time operators
corresponding to these distributions. Muga et al. [17–19] have
shown one way this can be done by using a two-level atom
moving in a potential-free region incident on a transverse
optical field at a point q = qo. In this scheme, the instant
of time when the atom emits a photon due to its excitation and
relaxation as a result of its interaction with the optical field is
the arrival time of the atom at the optical field’s location. The
resulting arrival time distribution for this system was shown
to be identical to the time-of-arrival distribution obtained by
Kijowski [20] from the non-self-adjoint free-particle arrival
time operator formulated by Bohm and Aharonov [21], as
well as to the distribution corresponding to the self-adjoint
arrival time operator for a confined particle in the limit as the
length of the confining region approaches infinity [22].

However, it is possible to use other types of systems to
construct a quantum clock by measuring its arrival time at a
given point. As an example, we can use neutrons moving in
free space, with neutrons having the advantage of having been
used in numerous experiments as a probe to test the validity
of quantum mechanics, as well as to investigate the effects of
gravity on quantum systems [23]. One way a quantum clock
can be constructed is by using neutrons is to make use of a
time-of-flight spectroscopy setup, wherein the time of flight
of neutrons scattered off of a target is measured [23,24]. The
resulting time of flight of these neutrons is identical to the time
of arrival of these neutrons at a given point qo in space where
the time of flight is measured. Compared to a quantum clock
constructed using Muga et al.’s two-level atom setup, this type
of quantum clock eliminates the need for additional equipment
to detect the arrival of the particle; all one needs is a particle
detector positioned around the neutron source to register the
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arrival of the particle, and the instant the detector clicks is the
neutron’s arrival time at that point. Classically, this time of
arrival of the scattered neutrons is given as t = −qo/vo, where
we have chosen a coordinate system such that the arrival point
is at the origin, qo is the position of the neutron relative to the
scattering target, and vo is the velocity.

In time-of-flight experiments involving quantum objects, it
is assumed that the time of flight is to be computed classically
and at the same time each object is a quantum wave packet.
Obviously these two assumptions are inconsistent because the
former assumes each object to be localized while the latter
assumes each object to be delocalized in space. However, it
is the consensus that these two assumptions are consistent,
thus, in Ref. [25], Galapon examined the consistency of the
two assumptions. In particular, Galapon treated the time of
arrival of scattered neutrons in a time-of-flight experiment
quantum mechanically using the general theory of time-of-
arrival operator in the presence of an interaction potential
formulated in Ref. [26], assuming that the initial quantum
state of the neutron is a quantum wave packet and that the
neutron is moving through a potential-free region of space.
This quantum mechanical treatment of the neutron’s time of
arrival shows that the size of the initial wave packet introduces
measurable quantum corrections to the expected classical time
of arrival, and that consistency can only be maintained under
certain conditions. Moreover, Galapon has shown that the
usual assumptions used in time of flight experiments is only
consistent with wave-packets of constant phase with a leading
quantum correction term in the order of O(�2) while for wave
packets with a position-dependent phase, the leading quantum
correction term is in the order of O(�).

The resulting quantum corrections depend on a variety of
parameters corresponding to the wave packet, such as the
initial position and momentum as well as the size and mass
of the wave packet. These quantum corrections imply that a
quantum clock constructed using neutrons and whose time
interval marker is its quantum arrival time may run slower or
faster than a classical clock, which makes use of neutrons as
well, but which uses the neutrons’ classical arrival time as its
time interval marker. Generalizing, this result implies that if
one constructs a quantum clock using particles, and makes use
of their corresponding arrival times as time interval markers for
this clock, then a classical clock and a quantum clock will not
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run at the same rate. However, it is still possible to synchronize
these two clocks by minimizing the effects of the quantum
correction terms to the classical time of arrival by introducing
a position-dependent phase that will make the quantum correc-
tion terms vanish. To do so, we show that the resulting quantum
correction terms are functions of the position-dependent phase
and introduce certain conditions to the phase that will make
these quantum correction terms vanish up to an order n of �.
This means that by introducing a position-dependent phase
onto the object’s initial wave function we are eliminating the
dependence of the expectation value of a particle’s quantum
arrival time on all parameters specific to its corresponding
quantum wave packet, except for the expectation value of its
initial position and momentum. This simplifies the quantum
arrival time’s expectation value and brings it in line with the
quantum particle’s corresponding classical arrival time, which
depends only on its initial position and momentum. Thus, we
are able to synchronize quantum and classical clocks in the
sense that we are eliminating the quantum correction terms in
the order of O(�3) or higher in order to increase the accuracy
of the calculated time of flight in TOF experiments.

The rest of the paper is structured as follows. Section II
provides details on how the quantum arrival time of a scattered
object moving in free space is computed, together with the
corresponding correction terms. Section III shows how these
quantum correction terms can be eliminated by introducing
a position-dependent phase to the quantum wave function of
the particle. Section IV demonstrates how the quantum clock
can be physically implemented. Section V describes a specific
example. Section VI summarizes the paper and outlines the
conclusions.

II. USE OF ARRIVAL TIME OPERATORS TO DESCRIBE A
QUANTUM CLOCK

Consider a beam of classical noninteracting free identical
particles each with mass μ and kinetic energy Eo. Let the
distribution of the initial positions of the particles be given by
�(q) at t = 0 so that the classical expected time of arrival, say
at the origin, for such a system is given by

τ̄class = −
∫ +∞

−∞

q

vo

�(q)dq = −qo

vo

, (1)

where qo = ∫ +∞
−∞ q�(q)dq is the mean initial position of

the particles and vo = √
2Eo/μ is the velocity of each

particle [25].
Now consider a beam of quantum noninteracting identical

particles, each with mass μ and described by one-particle
wave functions {φ(q)} in the system Hilbert space. Its quantum
arrival time is described in terms of the expectation value of
the quantum arrival time operator for a free particle, which has
the explicit form

(Tφ)(q) = μ

4i�

∫ ∞

−∞
(q + q ′)sgn(q − q ′)φ(q ′)dq ′

= μ

4i�

∫ q

−∞
(q + q ′)φ(q ′)dq ′

− μ

4i�

∫ ∞

q

(q + q ′)φ(q ′)dq ′. (2)

The expectation value of the quantum arrival time will then
have the explicit form

τ̄quant = 〈φ|T̂ |φ〉 =
∫ ∞

−∞
φ̄(q)(Tφ)(q)dq

= μ

4i�

∫ ∞

−∞

∫ ∞

−∞
φ̄(q)(q + q ′)sgn(q − q ′)φ(q ′)dq ′dq

= μ

4i�

∫ ∞

−∞

∫ q

−∞
(q + q ′)φ̄(q)φ(q ′)dq ′dq

− μ

4i�

∫ ∞

−∞

∫ ∞

q

(q + q ′)φ̄(q)φ(q ′)dq ′dq. (3)

We note that the one-particle wave functions {φ(q)} in the
system Hilbert space must satisfy the following properties: (i)
the expectation value of the time-of-arrival operator reduces
to the classical value in the limit as � approaches zero, and
(ii) the quantum momentum expectation value is equal to the
classical momentum of the incident particle 〈φ|p̂|φ〉 = μvo

where p̂ is the momentum operator. The second condition
guarantees that the wave packet moves abreast with its classical
counterpart [25].

Given that the expectation value of the time-of-arrival
operator for the beam of particles exists, the wave functions of
the class assume the form φ(q) = ϕ(q)eikq , where k = μvo/�,
and ϕ(q) is a wave packet that is (i) independent of �,
(ii) satisfies |ϕ(q)|2 = �(q), and (iii) has zero momentum
expectation value. The third condition implies that∫ +∞

−∞
ϕ̄(q)

dϕ(q)

dq
dq = 0. (4)

From Ref. [25] the wave packet ϕ(q) has the form ϕ(q) =
eiϑ(q)√�(q) such that it satisfies the three properties stated
above. Substituting ϕ(q) = eiϑ(q)√�(q) to Eq. (4) yields the
equality ∫ +∞

−∞
�(q)

dϑ(q)

dq
dq = 0, (5)

where ϑ(q) is generally a real-valued function of q. The
equality in Eq. (5) follows from the assumed differentiability of
�(q) and the finiteness of τ̄class. If f (q) is a function orthogonal
to �(q), then the phase is given by ϑ(q) = ∫

f (q)dq. There
are infinitely many functions f (q) orthogonal to �(q) because
the finiteness of τ̄class implies that �(q) belongs to the system
Hilbert space, which is infinite dimensional. Thus, there are in-
finitely many functions orthogonal to �(q) because every vec-
tor in the Hilbert space has infinitely many orthogonal vectors.

The quantum image of the classical beam of particles now
comprises all wave functions of the form

φ(q) = eiϑ(q)+i
√

2μE0q/�
√

�(q), (6)

where ϑ(q) is an arbitrary real-valued function with ϑ ′(q)
orthogonal to �(q). From Ref. [25] the full asymptotic form
of the expectation value of the quantum time of arrival (QTOA)
〈φ|T̂ |φ〉 in terms of the kinetic energy Eo is

τ̄quant ∼ −
√

μ

2Eo

∞∑
n=0

�
2nχ

(n)
1

(2μEo)n
+ 1

2Eo

∞∑
n=0

(−1)n�2n+1χ
(n)
2

(2μEo)n
,

(7)

032123-2



SYNCHRONIZING QUANTUM AND CLASSICAL CLOCKS . . . PHYSICAL REVIEW A 94, 032123 (2016)

as (�2/μEo) → 0, where

χ
(n)
1 =

∫ +∞

−∞
q|ϕ(n)(q)|2dq, (8)

and

χ
(n)
2 =

∫ +∞

−∞
q Im[ϕ̄(q)ϕ(2n+1)(q)]dq. (9)

Generally, the right-hand side of Eq. (7) diverges but mean-
ingful numerical values can be extracted through superasymp-
totic summation [27,28]. These finite numerical values from
Eq. (7) then imply that the quantum arrival time for the
particle may be equal, less than, or greater than the classical
arrival time depending on the form of the incident wave
function.

We note that the dispersion of the wave packet correspond-
ing to a quantum particle as it evolves over time is the physical
mechanism that gives rise to the nonzero correction terms in the
expectation value of its arrival time. To illustrate this, consider
a quantum particle moving along a line towards a particle
detector located at some point x. At a given instant of time t ,
the particle will have a finite probability of being found in the
neighborhood of x (where the detector is located). However,
it will also have a finite probability of being found at a point
x ′ elsewhere along the line, thus reducing the probability that
the particle is at point x, and increasing the probability that it
will be found elsewhere along the line. This implies that the
expectation value for the position of the particle will change,
and so too will the expectation value of the momentum, and
so too as a result will the expectation value of the quantum
arrival time of the particle at point x.

The question now arises as to how we can mitigate the
effects of the quantum corrections to the expected QTOA in
order to synchronize our classical and quantum clocks. In the
following section, we outline and demonstrate how this can be
achieved up to some order of � by an appropriate choice of the
phase ϑ(q) in Eq. (6).

III. VANISHING OF THE QUANTUM CORRECTION
TERMS

Using the exact expression for the expectation value of
the QTOA given in Eq. (3), it is not apparent how the wave
function given by Eq. (6) can be modified in such a way that
the expectation value of the QTOA is as close as we wish
to the classical value. However, the asymptotic expansion of
the expected QTOA given by Eq. (7) provides a means of
extracting conditions on the wave function φ(q) to bring the
expectation value of the QTOA nearer to the classical value to
some order of �. The basic idea is to choose the phase ϑ(q)
for a given �(q) such that a predetermined number, N , of
the leading quantum correction terms vanish so that τ̄quant =
τ̄class + O(�N+1). This requires χ

(l)
1 = 0 for l = 1, . . . ,	N/2
,

and χ
(m)
2 = 0 for m = 0, . . . ,	N/2
 + 1, in addition to the

condition (5). In this paper, we solve for the cases N = 1
and N = 2, so that τ̄quant = τ̄class + O(�2) and τ̄quant = τ̄class +
O(�3), respectively.

In the rest of the paper, we will consider Gaussian wave
functions described by

ψnp(q) = 1

(σ
√

2π )1/2
e
− (q−q0)2

4σ2 ei
√

2μE0q/�, (10)

ψwp(q) = 1

(σ
√

2π )1/2
e
− (q−q0)2

4σ2 ei
√

2μE0q/�eiϑ(q), (11)

where the subscript np indicates that the wave function has no
position-dependent phase and wp indicates otherwise. Both
of these wave functions correspond to the same probability
density

�(q) = 1

σ
√

2π
e−(q−q0)2/2σ 2

. (12)

From Ref. [25], the wave function ψnp(q) has a leading-order
correction term O(�2) to the classical time of flight; and the
wave function ψwp(q) has a leading O(�) correction term.

Now if we want to improve on the order O(�2) of ψnp(q),
we have to modify it by introducing a phase, leading to the
wave function ψwp(q), which will in turn lead to an order O(�)
correction. Let us tackle eliminating the O(�) correction so that
τ̄quant = τ̄class + O(�2). Later we will use our solution here to
eliminate the O(�2) correction. There are two conditions to
satisfy, Eq. (5) and χ

(0)
2 = 0. The second condition translates

to ∫ ∞

−∞
q�(q)

dϑ

dq
dq = 0, (13)

which ensures the vanishing of the O(�) correction term.
Notice that Eqs. (5) and (13) are both linear in the phase ϑ(q).
This observation will be important later in our elimination of
the O(�2) correction term.

As there are two (linear) conditions to satisfy, we assume
that the phase is of the form

ϑ(q) = c1ϑ1(q) + c2ϑ2(q), (14)

where c1 and c2 are real-valued constants to be determined and
ϑ1(q) and ϑ2(q) are linearly independent real-valued functions.
Substituting Eq. (14) back into Eqs. (5) and (13), we obtain the
following linear system of two equations with two unknowns,

c1

∫ +∞

−∞
�(q)

dϑ1(q)

dq
dq + c2

∫ +∞

−∞
�(q)

dϑ2(q)

dq
dq = 0

c1

∫ +∞

−∞
q�(q)

dϑ1(q)

dq
dq + c2

∫ +∞

−∞
q�(q)

dϑ2(q)

dq
dq = 0.

(15)

Provided the determinant of the coefficients vanish, solutions
for c1 and c2 exist.

Incidentally the system of equations, Eq. (15), is exactly
the same set of equations addressed and solved in Ref. [30].
For the given Gaussian probability density, Eq. (12), phases
with definite parity can be obtained. They are given by

ϑodd(q) = 2σ
√

π

2l2ml!

√
(2l)!

(2m)!

σ

4m + 2
H2m+1

(
q − q0

σ

)

− 2σ
√

π

2l2mm!

√
(2m)!

(2l)!

σ

4l + 2
H2l+1

(
q − q0

σ

)
(16)
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ϑeven(q) = 2σ
√

π

2l2ml!

√
(2l + 1)!

(2m + 1)!

σ

4m + 4
H2m+2

(
q − q0

σ

)

− 2σ
√

π

2l2mm!

√
(2m + 1)!

(2l + 1)!

σ

4l + 4
H2l+2

(
q − q0

σ

)

(17)

where Hj (x) is the Hermite polynomial and l �= m. Any of
these phases will eliminate the O(�) correction term but not
necessarily the higher-order correction terms.

Suppose we now want a phase that will make the second-
order quantum correction term vanish so that we get a leading
quantum correction of the order O(�3) to the classical time of
arrival. This requires the condition χ

(1)
1 = 0 or∫ +∞

−∞
q

(
dϑ

dq

)2

�(q)dq +
∫ +∞

−∞
q

(
d

dq

√
�(q)

)2

dq = 0.

(18)

We exploit the linearity of Eqs. (5) and (13) to simultaneously
eliminate the O(�) and O(�2) correction terms. Because of the
linearity of (5) and (13), any linear combination of Eqs. (16)
and (17) will remain to satisfy Eqs. (5) and (13). Then we
assume a phase of the form

ϑ(q) = αϑodd(q) + βϑeven(q) (19)

for some real constants α and β. Given one of the constants,
the other can be determined by substituting Eq. (19) back into
Eq. (18), provided, of course, the solutions are real. In Sec. V,
we will consider a specific example demonstrating the explicit
construction of a phase that eliminates quantum corrections up
to O(�2).

The method just described can be extended to eliminate
an arbitrary order of quantum corrections. However, the
conditions beyond the first-order correction are nonlinear in
phase so that an analytical construction of the required phase
may be, in general, intractable to accomplish.

IV. IMPLEMENTATION OF THE QUANTUM CLOCK

To construct the quantum clock using quantum particles
whose time interval marker is the QTOA of the particle, we
need to address two issues. Namely, we first need to address the
issue on a how the quantum particle can acquire a position-
dependent phase ϑ(q), and secondly the fluctuations of the
hand of the quantum clock around its mean position should
be finite such that the width of the QTOA distribution is also
finite. Here we consider the phase imprinting method and in
the next section we will consider a specific example addressing
the second issue.

To address the first, we can have the position-dependent
phase ϑ(q) imprinted onto the initial wave function of our
quantum particle ψ(q,t = 0) = ψnp(q) such that after the
phase imprinting process, our final wave function is given
by ψ(q,t = T ) = ψwp(q). To do this, we use an impulsive
interaction Hamiltonian to evolve the object. Its explicit form
is given by

H (t) = −γ�(q)δ(t), (20)

where γ is a constant, �(q) is a real-valued function of q,
and δ(t) is a Dirac δ function in time. This form of the
potential is chosen so that the phase imprinting process will
only involve turning the potential on then immediately turning
it off, with the phase of the form ϑ(q) = γ�(q)/� immediately
afterwards.

Since the interaction Hamiltonian is time dependent, the
time evolution of the object’s wave function is described by
the time-dependent Schrödinger equation subject to the initial
conditions stated above. The solution of this equation is given
by

|ψ(q,T )〉 = U (T ,0)|ψ(q,0)〉, (21)

where |ψ(q,0)〉 is the object’s initial wave function and U (T ,0)
is the time evolution operator, which has the form

U (T ,0) = exp

(
− i

�

∫ T

0
H (t)dt

)

= exp

(
i

�
γ�(q)

)
. (22)

From Eq. (22) we see that after the phase imprinting process,
the object’s wave function will have an additional phase
ϑ(q) = γ�(q)/�.

V. EXAMPLE

Now let us consider a specific example and demonstrate
how the addition of phase can bring the expected QTOA closer
to the classical time of flight. We use the particular values
l = 0 and m = 1 in the phase given by Eq. (19). Substituting
the phase back into Eq. (18), we obtain the equation

16πσ 2[4
√

3αβσ + q0(α2 + 4β2)] + q0

4σ 2
= 0. (23)

An inspection of Eq. (23) suggests that α and β have
dimension length−2. To be consistent with the dimensions we
let α = a/σ 2 and β = b/σ 2 where a and b are dimensionless
quantities. Supposing we know b, a is given by

a± = ±
√

π

√
768πb2σ 2 − 256πb2q2

0 − q2
0 − 16

√
3πbσ

8πq0
.

(24)

However, we have imposed earlier that the position-dependent
phase ϑ(q) is a real-valued function. This means that a and b

must both be real numbers and in order for this condition to be
satisfied the parameter b must satisfy the following inequality:

b2 � 1

1 − 1
3

q2
0

σ 2

q2
o

768πσ 2
, (25)

where the parameters σ and q0 must satisfy:

σ 2 > 1
3q2

0 . (26)

By appropriately choosing the value of the parameters b, σ , and
q0 such that the inequalities in Eqs. (25) and (26) are satisfied,
an explicit form of the position-dependent phase that will make
the quantum correction terms vanish up to the second order
and will make the leading quantum correction to the classical
time of arrival in the order of O(�3) exists.
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FIG. 1. Comparison of the leading quantum correction term factor Qnp and Qwp for ψnp and ψqp , respectively, with parameters
α = 5(4

√
19πσ 2)−1, β = 9(16

√
19πσ 2)−1, and qo = −0.9

√
3σ where σ = 1.1x10−11m.

To better see the effect of imprinting a position-dependent
phase onto the initial wave function of a quantum particle, we
cast Eq. (7) into the following form:

τ̄quant ∼ τclass

( ∞∑
n=0

χ̃
(n)
1

(kσ )2n
− σ

qo

∞∑
n=0

(−1)nχ̃ (n)
2

(kσ )2n+1

)
, (27)

where we have performed a change of variables from q/σ =
x + qo/σ in Eq. (8) and Eq. (9) such that

χ̃
(n)
1 =

∫ +∞

−∞
|ϕ̃(n)(x)|2dx, (28)

χ̃
(n)
2 =

∫ +∞

−∞

(
x + qo

σ

)
Im[ ¯̃ϕ(x)ϕ̃(2n+1)(x)]dx, (29)

and

ϕ̃(x) = 1

(2π )1/4
e−x2/4eiϑ(x). (30)

We want to emphasize that by casting τ̄quant as Eq. (27),
calculating the expectation value of the QTOA is now much
more convenient than Eq. (7). The integrands in Eq. (28)
and (29) are now independent of σ and qo, making χ̃

(n)
1 and

χ̃
(n)
2 dimensionless quantities.

It is now easy to see that the leading quantum correction
term for the classical time of arrival is equal to the classical
TOA multiplied by a factor Q(kσ ). From Appendix B, we
see that for ψnp the leading quantum correction term is
proportional to

Qnp(kσ ) =
χ̃

(1)
1np

(kσ )2
= 1

(kσ )2

∫ +∞

−∞

(
d

dx

√
�̃(x)

)2

dx (31)

while the leading quantum correction term for ψwp is propor-
tional to

Qwp(kσ ) = σ

qo

χ̃
(1)
2wp

(kσ )3
(32)

or equivalently,

Qwp(kσ ) = 1

(kσ )3

σ

qo

∫ ∞

−∞

(
x + qo

σ

)d3ϑ

dx3
�̃(x)dx

− 1

(kσ )3

σ

qo

∫ ∞

−∞

(
x + qo

σ

)(
dϑ

dx

)3

�̃(x)dx.

(33)

An experiment by Badurek et al. [29] modeled wave packets
as Gaussians with σ = 1.1 × 10−10 m. Using this, we can set
our parameters as α = 5(4

√
19πσ 2)−1, β = 9(16

√
19πσ 2)−1,

and qo = −0.9
√

3σ such that the inequalities in Eqs. (25)
and (26) are satisfied. Substituting these values to Eq. (19)
ensures that the second-order quantum correction term for
ψwp vanishes so that the leading quantum correction term is
now τclassQwp. In our case, we will consider thermal neutrons
with E = 0.025 eV and epithermal neutrons with energy
range 0.025–0.4 eV. This corresponds to k = 1.1 × 1012 m−1

and k = 4.4 × 1012 m−1 for E = 0.025 eV and E = 0.4 eV,
respectively.

A comparison of the leading quantum correction factor,
Q(kσ ), for wave functions ψnp(q) and ψwp(q), is shown
Fig. 1. The value Qnp is positive, which means that the
QTOA is greater than the classical TOA while the value
Qwp negative, which means that the QTOA is less than the
classical TOA. This means that in our case the quantum clock
runs slower than the classical clock and by imprinting the
position-dependent phase Eq. (19) we are able to make the
quantum clock run faster but closer to the classical clock.
Also, the value Qnp and Qwp decreases and approaches zero
as energy increases. This phenomenon is expected since the
expectation value of the time-of-arrival operator approaches
the classical value as (�2/μEo) → 0. However, it is important
to note that Qwp approaches zero faster than Qnp indicating
that at higher energies, the effect of imprinting a position-
dependent phase is more noticeable. Thus, at higher energies
imprinting a position-dependent phase that eliminates the first-
and second-order quantum correction terms is recommended
since the magnitude of the leading quantum correction term

032123-5



FLORES, CABALLAR, AND GALAPON PHYSICAL REVIEW A 94, 032123 (2016)

FIG. 2. Quantum time of arrival distribution of neutrons for � = 1 with energy E0 = 200, σ = 6, q0 = −10, α = (32
√

6π )−1, and
β = 5(576

√
2π)−1.

for ψwp is lower than the leading quantum correction for ψnp.
By doing so, we are able to synchronize quantum and classical
clocks, which use the quantum and classical TOA as time
interval markers, respectively, so that we get a more accurate
calculation of the time of flight in TOF experiments.

We now demonstrate that the width of the QTOA distribu-
tion is finite so that the fluctuations of the hand of the quantum
clock around its mean position is also finite. To do this, we
use the nodal and non-nodal eigenfunctions of the standard
time-of-arrival operator in momentum representation given by

�ψ0 (X,τ ) = ∣∣〈ψ0

∣∣τX
non

〉∣∣2 + ∣∣〈ψ0|τX
nod

〉∣∣2
, (34)

where

〈
p
∣∣τX

non

〉 =
√

|p|
2μ

exp−ipX/�

√
2π�

expip2τ/2μ� (35)

〈
p
∣∣τX

nod

〉 =
√

|p|
2μ

exp−ipX/�

√
2π�

expip2τ/2μ� sgn(p). (36)

The non-nodal contribution corresponds to particle appearance
at the arrival point X while the nodal contribution corresponds
to a quantum arrival with no particle appearance [31,32].

The QTOA distribution at the arrival point X = 0 for ψnp

and ψwp are plotted in Fig. 2 using Eqs. (34)–(36). Here we
use a neutron and set � = 1. It can easily be seen in Fig. 2
that the width of the QTOA distribution is finite making the
fluctuations of the hand of the quantum clock around its mean
position to be also finite. We want to emphasize that this width

is the full width at half maximum (FWHM) σFWHM and not the
square root of the variance of the QTOA distribution σquant,

σquant =
√

〈φ|T̂ 2|φ〉 − 〈φ|T̂ |φ〉2, (37)

where T̂ is the quantum arrival time operator for a free particle
given in Eq. (2). The reason is that generally, σquant is infinite
because 〈φ|T̂ 2|φ〉 does not always yields a finite value. A finite
value for σquant can only be achieved if the wave function φ(q)
is inside the domain of the operator T̂ and in our case the wave
function φ(q) does not lie inside the domain of T̂ [30].

As such, a more apt parameter that we can use to
characterize the spread of the distribution is its FWHM,
which is finite. It is important to note that although the TOA
distributions are skewed but using the FWHM it can be seen
that in Fig. 2, the width of the TOA distribution for ψwp is
smaller than that of ψnp. This indicates that by imprinting a
position-dependent phase of the form given by Eq. (19) the
width of the TOA distribution becomes smaller.

Due to the finiteness of the FWHM, it is possible to set
the parameters of the wave function in such a way that the
following condition is satisfied:

σFWHM/τ̄quant � 1. (38)

If this condition is satisfied, then the fluctuations of the quan-
tum clock’s hand about its mean position can be minimized.
One possible realization of this condition can occur in the
high-energy limit, where the fluctuations will be minimized
due to the narrowness of the arrival time distribution of the

FIG. 3. Quantum time of arrival distribution of neutrons with a position dependent phase and varying energies as indicated in the figure,
for � = 1, σ = 6, q0 = −10, α = (32

√
6π)−1, and β = 5(576

√
2π )−1.
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particle. To illustrate how this can occur, first consider the
plots of the arrival time probability distribution in Fig. 3. The
plots show that for increasing energy, the distributions narrow
in width, and consequently, FWHM will also decrease.

VI. SUMMARY

We have shown that for any arbitrary quantum particle
with velocity vo and whose initial wave function is given
by a quantum wave packet moving through a potential-free
region, its resulting quantum arrival time at a given point
can be made equal to its corresponding classical arrival time
t = −qo/vo at qo up to a given order N of �. This can be
done by imprinting onto the particle’s initial wave function a
position-dependent phase ϑ(q) using an impulsive interaction
Hamiltonian given by H (t) = −γ�(q)δ(t). The form of the
position-dependent phase ϑ(q) determines up to what order N

of � will the quantum correction terms in the particle’s quantum
arrival time vanish. Specifically, we have shown a form of
the position-dependent phase that can be imprinted so that the
leading quantum correction term to the classical time of arrival
is at most to the order of O(�3). We acknowledge, though,
that engineering the required phases is an entirely different
problem, which we leave open for future consideration.
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APPENDIX A: DERIVATION OF THE FULL ASYMPTOTIC
EXPANSION OF THE TOA EXPECTATION VALUE

In this Appendix we recap, for completeness, the derivation
of Eq. (7), the full asymptotic form of the TOA expectation
value as � → 0, which was carried out in Ref. [25]. Our starting
point is the quantum expected time of arrival for the wave
function φ(q) given by

τ̄quant =
∫ ∞

−∞

∫ ∞

−∞

[ μ

4i�
(q + q ′) sgn(q − q ′)

]
× ϕ̄(q)ϕ(q ′)e−ik(q−q ′)dq ′dq. (A1)

This expression can be cast into the form

τ̄quant =
∫ ∞

−∞
φ̄(q)ψk(q) dq, (A2)

where

ψk(q) = μ

4i�

∫ ∞

−∞
(q + q ′) sgn(q − q ′)ϕ(q ′)eikq ′

dq ′

= μ

4i�

∫ q

−∞
(q + q ′) ϕ(q ′)eikq ′

dq ′

− μ

4i�

∫ ∞

q

(q + q ′)ϕ(q ′)eikq ′
dq ′,

(A3)

where we have used the identity sgn(q − q ′) = H (q − q ′) −
H (q ′ − q), in which H (x) is the Heaviside function, to arrive
at Eq. (A3).

Repeated integration by parts yields the full asymptotic
expansion of the quantum expected time of arrival

ψk(q) ∼ μ

2i�
eikq

∞∑
n=0

(−1)n

(ik)n+1

∂n

∂q ′n [(q + q ′)ϕ(q ′)]|q ′=q

as k → ∞. This expression holds for all ϕ(q) that is rapidly
decreasing, such as Gaussian wave packets. Evaluating the
first few partial derivatives in the above expression, we find
the pattern

∂n

∂q ′n [(q + q ′)ϕ(q ′)] = nϕ(n−1)(q ′) + (q + q ′)ϕ(n)(q ′). (A4)

We can prove that this expression is correct by induction, which
is done by taking the partial derivative of the right-hand side
of Eq. (A4) and then showing that it is equal with Eq. (A4)
with n shifted to (n + 1). Then the asymptotic value of the
quantum expected time of arrival is obtained by substituting
the asymptotic expansion of ψk(q) back into Eq. (A2) and is
given by

τ̄ϕ ∼ μ

2i�

∞∑
n=0

(−1)n

(ik)n+1

∫ ∞

−∞
ϕ̄(q)(nϕ(n−1)(q) + 2qϕ(n)(q))dq

(A5)

as k → ∞. An inspection of the first few terms of this series
shows that even and odd powers of k must be treated separately.

For n = 2j , j = 1,2, . . . , we consider the integral I
(j )
1 =∫ ∞

−∞ ϕ̄(q)qϕ(2j )(q) dq and perform the following manipula-
tions:

I
(j )
1 =

∫ ∞

−∞
ϕ̄(q)

d

dq

(
qϕ(2j−1)(q)

) −
∫ ∞

−∞
ϕ̄(q)ϕ(2j−1)(q) dq

= −
∫ ∞

−∞
ϕ̄(1)(q)qϕ(2j−1)(q) dq −

∫ ∞

−∞
ϕ̄(q)ϕ(2j−1)(q) dq.

The first term of the last line follows from the first term of the
second term after performing an integration by parts. Observe
that the first term of the last line has the same structure as I

(j )
1 .

Performing the same manipulation on this term, and continuing
the process j times leads to the identity∫ ∞

−∞
q ϕ̄(q)ϕ(2j )(q)dq = (−1)j

∫ ∞

−∞
q
∣∣ϕ(j )(q)

∣∣2
dq

− j

∫ ∞

−∞
ϕ̄(q)ϕ(2j−1)(q)dq.

For n = (2j + 1) let us consider the integral I
(j )
2 =∫ ∞

−∞ ϕ̄(q)qϕ(2j+1)(q)dq. Performing similar manipulations as
above for (2j + 1) times yields the integral identity∫ ∞

−∞
q ϕ̄(q)ϕ(2j+1)dq = −

∫ ∞

−∞
q ϕ(q)ϕ̄(2j+1)dq

− (2j + 1)
∫ ∞

−∞
ϕ̄(q)ϕ(2j )(q)dq.
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Substituting these two integrals back yields the full asymp-
totic form of the quantum expected time of arrival

τ̄quant ∼ −μ

�

∞∑
j=0

χ
(j )
1

k2j+1
+ μ

�

∞∑
j=0

(−1)jχ (j )
2

k2j+2
(A6)

as k → ∞. In terms of the kinetic energy Eo, we have

τ̄quant ∼ −
√

μ

2Eo

∞∑
n=0

�
2nχ

(n)
1

(2μEo)n
+ 1

2Eo

∞∑
n=0

(−1)n�2n+1χ
(n)
2

(2μEo)n
.

(A7)

APPENDIX B: CALCULATION OF THE QUANTUM
CORRECTION TERMS

In this Appendix, we calculate the quantum correction terms
up to the sixth order and show that there is no general form
for the nth-order quantum correction term by showing that no
observable pattern can be found for the quantum correction
terms. We do this by substituting Eq. (6) to Eqs. (8) and (9).
The resulting quantum correction terms will then have the
following form:

χ
(0)
2 =

∫ +∞

−∞
q

dϑ

dq
�(q)dq. (B1)

χ
(1)
1 =

∫ +∞

−∞
q

(
dϑ

dq

)2

�(q)dq +
∫ +∞

−∞
q

(
d

dq

√
�(q)

)2

dq

(B2)

χ
(1)
2 = −

∫ +∞

−∞
q

(
dϑ

dq

)3

�(q)dq +
∫ +∞

−∞
q

d3ϑ

dq3
�(q)dq

(B3)

χ
(2)
1 =

∫ +∞

−∞
q

(
d2

dq2

√
�(q)

)2

dq

+
∫ +∞

−∞
q

(
d2ϑ

dq2

)2

�(q)dq

+
∫ +∞

−∞
q

(
dϑ

dq

)4

�(q)dq. (B4)

χ
(2)
2 =

∫ +∞

−∞
q

d5ϑ

dq5
�(q)dq +

∫ +∞

−∞
q

(
dϑ

dq

)5

�(q)dq

− 10
∫ +∞

−∞
q

(
d3ϑ

dq3

)(
dϑ

dq

)2

�(q)dq

− 15
∫ +∞

−∞
q

(
dϑ

dq

)(
d2ϑ

dq2

)2

�(q)dq. (B5)

χ
(3)
1 =

∫ +∞

−∞
q

(
d3

dq3

√
�(q)

)2

dq

− 6
∫ +∞

−∞
q
√

�(q)
d2ϑ(q)

dq2

dϑ(q)

dq

d3

dq3

√
�(q)dq

+ 9
∫ +∞

−∞
q

(
d2ϑ(q)

dq2

)2(
dϑ(q)

dq

)2

�(q)dq

+
∫ +∞

−∞
q

(
d3ϑ(q)

dq3

)2

�(q)dq

+
∫ +∞

−∞
q

(
dϑ(q)

dq

)6

�(q)dq

+ 2
∫ +∞

−∞
q

d3ϑ(q)

dq3

(
dϑ(q)

dq

)3

�(q)dq. (B6)

As can be seen in Eqs. (B1)–(B6), the quantum correction
terms become more complicated as their order increases and
that there is no general form for the nth-order correction term.
This means that we cannot find a general form for ϑ(q) such
that all the quantum correction terms will vanish. However, it is
important to note that the nth-order correction term always has
a term with [ϑ ′(q)]n in its integral. If we assume a solution of
the form ϑ(q) = ∑n+1

k=1 ckϑk(q) this yields a nonlinear system
of n + 1 equations with n + 1 unknowns and the kth-order
correction term becomes a polynomial of order k. Using this
system of equations, the coefficients ck can be solved to make
the correction terms vanish up to a certain order depending on
the choice of ϑ(q) and at the same time satisfy Eq. (5).

APPENDIX C: DERIVATION OF ϑodd(q) AND ϑeven(q)

In this Appendix we recap, for completeness, the derivation
of Eqs. (16) and (17), which was carried out in Ref. [30]. Our
starting point is the linear system of equations given by∫ +∞

−∞
ϕ(q)dq = 0,

∫ +∞

−∞
qϕ(q)dq = 0. (C1)

Assume ϕ(q) = αϕ1(q) + βϕ2(q) where ϕ1(q) and ϕ2(q) are
linearly independent functions, and α and β are constants such
that conditions (C1) are satisfied. Substituting ϕ(q) to Eq. (C1)
we obtain the following matrix expression for α and β,[ ∫ +∞

−∞ ϕ1(q)dq
∫ +∞
−∞ ϕ2(q)dq∫ +∞

−∞ qϕ1(q)dq
∫ +∞
−∞ qϕ2(q)dq

][
α

β

]
= 0. (C2)

A unique solution for α and β exists if the determinant of the
matrix of the coefficients vanishes which gives the following
condition for the integrals of ϕ1(q) and ϕ2(q),(∫ +∞

−∞
ϕ1(q)dq

)(∫ +∞

−∞
qϕ2(q)dq

)

=
(∫ +∞

−∞
ϕ2(q)dq

)(∫ +∞

−∞
qϕ1(q)dq

)
. (C3)

Equation (C3) can be satisfied by letting ϕ1(q) and ϕ2(q) have
definite parities, i.e., either both of them are odd or even. With
these conditions, we can write:

ϕo(q) =
(∫ +∞

−∞
yϕ1(y)dy

)
ϕ2(q)

−
(∫ +∞

−∞
yϕ2(y)dy

)
ϕ1(q) (C4)

for odd ϕ1(q) and ϕ2(q), and

ϕe(q) =
(∫ +∞

−∞
ϕ1(y)dy

)
ϕ2(q) −

(∫ +∞

−∞
ϕ2(y)dq

)
ϕ1(q)

(C5)

for even ϕ1(q) and ϕ2(q).
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If we now choose ϕk(q) = (2k/2
√

k! 4
√

π )−1 Hk(q)e−q2/2,
where k = 0,1, . . . and Hk(q)’s are the Hermite polynomials.
Each ϕk(q) has a definite parity depending on k, i.e., ϕk(q) is
odd (even) for odd (even) k. We can now define ϕ(q) satisfying
Eq. (C1) as

ϕo(q) =
√

2

2l2ml!

√
(2l + 1)!

(2m + 1)!
H2m+1(q)e−q2/2

−
√

2

2l2mm!

√
(2m + 1)!

(2l + 1)!
H2l+1(q)e−q2/2 (C6)

and

ϕe(q) =
√

2

2l2ml!

√
(2l)!

(2m)!
H2m(q)e−q2/2

−
√

2

2l2mm!

√
(2m)!

(2l)!
H2l(q)e−q2/2, (C7)

where l �= m.

By comparing Eqs. (15) and (C1) we see that ϕ(q) =
�(q)ϑ ′(q) where �(q) is given by Eq. (12). By making a
change of variables in Eqs. (C4) and (C5) from q to (q − q0)/σ
it is easy to see that

dϑeven(q)

dq
= 2σ

√
π

2l2ml!

√
(2l + 1)!

(2m + 1)!
H2m+1

(
q − q0

σ

)

− 2σ
√

π

2l2mm!

√
(2m + 1)!

(2l + 1)!
H2l+1

(
q − q0

σ

)
(C8)

dϑodd(q)

dq
= 2σ

√
π

2l2ml!

√
(2l)!

(2m)!
H2m

(
q − q0

σ

)

− 2σ
√

π

2l2mm!

√
(2m + 1)!

(2l + 1)!
H2l

(
q − q0

σ

)
. (C9)

By integrating Eqs. (C8) and (C9) we get Eqs. (17) and (16),
respectively.
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