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The concept of weak invariant is introduced. Then the weak invariants associated with time-dependent
quantum dissipative systems are discussed in the context of master equations of the Lindblad type. In
particular, with the help of the su(1,1) Lie-algebraic structure, the weak invariant is explicitly constructed
for the quantum damped harmonic oscillator with the time-dependent frequency and friction coefficient.
This generalizes the Lewis-Riesenfeld invariant to the case of nonunitary dynamics in the Markovian
approximation.
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I. INTRODUCTION

In most cases under realistic conditions, systems are
not isolated but open, being surrounded by environments.
Energy is exchanged between the objective and environmental
systems, and physical coefficients characterizing the former
one may vary explicitly in time. The dynamics governing
such an open system is nonunitary in the quantum-mechanical
regime.

In this work, we develop a discussion about the invariants
of time-dependent quantum systems. Here, “time dependence”
implies that physical coefficients contained in a system vary
explicitly in time. In such a situation, we can define two
different kinds of invariants: strong and weak invariants. Their
definitions are presented. Then, we study the weak invariants
of dissipative quantum open systems. To do so, we assume
the dynamics of open systems to be Markovian, i.e., ab-
sence of long-term memories. This approximation drastically
simplifies the discussion, since the master equation that is
linear and preserves positive semidefiniteness of a density
matrix necessarily becomes the Lindblad type [1,2]. Given
Lindbladian operators that are responsible for dissipation, it
is straightforward to derive the equation to be satisfied by the
weak invariant operator, and therefore a main task is to solve
such an operator equation. After general discussions about
these issues, we explicitly construct for the time-dependent
quantum damped harmonic oscillator the weak invariant
together with the equation for an auxiliary c-number variable.
This generalizes the celebrated Lewis-Riesenfeld invariant [3]
of the time-dependent quantum harmonic oscillator without
the damping term.

This paper is organized as follows. In Sec. II, the definitions
of strong and weak invariants are presented. In Sec. III,
a general discussion is made about the weak invariants
associated with quantum master equations including, in
particular, the Lindblad equation. In Sec. IV, which is the
main part of the present work, the quantum damped harmonic
oscillator with the time-dependent frequency and friction
coefficient is analyzed, in detail. There the weak invariant,
which generalizes the strong invariant of Lewis and Riesenfeld,
is explicitly constructed with the help of the Lie-algebraic
structure contained in the system. Section V is devoted to
concluding remarks.

II. DEFINITIONS OF STRONG AND WEAK INVARIANTS

Strong and weak invariants are defined as follows. A
strong invariant is a Hermitian operator whose eigenvalues
are all constant in time in terms of underlying quantum
dynamics. On the other hand, a weak invariant, Î (t), is a
Hermitian operator whose eigenvalues are not constant in time,
but its expectation value, 〈Î (t)〉 = tr[Î (t)ρ̂(t)], is conserved
under time evolution of a system density matrix ρ̂(t) of
an open system, the dynamics of which is nonunitary, in
general.

For later convenience, let us recall a couple of examples of
the strong invariants of the time-dependent quantum harmonic
oscillator, the Hamiltonian of which reads

Ĥ (t) = 1
2 p̂2 + 1

2ω2(t)x̂2, (1)

where x̂ and p̂ are the position and momentum operators in
the Schrödinger picture, ω (t) the time-dependent frequency,
and the mass is set equal to unity. The celebrated one of the
quadratic form of the position and momentum operators is the
Lewis-Riesenfeld invariant presented in Ref. [3]:

Î0(t) = 1

2

[
(ρ0p̂ − ρ̇0x̂)2 + x̂2

ρ2
0

]
, (2)

where ρ0 = ρ0(t) is a c-number quantity obeying the auxiliary
equation

ρ̈0 + ω2(t)ρ0 = 1

ρ3
0

, (3)

with the overdots standing for time derivatives. Then, Î0(t)
satisfies the following operator equation:

i
∂Î0(t)

∂t
− [Ĥ (t), Î0(t)] = 0, (4)

provided that here and hereafter � is set equal to unity. From
Eq. (4), we can find that the eigenvalues of Î0(t) are constant
in time (see the next section). The other example of the strong
invariant [4], which is linear in the position and momentum,
is Â(t) = εp̂ − ε̇x̂, where ε = ε(t) is a c-number quantity,
that satisfies the equation of the same form as Eq. (4); i.e.,
∂Â(t)/∂t − [Ĥ (t), Â(t)] = 0, if ε is a solution of the auxiliary
equation, ε̈ + ω2(t)ε = 0. Then, the eigenvalues of Â(t) are
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also constant in time. This invariant is analogous to the
Wronskian.

III. WEAK INVARIANT OF TIME-DEPENDENT
QUANTUM DISSIPATIVE SYSTEM

Consider a generic quantum open system whose Hamilto-
nian depends explicitly on time, Ĥ = Ĥ (t). Since a system
of our interest is dissipative, the dynamics governing it is
nonunitary, and therefore Ĥ (t) does not fully describe time
evolution of a quantum state of the system, in general. (It is
known that there are Hamiltonian approaches to dissipative
systems [5–7], but our viewpoint here is different from theirs.)
Let ρ̂ be a density matrix of a state of the system that is
a positive semidefinite operator satisfying the normalization
condition (i.e., trρ̂ = 1). Its time evolution may be written as
follows:

i
∂ρ̂

∂t
= £(ρ̂), (5)

where £ is a certain linear superoperator and may contain the
commutator with Ĥ (t). A quantity, Î (t), is a weak invariant
associated with Eq. (5), if it obeys

i
∂Î (t)

∂t
+ £∗[Î (t)] = 0, (6)

where £∗ is the adjoint of £. If Î (t) satisfies Eq. (6), then its
expectation value is, in fact, constant in time.

Let us assume that the dynamics governing the system
is Markovian and preserves the positive semidefiniteness of,
as well as the normalization condition on ρ̂. Then, Eq. (5)
necessarily takes the Lindblad form [1,2]:

i
∂ρ̂

∂t
= [Ĥ (t), ρ̂] − i

∑
n

αn(L̂†
nL̂nρ̂ + ρ̂L̂†

nL̂n − 2L̂nρ̂L̂†
n).

(7)

Here, αn’s are non-negative c-number coefficients and L̂n’s
are referred to as the Lindbladian operators that may also
depend on time. The Hamiltonian generates the unitary part
of time evolution, whereas the dissipative nature of the system
is described by the second term on the right-hand side. Then,
Eq. (6) becomes

i
∂Î (t)

∂t
− [Ĥ (t), Î (t)] − i

∑
n

αn[L̂†
nL̂nÎ (t) + Î (t)L̂†

nL̂n

− 2L̂†
nÎ (t)L̂n] = 0, (8)

which turned out to have been presented in Ref. [8].
In contrast to the unitary case, the eigenvalues of Î (t)

generically depend on time. To see it, let us consider the
instantaneous orthonormal eigenstates {|λn, t〉}n satisfying

Î (t)|λn, t〉 = λn(t)|λn, t〉. (9)

Then, from Eq. (8), it follows that

dλi(t)

dt
= 2

∑
n

αn(λi(t)〈λi, t |L̂†
nL̂n|λi, t〉

− 〈λi, t |L̂†
nÎ (t)L̂n|λi, t〉), (10)

which does not vanish, in general. Clearly, if the third term on
the left-hand side in Eq. (8) is absent, then the eigenvalues are
constant in time. Î (t) in such a case becomes reduced to the
strong invariant.

IV. WEAK INVARIANT OF QUANTUM DAMPED
HARMONIC OSCILLATOR

Let us discuss the weak invariant of the quantum damped
harmonic oscillator with the time-dependent frequency and
friction coefficient. The Hamiltonian to be considered is the
one in Eq. (1). Here, we rewrite it as follows:

Ĥ (t) = K̂1 + ω2(t)K̂2. (11)

Here, K̂1 and K̂2 together with K̂3 are the operators defined
by

K̂1 = 1
2 p̂2, K̂2 = 1

2 x̂2, K̂3 = 1
2 (p̂x̂ + x̂p̂). (12)

These operators satisfy the following set of commutation
relations:

[K̂1, K̂2] = − iK̂3, [K̂2, K̂3] = 2iK̂2, [K̂3, K̂1] = 2iK̂1,

(13)

which is formally isomorphic to the su(1,1) Lie algebra.
Let Q̂ be a certain observable in the Schrödinger picture.

From Eq. (7), time evolution of its expectation value is found
to be given by

d〈Q̂〉
dt

= i〈[Ĥ (t), Q̂]〉

−
∑

n

αn〈(L̂†
nL̂nQ̂ + Q̂L̂†

nL̂n − 2L̂nQ̂L̂†
n)〉.

(14)

Now, from Eq. (8) and the Lie-algebraic structure in the
Hamiltonian in Eq. (11), it turns out to be sufficient to employ
the following single Lindbladian operator:

L̂ ≡ L̂1 = a1(t)K̂1 + a2(t)K̂2 + a3(t)K̂3, (15)

where a(t)’s are real c-number functions of t , and therefore
L̂ is a time-dependent Hermitian operator. Thus the Lindblad
equation in Eq. (7) is simplified to be

i
∂ρ̂

∂t
= [Ĥ (t), ρ̂] − iα(t)[L̂, [L̂, ρ̂]], (16)

where α (t) ≡ α1(t) � 0. Accordingly, Eq. (8) for a weak
invariant becomes

i
∂Î (t)

∂t
− [Ĥ (t), Î (t)] − iα(t)[L̂, [L̂, Î (t)]] = 0. (17)

From the structure of the second term on the right-hand side
of Eq. (16), it is clear that one of the a(t)’s can be absorbed
into α(t). Here we may choose a1(t) to be so and set it as

a1(t) = 1, (18)

without losing generality.
Our idea is to realize the equation of motion of the damped

harmonic oscillator for the expectation values:

d2〈x̂〉
dt2

+ 2κ(t)
d〈x̂〉
dt

+ 	2(t)〈x̂〉 = 0, (19)
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where κ(t) and 	(t) are the time-dependent friction coefficient
and modulated frequency to be discussed later, respectively.
For Q̂ to be x̂ and p̂ in Eq. (14) with Eq. (15), we have

d〈x̂〉
dt

= 〈p̂〉 − κ(t)〈x̂〉, (20)

d〈p̂〉
dt

= −ω2(t)〈x̂〉 − κ(t)〈p̂〉, (21)

where

κ(t) = α(t)
[
a2(t) − a2

3(t)
]
. (22)

Therefore, we obtain Eq. (19) with

	2(t) = ω2(t) + κ2(t) + κ̇(t). (23)

One may require both κ(t) and 	2(t) to be non-negative. Since
α(t) � 0, the condition

a2(t) − a2
3(t) � 0 (24)

should be fulfilled, in order for κ(t) to be non-negative.

Here it is worth recalling the Lewis-Riesenfeld strong
invariant in Eq. (2) that corresponds to the case α(t) = 0. The
crucial point to be noted is that the time-dependent physical
coefficient, ω(t), does not explicitly appear in Eq. (2); it
shows up only in the auxiliary equation (3). We maintain
this feature in generalizing the Lewis-Riesenfeld invariant to
the dissipative dynamics. That is, the form of the invariant
should be kept unchanged but the auxiliary equation has to be
modified.

Let us write the weak invariant of the quantum damped
harmonic oscillator as follows:

Î (t) = ρ2K̂1 +
(

ρ̇2 + 1

ρ2

)
K̂2 − ρρ̇K̂3, (25)

where ρ = ρ(t) is a c-number quantity (which should not be
confused with the density matrix, ρ̂). This is, in fact, of the
same form as Eq. (2). This quantity has to satisfy Eq. (17).
Substituting Eqs. (11), (15), and (25) into Eq. (17), and using
the algebra in Eq. (13), we obtain the following coupled
equations:

κ(t)ρ2 − α(t)

[
a2

3ρ
2 + 2a3ρρ̇ +

(
ρ̇2 + 1

ρ2

)]
= 0, (26)

ρ̇

[
ρ̈ + ω2(t)ρ − 1

ρ3

]
+

{
α

[
a2

2ρ
2 + 2a2a3ρρ̇ + a2

3

(
ρ̇2 + 1

ρ2

)]
− κ(t)

(
ρ̇2 + 1

ρ2

)}
= 0, (27)

ρ

[
ρ̈ + ω2(t)ρ − 1

ρ3

]
− α

[
a2a3ρ

2 + 2a2ρρ̇ + a3

(
ρ̇2 + 1

ρ2

)]
= 0. (28)

Combining these equations with Eq. (22), we find

α = 4κ(t)ρ4

(ρρ̇)2 + 4
, (29)

a2 = ρ̇2

2ρ2
+ 1

ρ4
, (30)

a3 = − ρ̇

2ρ
, (31)

and the auxiliary equation

ρ̈ − κ(t)ρ̇ + ω2(t)ρ = 1

ρ3
. (32)

Therefore, the Lindbladian operator in Eq. (15) is fully
determined, and the weak invariant is given in the form in
Eq. (25) with the auxiliary equation being generalized from
Eq. (3) to Eq. (32), now. This is the main result of the present
work.

An intriguing point is that the signs of the friction terms in
Eqs. (19) and (32) are opposite. This time reversal structure
reminds one of the work in Ref. [9] (see also Ref. [7]), although
the present approach is radically different from it.

Finally, let us consider the situation that both κ(t) and ω(t)
slowly vary in time. In this case, Eq. (32) has the solution of

the following form:

ρ = 1

ω1/2(t)
− κ(t)

8ω7/2(t)
ω̇(t) − 1

16ω9/2(t)

×
{

3 − 7

4

[
κ(t)

ω(t)

]2
}

ω̇2(t) − κ(t)

32ω11/2(t)
κ̇(t)ω̇(t)

+ 1

8ω7/2(t)

{
1 − 1

4

[
κ(t)

ω(t)

]2
}

ω̈(t) + · · · . (33)

This expression systematically determines corrections to the
adiabatic approximation.

V. CONCLUDING REMARKS

We have defined the strong and weak invariants of time-
dependent quantum systems. We have studied the weak in-
variants of time-dependent quantum dissipative systems based
on the Lindblad equation. We have explicitly constructed the
weak invariant for the quantum damped harmonic oscillator,
whose frequency and friction coefficient depend on time. In
this way, we have generalized the Lewis-Riesenfeld strong
invariant to the case of the nonunitary dissipative dynamics.
We have also observed that an intriguing structure exists in
respect of the time reversal symmetry.
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The method of invariants in time-dependent quantum
systems without dissipations has found a variety of ap-
plications to constructions of the coherent and squeezed
states [10–13], geometric phases [14–16], fermionic sys-
tems [17], charged quantum fields in time-dependent external
electromagnetic fields [18], quantum fields in cosmological
backgrounds [19,20], quantum computation [21], and quantum
cosmology [22], to name but a few. It is also known in classical
theory without dissipations [23] (see also Ref. [24] for a
simplified explanation) that existence of such invariants can be
understood from the viewpoint of Noether’s theorem [25]. On
the other hand, dissipative systems do not have Lagrangians or
Hamiltonians, in general, unless spaces of dynamical variables
are extended. In Ref. [26], it is shown to be possible to
construct conserved quantities for classical non-Langrangian–
non-Hamiltonian systems (see also Refs. [27–30]). However,
quantization of such systems is unclear, and therefore a

connection between these discussions and the present work
is yet to be clarified.

Note added in proof. Recently we became aware of
Ref. [31], in which an invariant different from the one
presented here is discussed for the quantum damped harmonic
oscillator.
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