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Particle path through a nested Mach-Zehnder interferometer
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Possible paths of a photon passing through a nested Mach-Zehnder interferometer on its way to a detector
are analyzed using the consistent histories formulation of quantum mechanics, and confirmed using a set of
weak measurements (but not weak values). The results disagree with an analysis by Vaidman [Phys. Rev. A 87,
052104 (2013)], and agree with a conclusion reached by Li et al. [Phys. Rev. A 88, 046102 (2013)]. However,
the analysis casts serious doubt on the claim of Salih et al. (whose authorship includes Li et al.) [Phys. Rev.
Lett. 110, 170502 (2013)] to have constructed a protocol for counterfactual communication: a channel which can
transmit information even though it contains a negligible number of photons.
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I. INTRODUCTION

This article addresses the question of what one can say about
the path of a photon, hereafter called a “particle,” as it passes
through the nested Mach-Zehnder interferometer (MZI) shown
in Fig. 1 on its way to one of the three detectors. This setup is of
interest in and of itself because it raises a question that cannot
be answered by standard quantum mechanics as found in
standard textbooks: What is a microscopic quantum system ac-
tually doing prior to measurement by a macroscopic apparatus?
Research in quantum foundations has yet to supply any widely
accepted answer to the infamous measurement problem: Pro-
vide a consistent, fully quantum mechanical description of the
entire process that goes on in an actual physical measurement
of a microscopic system. Indeed, even the first measurement
problem, understanding how such a measurement can have a
well-defined outcome or pointer position, to use the archaic
but picturesque language of quantum foundations, rather than
a quantum superposition of different and macroscopically
distinct positions, has given rise to a long and inconclusive
discussion. The failure to settle this first problem has diverted
attention from the equally important second measurement
problem [1]: How to infer (or retrodict) the earlier microscopic
property, the one the apparatus was designed to measure,
from the final pointer position. Physicists who do experiments
frequently interpret the outcomes using realistic language,
such as “the detector was triggered by a fast muon traveling
from the region where the protons collided.” If quantum theory
cannot, at least in principle, make sense of language of this
sort, how can one claim that experiment has confirmed what
is often said to be a very successful physical theory?

In addition to its intrinsic interest, the gedanken experiment
of Fig. 1 is central to an ongoing disagreement between
Vaidman, who analyzed it in Ref. [2], and Li et al., who
reached a different conclusion in Ref. [3], to which Vaidman
replied in Ref. [4]. Around the same time Salih et al. [5]—the
authorship includes that of Ref. [3]—claimed to have invented
a quantum protocol capable of counterfactual communica-
tion: Messages can be sent from Bob to Alice through a
communication channel that contains a negligible number
of photons (particles), indeed zero in an ideal asymptotic
limit. This protocol is an extended and more complicated
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version of Fig. 1, with many successive beam splitters and
mirrors (or repeated passes through and reflections from a
small number of beam splitters and mirrors). The claim that
it achieves counterfactual communication was challenged by
Vaidman in Ref. [6], with a response by Salih et al. in Ref. [7].
For an extensive bibliography, including references to some
experiments, see Refs. [8,9].

The present paper discusses the gedanken experiment
in Fig. 1 using the consistent histories (CH), also known
as the decoherent histories, formulation of quantum theory,
which unlike standard quantum mechanics does not treat
measurement as an unanalyzable primitive concept, but instead
as an example of a quantum physical process governed by
exactly the same fundamental principles that apply to all
such processes. The CH approach is internally consistent
(does not lead to unresolvable paradoxes) and makes the
same predictions for macroscopic measurement outcomes,
using much the same mathematics, as do the textbooks. See
Sec. III below for further remarks and some references. In the
case of the nested MZI in Fig. 1 with particular reference
to a particle detected by D1, the CH study leads to the
result that previous analyses, while correct in certain respects,
have made assumptions which are not fully consistent with
quantum principles. Hence both the claim of counterfactual
communication and Vaidman’s criticism thereof have serious
deficiencies.

The structure of the remainder of this article is as follows:
Section II contains details of the nested MZI and the competing
claims about the path followed by a particle (photon) passing
through it on its way to the D1 detector. Possible paths
are analyzed in Sec. III using consistent histories, while
Sec. IV has additional remarks which may assist readers
unfamiliar with the histories approach. The results in Sec. III
are consistent with a study in Sec. V using weak measurements,
and are compared with Vaidman’s use of the two-state vector
formalism in Sec. VI. Section VII discusses what appears
to be a serious difficulty with the claim of counterfactual
communication. The conclusions are summarized in Sec. VIII.

II. NESTED MACH-ZEHNDER INTERFEROMETER

A. Interferometer and beam splitters

In the nested Mach-Zehnder interferometer (MZI) shown
in Fig. 1, a particle from a source channel S enters the outer
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MZI at beam splitter 1 and can pass through the lower arm
A, via a mirror, to beam splitter 4. However, the upper arm
of the outer MZI is interrupted by an inner MZI, whose arms
B and C, between beam splitters 2 and 3, connect the input
channels D and Q to the output channels E and H , with E

going on to beam splitter 4. The reflectivities and phases of
beam splitters 2 and 3 associated with the inner MZI are chosen
so that a particle entering through D will exit through H and
be detected by D3, rather than passing into E. The output
ports F and G of beam splitter 4 lead to detectors D1 and D2,

respectively. [The detectors are denoted by a different font and
labeled with superscripts to avoid any confusion with the D

channel and with the ket |D1〉 in (1).] The dashed lines in the
figure indicate possible locations of the particle at successive
times t0 < t1 < t2 < t3 < t4 on its journey from S at t0 to one
of the detectors.

Let Tkj be the unitary time transformation that maps a ket
at time tj to its counterpart at tk . Here is a suitable collection
of unitaries (the choice is not unique); Tj,j−1 represents the
action of beam splitter j in Fig. 1:

T10 : |S0〉 → α|A1〉 + β|D1〉, |R0〉 → −β|A1〉 + α|D1〉, |Q0〉 → |Q1〉;
T21 : |A1〉 → |A2〉, |D1〉 → r|B2〉 + r|C2〉, |Q1〉 → r|B2〉 − r|C2〉;
T32 : |A2〉 → |A3〉, |B2〉 → −r|E3〉 + r|H3〉, |C2〉 → r|E3〉 + r|H3〉;
T43 : |A3〉 → α|F4〉 + β|G4〉, |E3〉 → β|F4〉 − α|G4〉, |H3〉 → |H4〉. (1)

The coefficients are real numbers:

0 < α,β < 1, with α2 + β2 = 1; r := 1/
√

2. (2)

The unitaries for larger time steps can be obtained using Tlj =
TlkTkj , and for inverse time steps using Tjk = T

†
kj . One should

think of kets such as |A1〉 or |B2〉 as normalized wave packets
located in the corresponding channels near the points where
the dashed time lines cross the straight lines indicating the
channels, and mutually orthogonal since they are far apart. In
all there are fifteen of these kets in (1). While in principle
each Tj,j−1 should tell what happens to every one of them, (1)
supplies all the information about unitary time development
that is needed for the present discussion. We are only interested
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FIG. 1. Nested Mach-Zehnder interferometer (MZI). The tilted
solid lines are beam splitters numbered 1, 2, 3, 4; the double tilted
lines are mirrors; the semicircles are detectors. The horizontal and
vertical lines indicate different channels which are possible particle
(photon) paths. The reflectivities and phases of beam splitters 2 and
3 associated with the inner MZI are chosen so that a particle entering
through D will exit through H and be detected by D3, rather than
passing into E. The intersections of the dashed lines with the particle
paths indicate possible locations of the particle at the successive times
t0 < t1 < t2 < t3 < t4.

in the situation in which the particle starts off in |S0〉 at t0, and
is in either |A1〉 or |D1〉 at time t1, etc.

B. Where was the particle?

Suppose a particle that enters the outer MZI from S is
later detected by D1. Where was it at earlier times t1, t2,
and t3, when it was still inside the interferometer? Readers
are invited to work out their own answers before considering
those discussed below. Here is the succession of states |ψj 〉 =
Tj0|ψ0〉 obtained by unitary time evolution using the transition
amplitudes in (1), starting with |ψ0〉 = |S0〉:
|ψ1〉 = α|A1〉+β|D1〉, |ψ2〉 = α|A2〉+rβ( |B2〉 + |C2〉),
|ψ3〉 = α|A3〉+β|H3〉, |ψ4〉 = α2|F4〉+αβ|G4〉+β|H4〉,

(3)

where |ψj 〉 corresponds to the time tj in Fig. 1.
Li et al. in Ref. [3] (and Salih et al. in Refs. [5,7]) assert

that if D1 is triggered, then the particle was in channel F at t4
and in channel A at the earlier times t1, t2, and t3. In Sec. III
we will show that this is, in a sense which will be made clear,
a correct answer. However, contrary to the claim in Ref. [7],
it is not a consequence of “standard quantum mechanics,” if
by that one means what is found in standard textbooks. A
student taking the final examination in Quantum 101 knows
only that the quantum wave function develops unitarily in time
until a measurement is made, leading to a mysterious collapse.
And since at none of the times after t0 and before the final
measurement (at time t5) is |ψj 〉 confined to a single channel,
the question of the particle’s location cannot be answered using
the textbook approach.

In practice, using quantum mechanics often requires going
beyond, and sometimes forgetting, what is taught in textbooks,
especially if one wants to take the talk of experimentalists
seriously. Standard quantum mechanics as applied to the
situation under discussion is best thought of as a series of
rules for calculating the probabilities of certain macroscopic
measurement outcomes given an earlier preparation, with

032115-2



PARTICLE PATH THROUGH A NESTED MACH-ZEHNDER . . . PHYSICAL REVIEW A 94, 032115 (2016)

|ψ(t)〉 at intermediate times a useful calculational tool, but
otherwise not interpreted. This is a “black box” approach in
that we (think we) understand preparations and measurements,
while what goes on in between, inside the black box, is best
not discussed. Those who dare open the box to try and figure
out what is happening inside it risk going insane.1 But if we
are to assess the claims and counterclaims mentioned in Sec. I
we must open the box.

One line of reasoning which sounds plausible and will lead
to the conclusion given in Ref. [3] can be worded as follows.
The particle after it passed through beam splitter 1 was either
in arm A or in arm D. If it was in arm D, then because of
the action of beam splitters 2 and 3 we know that it would
have emerged in H , not in E. Had it emerged in H , then D3

would have detected it, but since it was detected by D1 it was
not detected by D3. Thus at t1 the particle was surely not in
channel D, and hence it must have been in A, and as there
is no way the particle could escape from A before reaching
beam splitter 4, it must have been in A at the times t1, t2,
and t3.

Such reasoning has, as we shall see, arrived at a correct
conclusion, but by a precarious route that is not altogether
convincing. To begin with, what justifies treating α|A〉 + β|D〉
as “the particle was either in A or it was in D”? Interpreting
superpositions in this way is hazardous, and fails badly
when applied to the double-slit paradox. Next come some
“if . . . then” counterfactuals,2 and counterfactual reasoning
in a quantum context has many pitfalls; see, for example, the
exchange in Refs. [11,12].

So one can understand why Vaidman [6] dismisses ar-
guments of this sort as “a naive classical approach.” His
own analysis in Ref. [2] reaches a different conclusion
through employing the two-state vector formalism (TSVF)
[13,14], plus some consideration given to weak and strong
nondestructive measurements. Let us begin with the TSVF;
weak measurements will be discussed in Sec. V B. Along
with the usual “forwards” wave advancing unitarily in time
from an earlier preparation, the |ψj 〉 in (3), the TSVF employs
a wave moving “backwards” from a later measurement or,
to be more precise, a property revealed by a later measure-
ment. In the case at hand the later measurement result is
detection by D1, the corresponding property is |F 〉, and one
defines

|φj 〉 = Tj4|F4〉, or 〈φj | = 〈F4|T4j ; (4)

i.e., take the state |F 〉 and run it backwards through the beam
splitters in Fig. 1. Since TSVF discussions generally use 〈φj |,
we present the backward wave in this form:

〈φ1| = α〈A1| + β〈Q1|, 〈φ2| = α〈A2| + rβ(−〈B2| + 〈C2|),
〈φ3| = α〈A3| + β〈E3|, 〈φ4| = 〈F4|. (5)

Here the subscripts are time labels that correspond to those
in (3).

1A paraphrase of Feynman, p. 129 of Ref. [10].
2Not to be confused with “counterfactual” as used in “counterfactual

communication”.

Given the two state vectors, the bra-ket pair 〈φj ||ψj 〉,
Vaidman invokes a phenomenological principle which says
that at an intermediate time tj the particle can be said to
be present in some channel provided the amplitude for that
channel in both 〈φj | and |ψj 〉 is nonzero; in particular this
will produce what Vaidman (Sec. III of Ref. [2]) calls a “weak
trace” in the channel. Applying this principle to (3) and (5),
one concludes that at t3 the particle was in A: |A3〉 is present
in |ψ3〉 and 〈A3| in 〈φ3|. But it was not in E: Although 〈E3|
is present in 〈φ3|, |E3〉 is absent from |ψ3〉. Similarly, at t1
the particle was in A but not in D. However, at t2 the particle
was present in both B and C as well as A, in disagreement
with the claim in Ref. [3] that the particle was in A and not
elsewhere. Vaidman admits that his result seems a bit odd, as
it is hard to imagine how a particle could suddenly appear in B

and C in the inner MZI when it was not present in channel D

connecting S to the inner MZI and then, equally mysterious,
suddenly disappear so as to be absent from both E and H .
As we shall see in Sec. VI, the TSVF approach interpreted in
this way will sometimes give reasonable results, but can also
mislead.

III. CONSISTENT HISTORIES ANALYSIS

A. Introduction

Standard quantum mechanics as found in textbooks is far
from a complete theory, and its rules do not cover situations
which precede measurements, such as the one considered here.
The consistent histories (CH) formalism is a systematic and
consistent extension of textbook quantum mechanics. It gives
the same results as the textbooks in the domain where the
textbook rules can be properly applied, but in addition allows a
paradox-free discussion of microscopic properties and events,
such as those taking place in the nested MZI, for which
textbooks provide little guidance. The CH approach, also
known as decoherent histories, was developed to some degree
independently by various researchers; some representative
references are Refs. [15–17]. Short introductions will be
found in Refs. [18,19], an application to Bohm’s version
of Einstein-Podolsky-Rosen in Ref. [20], and a discussion
of how it relates to various quantum conceptual difficulties
in Ref. [21]. A reasonably complete, albeit lengthy, treat-
ment in Ref. [22] provides the basis for the material that
follows.

The basic principles of the CH approach are quantum
properties as defined by von Neumann, unitary time devel-
opment using the Schrödinger equation, stochastic dynamics
using the Born rule and its extensions, and quantum histories.
Measurements are not included in this list, for in the CH
approach measurements (see Sec. V below) are simply
particular examples of quantum processes, all of which can
analyzed using basic principles that make no reference to
measurements. How these principles permit a detailed and
consistent analysis of the nested MZI “which path” problem
will be evident from the following discussion.

B. Quantum properties and sample spaces

According to von Neumann, Sec. III.5 of Ref. [23], a
property of a quantum system at a particular time is represented
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by a subspace of the quantum Hilbert space, or, equivalently,
the projector P (orthogonal projection operator) onto this
subspace.3 Here “property” is used in a restricted sense to
mean a physical attribute (a proposition) which can be true
or false; thus “energy” is not a property, but “the energy is
ε0” or “the energy is less that ε1” are examples of properties.
The negation of a property, e.g., “the energy is greater than
or equal ε1” for the case just mentioned, is also a property.
In classical physics a property in the sense used here always
corresponds to a point or a set of points in the classical phase
space, and its negation to all the points not in this set. Given
two properties P and Q, the combinations “P AND Q” and
“P OR Q” correspond to the intersection and union of the two
sets of points. If the sets corresponding to P and Q do not
overlap, so the intersection is empty, “P AND Q” is the empty
set, the property which is always false, and whose negation,
“NOT P ” or “NOT Q,” corresponds to the whole phase space,
the property that is always true.

In quantum mechanics the negation of a property P

(following von Neumann) is the orthogonal complement of
its subspace, with projector P̃ = I − P , where I is the
identity operator. However, “P AND Q” and “P OR Q”
only have a simple definition in the case in which the
projectors commute, PQ = QP , and then PQ is the projector
representing “P AND Q,” and P + Q − PQ is the projector
representing (nonexclusive) “P OR Q.” The headaches of
quantum interpretation are all closely linked with the question
of what to do when P and Q do not commute. There are
various approaches. The first, quantum logic [24], assigns a
meaning to “P AND Q” using the intersection of the subspaces,
whether or not the projectors commute. However, quantum
logic, as the name suggests, necessitates a change in the
rules of reasoning in a fundamental way, and physicists have
not yet had much success in making sense of the quantum
world using the new rules; perhaps our intellectual children or
grandchildren will do better. (See Sec. 4.6 of Ref. [22] for a
very simple example showing why new rules are necessary.)
A second approach is to replace or augment the Hilbert space
with classical hidden variables which do not suffer from
noncommutation troubles. However, the predictions of hidden
variables theories often differ from those of Hilbert space
quantum mechanics, and when these difference are tested
by experiment, the hidden variables approach always loses,
so it seems unlikely that this approach will prove useful in
solving quantum mysteries. A third approach, employed by
CH, limits discussions to cases where projectors commute:
the conjunction “P AND Q” is only defined if PQ = QP , in
which case PQ is the projector that represents the conjunction;
but if PQ �= QP , “P AND Q” is undefined, “meaningless” in
the sense that this interpretation of quantum mechanics cannot
assign it a meaning. Similarly, “P OR Q” only makes sense
when PQ = QP . The CH approach retains the ordinary rules
of reasoning provided their application is suitably restricted
to a single domain or “framework,” examples of which are
given below. A fourth approach is to go ahead and reason or

3A finite-dimensional Hilbert space will be adequate for our
discussion, so the additional requirement that the subspace be closed
is not needed.

calculate while ignoring, or at least paying little attention to,
the noncommutation problem. A substantial body of quantum
foundations literature is devoted to discussing the resulting
paradoxes.

To make the discussion less abstract, consider the case of
a two-state system, a spin-half particle for which Sz, the z

component of angular momentum, can take the values of +1/2
or −1/2 in units of �. Let the projectors for the corresponding
eigenstates be z+ = |z+〉〈z+| and z−. They commute, since
their product (in either order) is the zero operator, the quantum
property that is always false, and their sum is I , the property
that is always true, so they constitute a quantum sample
space or framework; call it the Z framework. Similarly, the
projectors x+ and x− on the eigenstates of Sx constitute the X

framework. The X and Z frameworks are incompatible in that
the projectors in one do not commute with the projectors in the
other, and the CH single framework rule prohibits combining
them: “Sz = +1/2 AND Sx = +1/2” is meaningless, as is
“Sz = +1/2 OR Sx = +1/2.” This is consistent with the fact
that Sz can be measured, and Sx can be measured, but, as the
textbooks tell us, they cannot be measured simultaneously.
The simple explanation for the textbook rule is that these
combinations of Sz and Sx properties do not correspond to
Hilbert subspaces, so no quantum property exists which could
be revealed by a simultaneous measurement.

Standard (Kolmogorov) probability theory makes use of
a sample space of mutually exclusive possibilities, one and
only one of which can occur, be true, in any given situation.
A quantum sample space is a projective decomposition of the
identity (PDI), a collection of mutually orthogonal projectors
which sum to the identity. In the simplest situation each of
the projectors has rank one: It projects onto a one-dimensional
subspace (“ray”) in the Hilbert space, and the sample space
corresponds to an orthogonal basis of the Hilbert space. The X

and Z frameworks defined above are PDIs and thus quantum
sample spaces. Two sample spaces (PDIs) P and Q are
compatible if every projector in one commutes with every
projector in the other; otherwise they are incompatible (as in
the case of X and Z defined earlier). When compatible, P
and Q possess a common refinement made up of all distinct
nonzero products of projectors from P with projectors from
Q, which is a PDI and thus a sample space. The single
framework rule requires that logical or probabilistic arguments
be based on a single sample space; in particular one cannot
use one sample space for part of an argument and then shift to
another, incompatible sample space for another part, because
this leads to paradoxes, such as those discussed in Ch. 22
of Ref. [22].

A crucial difference between ordinary (classical) applica-
tions of probability theory and its use in quantum mechanics
is that in the latter there are often a variety of possible sample
spaces which can be used to model a physical process, and
whereas in some cases there is an “obvious” choice, in other
cases the choice is far from obvious. Sometimes alternative
choices of sample space are useful for different reasons, but
there is no way of combining them; they are incompatible.
The CH approach meets this diversity by noting that it is
there, acknowledging that it is sometimes valuable to have
two or more perspectives on a physical problem, and then
insists on a strict enforcement of the single framework rule
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that prevents this diversity from leading to paradoxes. Because
of the possibility of employing different frameworks it is
important to be clear about which framework is being used in
a particular discussion. Often this is evident from the context,
but sometimes it is not, and then making the choice explicit
can be helpful in order to avoid contradictions and paradoxes.
Further comments on choosing frameworks will be found in
Sec. IV B, but first let us look at some examples.

C. Histories and consistency

The sample space of a classical stochastic process, such
as a random walk or successive flips of a coin, consists of
histories: sequences of properties at successive times. For
example, flipping a coin three times in a row can give rise to
eight different histories, HHH, HHT, HTH, etc. (H for heads
and T for tails). In quantum mechanics a history consists of a
sequence of quantum properties, thus a sequence of projectors,
at successive times. We will be considering histories for the
MZI in Fig. 1, and in particular looking at projectors which
in some way identify the location of the particle in different
channels at successive times. Capital letters A = |A〉〈A|, B,
etc., denote projectors for these channels, and subscripts
indicate times, as in (1). For example, the history

S0 � A2 � F4 = S0 � I1 � A2 � I3 � F4 (6)

says that the particle started in channel S at t0, was in the A

channel at t2, and was in the F channel at t4. The forms on the
left and right sides are equivalent, because the identity operator
I provides no information about the particle at the times t1
and t3. (One can interpret I3 as either the identity on the full
Hilbert space spanned by 15 kets, or simply A3 + E3 + H3,
the possibilities for the particle at t3; for our purposes these
are equivalent.)

The � symbol in (6) is a variant of ⊗ and is used to indicate
a tensor product: The history is represented as a tensor product
of projectors on a history Hilbert space

H̆ = H � H � · · ·H (7)

constructed using copies of the Hilbert space H that describes
the system at a single time. A sample space or family of
quantum histories is a collection of projectors on H̆ which
sum to the identity Ĭ , thus a PDI. For example, the history (6)
is a member of a family of four histories:

S0 � A2 � F4, S0 � Ã2 � F4,

S0 � I2 � F̃4, S̃0 � I2 � I4. (8)

A tilde over a letter indicates negation, thus Ã2 = I2 − A2 =
B2 + C2, and S̃0 = I0 − S0. Employing the usual rules for
adding tensor products of operators, the reader can easily check
that the projectors in (8) sum to Ĭ = I0 � I2 � I4, which means
the same thing as I0 � I1 � I2 � I3 � I4 when all five times
are in view. (Once again, replacing each Ij with the identity
on the full Hilbert space of all 15 kets that appear in (1) would
make no difference in our discussion.)

We shall only be interested in cases in which the particle
is in S at t0, and therefore we shall omit the fourth history in
(8) from the discussion which follows, which is equivalent to
assigning it zero probability. The three histories that remain
can be assigned probabilities using the extended Born rule,

which, because they all begin with a pure state S0, is most
easily discussed using chain kets, Sec. 11.6 of Ref. [22]:

|S0,A2,F4〉 : = F4 T4,2 A2 T2,0 |S0〉 = α2|F4〉,
|S0,Ã2,F4〉 = 0, |S0,I2,F̃4〉 = β|H4〉 + αβ|G4〉. (9)

Here the chain ket |S0,A2,F4〉 is obtained by applying to |S0〉
the sequence of unitary operators and projectors, T2,0, A2,
T4,2, and F4, the same order as the events in the history (but
from right to left). The other chain kets in (9) are obtained by
the same procedure. Note that chain kets are elements of the
single-time Hilbert space H, not the history Hilbert space H̆.

A family of histories is said to be consistent if any two
chain kets associated with distinct histories in this family are
orthogonal to each other. For a consistent family the probability
assigned to each history by the extended Born rule—to be
precise, the probability conditioned on the initial state S0—is
the square of the norm of its chain ket, the inner product of
the chain ket with itself. The orthogonality just mentioned is
referred to as a consistency condition. If it is not satisfied the
history family is said to be inconsistent, and no probabilities
can be assigned to the corresponding histories. This means
that an inconsistent family cannot be used in a probabilistic
description of a quantum system; it is “meaningless” (lacks a
meaning) within the CH formulation. (But see the additional
comments in Sec. IV C.)

From (9) it follows that the family in (8), with the final S̃0

history omitted, is consistent. The corresponding probabilities
conditioned on S0 are

Pr(A2,F4 | S0) = α4, Pr(Ã2,F4 | S0) = 0,

Pr(I2,F̃4 | S0) = β2 + α2β2, (10)

and in view of (2) they sum to 1. It then follows that

Pr(F4 | S0) = Pr(A2,F4 | S0) + Pr(Ã2,F4 | S0) = α4,

Pr(A2,F4 | S0)/ Pr(F4 | S0) = Pr(A2 | F4,S0) = 1. (11)

The last equality means that if the particle was in S at t0 and
arrived in F at time t4 it was in channel A at the intermediate
time t2.

D. History families using refinements

The family of three histories

S0 � {F4,G4,H4}, (12)

using a compact notation, involves only two times (or
identity operators at the intermediate times), and is obviously
consistent since the chain kets end in three mutually orthogonal
states, so the extended Born rule reduces to the usual Born rule.
A possible strategy for constructing consistent families is to
take each of the histories in (12) and refine it by replacing
I at some intermediate times with sums of two or more
projectors, and then testing whether the result is consistent.
We shall consider refinements of the subfamily S0 � F4, but
the same techniques can be applied to the other subfamilies
S0 � G4 and S0 � H4. Each subfamily can be refined, and
its consistency checked, without regard to refinements of the
other subfamilies; in particular, events at an intermediate time
in one subfamily can be independent of those in a different
subfamily. If a refinement yields an inconsistent (sub)family,
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further refinement will not restore consistency; one should try
some other possibility.

We have already seen that the family (8) is consistent, which
means that the (sub)family consisting of the first two of its
histories,

FA : S0 � {A2,Ã2} � F4 = S0 � {A2,B2 + C2} � F4, (13)

a refinement of S0 � F4, is also consistent. This family can be
further refined by adding events at times t1 and t3 to a family

F ′
A : S0 � {A1,D1,Q1} � {A2,B2 + C2}
�{A3,E3,H3} � F4, (14)

of 3 × 2 × 3 = 18 histories. However, the chain kets for all of
them vanish, with the sole exception of the history

S0 � A1 � A2 � A3 � F4. (15)

Consequently,

Pr(A1,A2,A3 | S0,F4) = 1, (16)

which is to say that the particle which entered the nested MZI
through S and left it through F was in the A channel the entire
time it was inside the interferometer. Also it was not in D1 or
Q1 at time t1, nor was it in E3 or H3 at time t3. The situation
at t2 is less clear, and will be discussed further below.

A different refinement of S0 � F4 yields the family

FB : S0 � {B2,B̃2} � F4 = S0 � {B2,A2 + C2} � F4. (17)

It is inconsistent, since the chain kets

|S0,B2,F4〉 = −(β2/2)|F4〉,
|S0,B̃2,F4〉 = (α2 + β2/2)|F4〉, (18)

are obviously not orthogonal, at least when α and β are
both positive, as assumed in (2). Hence further refining it,
by replacing A2 + C2 with the pair {A2,B2}, will lead to an
inconsistent family of three histories

FABC : S0 � {A2,B2,C2} � F4. (19)

The inconsistent FABC can also be obtained from the
consistent FA in (13) by replacing Ã2 = B2 + C2 with the
pair {B2,C2}. Why should this make a difference? Here we
encounter a very important conceptual difference between
quantum and classical physics. If projectors B and C commute,
the quantum counterpart of OR in the sense of “B or C or
both” is the projector B + C − BC, and if, as in the present
instance, BC = 0, the projector B + C. But a Hilbert subspace
B + C contains linear combinations such as 0.8|B〉 − 0.6|C〉
which belong to neither the B nor the C subspace. In the
classical world if something is “B or C,” assuming B and
C are mutually exclusive, we know at once that it is either
B or else it is C. In the quantum world this is true provided
one is using a framework that contains B and C as separate
projectors, but not if one is using the coarser description in
which only B + C appears, not B and C separately. The sample
spaces {A,B + C} and {A,B,C} are not the same, and it is
important to pay attention to which of these is in use. Some
additional discussion of this very important point will be found
in Sec. IV A.

Yet another refinement of S0 � F4 is

FC : S0 � {C2,C̃2} � F4 = S0 � {C2,A2 + B2} � F4, (20)

with chain kets

|S0,C2,F4〉 = (β2/2)|F4〉, |S0,C̃2,F4〉 = (α2 − β2/2)|F4〉.
(21)

Thus FC will be inconsistent apart from the special case

α =
√

1/3, β =
√

2/3, (22)

for which the second chain ket in (21) is zero, allowing one to
assign probabilities

Pr(F4 | S0) = Pr(C2,F4 | S0) = β4/4 = 1/9,

Pr(C2 | S0,F4) = 1, (23)

But does not the result Pr(C2 | S0,F4) = 1 in (23), given
the choice of coefficients in (22), contradict the earlier result
Pr(A2 | S0,F4) = 1 in (11)? Can a particle emerging in channel
F at time t4 have been with probability 1 in both channel A

and in channel C at t2? Is this not a contradiction? No, for in
the CH approach results obtained in two separate frameworks
cannot be combined unless the frameworks themselves can
be combined (once again the single framework rule). All the
projectors for histories in FA commute with those in FC , so
there is a common refinement, FABC in (19). But this common
refinement is an inconsistent family, even for the special choice
of parameters (22) for which FC is consistent. Hence FA

and FC are incompatible, or incommensurate if one wants a
separate term for the situation in which the inability to combine
families arises from a failure of the consistency conditions, and
thus the inability to assign probabilities, rather than the fact
that the history projectors do not commute. The situation just
discussed is an instance of the three-box paradox of Aharonov
and Vaidman [25]; see Sec. 22.5 of Ref. [22] for a discussion of
how the CH approach resolves (or “tames”) this paradox. The
three-box paradox has certain features in common with the
Bell-Kochen-Specker paradox [26], some versions of which
are considered in Ch. 22 of Ref. [22].

IV. ADDITIONAL REMARKS

The previous discussion has employed some features of
stochastic quantum time development using histories which
call for a different type of thinking than is common in
classical physics, and the following comments may be helpful
in indicating how the CH approach avoids paradoxes and
comes to reliable and noncontradictory conclusions about
microscopic quantum events.

A. B + C vs {B,C}
The distinction between the sum B + C of two projectors

and the projectors B and C considered as exclusive properties
when BC = 0 was noted following (19), and can be illustrated
using the well-known double-slit experiment. A particle
in an initial state |S〉 travels towards the slit system and
passes through it at an intermediate time before reaching
the interference zone. Let B and C be projectors on two
nonoverlapping regions of space, one containing the upper
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slit and one the lower slit, such that as it passes through
the slit system the particle wave packet is in the combined
region corresponding to the projector J = B + C. Let F be a
projector on a region of destructive interference. A family

S � {J,J̃ } � {F,F̃ } (24)

with four histories will be consistent, whereas refining it by
replacing {J,J̃ } at the intermediate time with {B,C,J̃ } will
result in an inconsistent family. The projector J = B + C is
noncommittal: “the particle passed through the slit system, but
I tell you no more,” and is compatible with later interference,
whereas B, “the particle passed through the upper slit,” and
C, “it passed through the lower slit,” are not. Feynman in Ch.
1 of Ref. [27], with his superb physical intuition, knew that
when discussing interference one should not try and identify
which slit the particle passed through. One can think of the
CH rule that excludes inconsistent families as a mathematical
formulation of this intuition, allowing it to be applied not
only to the double slit (for which see Ch. 13 in Ref. [22]),
but to many other situations as well, and used by those of us
whose physical intuition falls somewhat short of Feynman’s.
Indeed, if one thinks of the B and C arms of the inner MZI
in Fig. 1 as analogous to two slits, it is easy to understand
why specifying them as exclusive alternatives can give rise to
conceptual difficulties, as well as peculiar effects when using
weak measurements, as discussed below in Sec. V B.

Yet another example is to think of B and C as projectors on
the ground state and first excited state of a quantum harmonic
oscillator. Then both B and C correspond to states of well-
defined energies, and “B OR C” could be taken to mean that
the oscillator has one energy or the other. On the other hand,
the subspace on which B + C projects includes states which
oscillate in time and do not have a well-defined energy.

B. Multiple frameworks

In quantum mechanics, unlike classical physics, there are
often several distinct ways to describe a physical system and
its time evolution, each of which is an acceptable application
of quantum principles, but because of incompatibility they
cannot be combined to form a single description. Which
framework to use will be determined by the type of question
one wants to address, and the single framework rule of CH
helps guide this choice so as to achieve reliable results rather
than inconsistencies and paradoxes. The single framework
rule does not prohibit constructing multiple frameworks; what
it forbids is combining incompatible frameworks to form a
single description. Because there are multiple possibilities, it
is important to be clear about which framework is being used
in a particular discussion, something that may or may not
be obvious from the context. Note that the choice of which
framework to use is made by the physicist who is applying
quantum principles to a particular situation; it is not determined
by some law of nature. In this respect it is analogous to the
choice of a convenient coordinate system in classical physics
with, however, the disanalogy that in classical physics all the
information represented in a particular coordinate system can
be transformed to a different coordinate system in a one-to-one
fashion. By contrast, the information present in, say, the X

framework of a spin-half particle is entirely different from that
in the incompatible Z framework.

As an example, with reference to Fig. 1 we have been
assuming, in agreement with previous literature, that a particle
detected in D1 was at time t4 in channel F . This is not the only
possibility: The framework of unitary time development that
students learn in Quantum 101 employs a projector [ψ4] =
|ψ4〉〈ψ4|, where |ψ4〉 = T40|S0〉 is defined in (3). This unitary
framework is a perfectly acceptable quantum description; there
is nothing wrong with it. But it cannot be used to discuss which
channel the particle was in at t4 because [ψ4] does not commute
with F4, G4, or H4. The CH approach allows an alternative
framework in which at a time just before the measurements
take place the particle is in one of the channels leading to the
detectors in Fig. 1, and in addition (see Sec. V A) it justifies
the inference from detection by D1 to the particle’s having
been in F at t4, something which cannot be done using the
textbook approach. So it should come as no surprise that the
family S0 � F4 can itself be refined in various different ways.
For example, the family

S0 � {[φ2],I2 − [φ2]},F4, (25)

where [φ2] = |φ2〉〈φ2| is the projector corresponding to the the
backward wave 〈φ2| defined in (5), is a possible refinement of
S0 � F4; we leave it as an exercise to show that it is consistent.
Of course it is useless for addressing the question of whether
the particle is or is not in the A channel at t2; for that purpose
one needs to use FA. Also, as noted in Sec. III D, both FA and
FC are consistent, but mutually incompatible, families for the
choice of parameters in (22); the first is useful for deciding
whether the particle was or was not in A, but cannot be used
to discuss whether it was in C; the second can address the
question of whether or not it was in C, but can say nothing
about A.

Given this liberty in choosing families, one can ask
whether this might not give rise to contradictions: different
families assigning different probabilities to some event at an
intermediate time, say A2. However, as long as probabilities
are conditioned on the same set of events, e.g., S0 and F4,
the (conditional) probability for an event at an intermediate
time will be independent of the consistent family to which
it belongs; see the discussion in Ch. 16 of Ref. [22]. For
example, given S0 and F4, the probability is zero that the
particle was in E at time t3. This can be shown using the
family S0 � {E3,Ẽ3} � F4 (or by calculating the weak value
of E3 at time t3 using the method indicated in Sec. VI), and
the answer is the same if FA is refined by replacing I3 with
{E3,Ẽ3}. But if E was empty at time t3, how is it possible
(see Fig. 1) for a particle arriving in F at t4 to get there
from C at t2, as must have been the case according to family
FC? The answer is that refining FC by replacing I3 with
{E3,Ẽ3} makes it inconsistent, and thus when using FC it
is meaningless to ask whether the particle was in channel E

at time t3. Once again it is the single framework rule, whose
central role in CH cannot be overemphasized, that prevents
combining incompatible families to arrive at a contradiction.
The quantum world is indeed weird from the point of view of
classical physics, which is all the more reason why it must be
analyzed using conceptual and mathematical tools that do not
lead to contradictions and unresolved paradoxes.

032115-7



ROBERT B. GRIFFITHS PHYSICAL REVIEW A 94, 032115 (2016)

As an example of multiple incompatible frameworks in a
different context, consider an experiment in which a nucleus
decays by emitting an α particle in an S wave (spherical
symmetry), which is then detected some distance away. The
experimenter will think of the particle as traveling along an
almost straight path from the source to the detector, and the
projectors appropriate to this description, corresponding to
wave packets with a relatively narrow angular spread, do not
commute with those that represent a spherical wave, so the two
descriptions cannot be combined. In the CH approach both the
spherical wave and the narrow wave packet constitute perfectly
acceptable quantum descriptions, and one or the other may be
more useful for certain purposes.

The notion of multiple possible descriptions of the same
experiment, of a sort that cannot be combined with each other,
is very different from what one encounters in classical physics,
so it may be helpful to try and identify the point at which
classical intuition fails. In the world of everyday experience,
where a classical approximation to quantum theory is adequate
for all practical purposes, we tend to believe that at any instant
of time there is a unique state of the world that is true or
actual or real, even though no one knows what it is. This
belief, elsewhere referred to as unicity (Sec. 27.3 of Ref. [22]),
has a mathematical counterpart in the phase space of classical
mechanics, where the state of a mechanical system at a given
time is represented by one and only one point in the classical
phase space. All properties (collections of points) that contain
this point are true, while those that do not contain it are false.
A Hilbert space is somewhat analogous to a classical phase
space, and its one-dimensional subspaces, or rays, are analogs
of the individual points in the phase space. But unlike two
distinct points in the phase space, two different rays do not
represent mutually exclusive physical properties unless they
are orthogonal to each other. To put the matter differently, if
one thinks of a single ray as representing the “real” state of
the quantum world, and that all subspaces that contain it are
true, while those orthogonal to it are false, this leaves many
subspaces that belong to neither category, and thus are neither
true nor false. Hence if the real world is best described using a
quantum Hilbert space and its subspaces, rather than a classical
phase space, unicity does not correspond to physical reality.

C. Dynamics and consistency

It is worth noting that consistency depends not just on the
history projectors, but also on the unitary dynamics, the Tkj ,
used to compute the chain kets. A family which is inconsistent
for a particular unitary dynamics may be consistent for a
different dynamics. Thus FC in (20) is in general inconsistent,
but for the special choice of α and β in (22) it is consistent.
A more drastic change in the dynamics would be to eliminate
beam splitters 3 and 4 in Fig. 1, in which case the family

S0 � {A2,B2,C2} � {F4,G4,H4} (26)

will be consistent, in contrast to the inconsistent family FABC

in (19). Since the particle only encounters beam splitters 3 and
4 after t2, one might be tempted to suppose that the future
is somehow influencing the past. But the change is in what
can inferred about past properties, the particle’s location at t2,
from later measurement outcomes, and it is not unreasonable

to suppose that altering the unitary time evolution connecting
the two will make a difference.

There are many other examples. An inconsistent family
for an isolated system may become consistent if that system
interacts with an environment. Decoherence can have this
effect, and so can subjecting a system to external measure-
ments. In the CH approach measurements must themselves be
described, at least in principle, using quantum mechanics, so
what can be consistently said about a system in the presence
of a measurement may or may not be possible when there is no
measurement. See the discussion in the paragraph following
(35) in Sec. V B for a particular example.

V. MEASUREMENTS

A. Introduction

A quantum measurement is a process by which information
about some microscopic property or behavior of the system
of interest is amplified so that it can be represented through
distinctive macroscopic properties of a measuring device,
“pointer positions” in the archaic but picturesque language
of quantum foundations. In textbook quantum mechanics
students learn how to calculate a probability for a microscopic
property, such as Sz = +1/2 for a spin half particle, by using
the Born rule applied to a ket or density operator for the
microscopic system, and are told that this is the probability
of this property if it is measured. The CH approach, see
Chs. 17 and 18 of Ref. [22], supplies the steps missing
from textbooks by providing a complete, albeit schematic,
quantum mechanical description of the entire measurement
process, assuming an appropriate interaction between the
apparatus and the system to be measured. The infamous
measurement problem of quantum foundations, the fact that
unitary time development will typically leave the apparatus
in a superposition of pointer states, is disposed of by using
a framework of macroscopic properties, an appropriate PDI
corresponding to different pointer positions. The second
measurement problem, inferring the prior microscopic state
from the final pointer position, is taken care of by using a
framework that includes an appropriate microscopic PDI at
a time just before the measurement takes place, and then
using standard probabilistic reasoning to infer (retrodict) the
earlier microscopic state from the later pointer position. In the
case of the nested MZI in Fig. 1 one can think of D1, D2,
and D3 as constituting a single measurement device whose
“pointer” is whichever device has detected the particle, while
the microscopic PDI consists of {F4,G4,H4}, the possible
locations of the particle just before detection. This is how
the CH approach justifies the inference from detection by D1

to the particle having been in F at t4.

B. Weak measurements

A weak measurement, in contrast to a strong or projec-
tive measurement of the type discussed above, is one in
which the system to be measured (in our case the particle
or photon) interacts weakly with the measuring apparatus,
so that on average neither the apparatus nor the particle
is strongly perturbed. Hence, extracting useful information
requires repeating the experiment a large number of times.
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(We are not considering the case in which a large number of
weak measurements are carried out in succession on a single
system.) Even though the interaction is weak it can still on rare
occasions produce a strong effect on the measured system; see,
for example, Feynman’s discussion in Sec. 1-6 of Ref. [27].
Though outcomes of weak measurements are often analyzed
in terms of weak values, as in Ref. [3], this is not necessary.
The mathematical definition [see (36) below for an example]
of a weak value is clear, but its physical significance is obscure,
and therefore we shall make no use of it, but instead employ a
more straightforward interpretation of the weak measurement
outcome.

To study the passage of the particle through the nested MZI,
assume that attached to each channel is a two-state system, a
qubit probe, which is initially in its “ground” state |0〉. The
probes in channels A, D, B, C, and E are labeled by the
corresponding lowercase letters a, d, b, c, and e. In addition
there is a special probe w to detect a particle passing through
B + C without distinguishing B from C; recall the discussion
in Sec. IV A. No probes are needed for channels F , G, and H ,
as these terminate in strong measurements. The passage of a
particle through channel P with probe p results in a unitary
time development

|P 〉 ⊗ |0〉p → |P 〉 ⊗ (ζ |0〉p + η|1〉p);

η = √
ε , ζ = √

1 − ε, (27)

where ε is a very small number—think of 1/10000—whereas
if the particle does not pass through the P channel the probe
remains in the state |0〉p. For interaction with the B + C probe
w, use (27) twice, once with P = B and once with P = C,
with p = w in both cases. It will be convenient to label states
of the entire system of probes using a symbol κ , where κ = o is
the initial state with no probes excited, κ = db means probes
d and b are excited and the rest are not, and so forth. Thus
when the particle passes through channel P the result is

|P 〉 ⊗ |κ〉 → |P 〉 ⊗ (ζ |κ〉 + η|κp〉), (28)

where κp means p if κ = o, bp if κ = b, and so forth.
After a given run is finished each probe can itself can

be subjected to a strong measurement in the |0〉,|1〉 basis to
determine its value. A probe state |1〉 indicates that the particle
was in that channel (or in B + C for probe w), but if the state
is |0〉 one learns nothing: The particle might have been in
the channel, but if so, it left no trace. Note that the process
of measuring the probes, which takes place after the particle
has completed its path through the trajectory, has no effect
upon that trajectory, since the future does not influence the
past; instead, the measurement yields information about the
state of affairs at the earlier time. One can then ask: Given
that the particle emerged in F or G or H (as indicated by
its triggering D1 or D2 or D3), which, if any, of the probes
registered its passage through one of the preceding channels?
Since ε is very small, the answer will usually be “none at
all,” but occasionally one of the probes will be excited, and
much less frequently two, or even three probes will have been

excited in the very same run, hence providing information on
the trajectory of a single particle during that run.

The discussion is simplest for the case in which the B and C

probes are absent, but the B + C probe is present, along with
the probes for A, D, and E. Let |
j 〉, the counterpart of |ψj 〉
in (3), be the result of unitary time evolution of the particle
together with the system of probes up to time tj , starting from
the state |
0〉 = |S0〉 ⊗ |o〉, and assuming that at time tj the
interaction with the corresponding probe has just taken place.
All the information of interest to us will be present at time t4,
and it is convenient to write |
4〉 in the form

|
4〉 =
∑

κ

|�κ〉 ⊗ |κ〉. (29)

A straightforward calculation yields

|�o〉 = ζα|Ā4〉 + ζ 2β|H4〉, |�a〉 = ηα|Ā4〉,
(30)

|�d〉 = |�w〉 = ζηβ|H4〉, |�dw〉 = η2β|H4〉,

and all the other |�κ〉, such as |�ad〉 are zero. We have used
the abbreviation

|Ā4〉 = α|F4〉 + β|G4〉 = T43|A3〉 (31)

for the state at t4 which results when |A3〉 passes through
the final beam splitter. One can use these results to derive
probabilities conditioned on the initial state |
0〉, such as

Pr(F4,a) = |〈F |�a〉|2 = εα4,

Pr(F4,o) = |〈F |�o〉|2 = (1 − ε)α4, (32)

Pr(F4) = α4, Pr(a | F4) = ε.

That is, given that the particle emerged in F at t4 (was detected
by D1), there is a conditional probability of 1 − ε that no
probes were triggered, ε that the a probe was triggered, and
zero that any other probe was triggered. In particular, the d, w,
and e probes were never triggered if the particle emerged in F ,
indicating that this particle was never in the D or the E channel,
and never in the B + C channel system. The conclusion is the
same if the particle emerged in G. All of this is consistent
with the discussion of particle trajectories in Sec. III C. And
it agrees with the conclusion reached by Li et al. [28], who
suggested a possible, albeit rather difficult, way to realize the
w probe in an actual experiment. If, on the other hand, the
particle emerged in H , there is a probability of order ε that
either the d or the w probe was triggered, and a probability of
order ε2 that both probes were triggered in the same run. The
e probe is never triggered. Again, this is just what one might
expect.

Next consider the situation in which the B and C probes are
present, but the B + C probe w is absent. A straightforward
but somewhat tedious calculation shows that the nonzero |�κ〉
in (29) are

|�o〉 = ζα|Ā4〉 + ζ 2β|H4〉, |�a〉 = ηα|Ā4〉, |�d〉 = ζηβ|H4〉, |�b〉 = 1
2ζηβ(−ζ |Ē4〉 + |H4〉), |�db〉 = (η/ζ )|�b〉,

(33)
|�c〉 = 1

2ζηβ(ζ |Ē4〉 + |H4〉), |�dc〉 = (η/ζ )|�c〉, |�be〉 = −|�ce〉 = − 1
2ζη2β|Ē4〉, |�dbe〉 = −|�dce〉 = −(η/ζ )|�be〉,
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where |Ā4〉 is defined in (31), and

|Ē4〉 := β|F4〉 − α|G4〉 = T43|E3〉 (34)

is the state produced when |E3〉 passes through beam
splitter 4.

Using these results one can determine which probes have
been triggered and with what probability if the particle emerges
in one of the channels F , G, or H . For our purposes the essence
of the matter can be summarized in two lists: The first indicates
which probes can have been excited if the particle emerges in
H (detected by D3); and the second gives this information if
the particle emerges in either F or G (detected by D1 or D2):

H : o, d, b, c, db, dc,

F OR G : o, a, b, c, db, dc, be, ce, dbe, dce. (35)

Assuming neither α nor β is very small, the probability that a
set κ of probes was excited is of order ε|κ|: 1 if no probes have
been excited and ε, ε2, or ε3 in the case of one, two, or three
probes excited during the same run.

The H list in (35), which does not contain a or e, is
consistent with the idea that when detected by D3 the particle
was earlier in the upper arm of the nested MZI and never
in either A or E. This is not surprising. In runs in which the
particle was detected byD1 orD2, so emerged from the MZI in
F or G, a single probe a or b or c was excited with a probability
of order ε, but never d or e, a result which could be taken to
support Vaidman’s assertion, Sec. II B, that this particle was
in B or C as well as in A, but was never in D or E. However,
the coincidences, two or more probes triggered during a single
run, agree with the alternative explanation given in [3]: the
perturbing effects of a weak measurement in B or in C. Thus
if the b probe was excited, it indicates that the particle was
in the B channel, not the C channel (note that b and c never
appear in coincidence). This spoils the coherence between the
B and C channels and allows the particle to emerge from the
inner MZI with equal probability in E or in H . If it emerges
in E there is a small probability (another factor of ε) that it
will trigger the e probe before reaching either F or G. This
explains the be coincidences and the fact that e is never excited
unless preceded by b or c. The same reasoning can explain the
db, dbe, ce, dc, and dce coincidences. In the limit ε → 0 this
symmetry-breaking effect of the b and c probes will go to zero,
and the situation will resemble the one discussed previously
in which these probes were absent and only the w probe was
present. Hence, the weak measuring results are consistent with
the conclusions in Sec. III C based on the CH analysis, where
there were no weak measurements, once one has taken into
account the fact that measurements, even when they are weak,
can sometimes perturb a quantum system.

The situation in which the B, C, and B + C probes are
present along with those for A, D, and E leads to longer and
messier expressions, since there are many more κ for which
�κ is nonzero. However, the results are consistent with what
one would expect from the preceding analysis. In cases in
which b or c are excited, w can also appear (with a probability
smaller by order ε), but if w is not accompanied by b or by c in
the same run, it also is not accompanied by e, i.e., the particle
always emerges from the inner MZI in channel H .

The reader might wonder whether replacing the qubit
probes employed here with Gaussian probes of the sort often
employed in the weak measurement literature would lead to
different conclusions. The answer is that it would not. The
easiest way to see this is to note that the interaction specified
by (27) and (28) gives rise, so far as the particle (photon) is
concerned, to a noisy quantum “phase damping” or“phase flip”
channel (see, e.g., Sec. 8.3.6 of Ref. [29]), whereas the probe
forms the complementary channel, as defined, for example, in
Ref. [30]. Since the phase damping channel has only two Kraus
operators, the simplest complementary channel is two dimen-
sional, thus a qubit channel. A standard result in quantum
information theory is that the direct (phase flip) channel deter-
mines a unique complementary (probe) channel up to a unitary
transformation on the latter [30]. Thus a Gaussian probe
cannot carry away more information than a qubit probe, though
analyzing the Gaussian probe might be less straightforward.

VI. TWO-STATE VECTOR FORMALISM

The connection between the two-state vector formalism
(TSVF) [13,14] and the CH approach can be conveniently
discussed using the formula

〈Q〉w = 〈φ2|Q|ψ2〉/〈φ2|ψ2〉, (36)

which defines the weak value [31] of the operator Q in terms
of the bra-ket pair 〈φ2||ψ2〉 at the time t2. In particular

〈F4|S0,P ,F4〉 = 〈φ2|ψ2〉〈P 〉w (37)

relates the chain ket, see (9), for the history S0 � P � F4 to
the weak value of the projector P . Using |ψ2〉 from (3) and
〈φ2| from (5) one obtains

〈A2〉w = 1, 〈B2〉w = −β2/2α2, 〈C2〉w = β2/2α2. (38)

Since 〈〉w is linear and 〈I 〉w = 1, it is the case that

〈P 〉w + 〈P̃ 〉w = 1, (39)

with P̃ = I − P . Consequently, the family S0 � {P,P̃ } � F4

will be consistent—one of the chain kets, see (37), is zero—if
〈P 〉w is 1 or 0, but will be inconsistent in all other cases.
Thus an immediate consequence of (38) is that the family FA

with P = A2, see (13), is consistent for all values of α and
β; FB with P = B2, see (17), is never consistent for α and β

satisfying (2); andFC with P = C2, see (20), is only consistent
when β2/2α2 = 1, i.e., for the special values in (22).

Vaidman’s principle, as noted in Sec. II B, is that the particle
is present (in some sense) whenever the weak value of the
projector representing the channel is nonzero, and absent when
the weak value is 0. The CH approach says the particle is
present when the weak value of the channel projector is 1, is
absent when the weak value is 0, and otherwise its presence
or absence cannot be discussed, since the history family is
inconsistent, so one cannot assign probabilities. The same
comparison can be made if the intermediate time is t1 or t3,
using the bra-ket pair for this time, and assuming a family
of histories defined at t0, t4, and with only one nontrivial
(the event is not simply I ) intermediate time. Consistency
conditions (orthogonality of chain kets) can also be discussed
for histories with additional nontrivial intermediate times, but
for these there is no obvious connection with the TSVF.
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VII. COUNTERFACTUAL COMMUNICATION

While the preceding analysis disagrees with Vaidman’s
claims about the path of a particle in a nested MZI, it also
casts serious doubt upon the counterfactual communication
claim of Salih et al. [5], and, indeed, for much the same reason:
the impossibility of including B and C separately, rather than
B + C, at time t2 in a consistent family of histories. The nature
of the difficulty is most easily seen in the reply of Salih et al.
[7] to Vaidman’s criticism [6] of their earlier work in Ref. [5].
This reply contains a figure similar to our Fig. 1, albeit rotated
by 45◦, and uses identical labels for channels A, B, C, D, and
E, and similar labeling for the detectors, apart from subscripts
in place of our superscripts. With reference to this figure Salih
et al. [7] say that

A click at D1 implies that the photon should have followed path
A, and the probability of its existence in the public channel is
zero.

The “public channel” in the counterfactual communication
protocol is the one by which Bob communicates with Alice.
In terms of Fig. 1, all the beam splitters lie in Alice’s domain,
and only the C channel mirror belongs to Bob. Thus for our
purposes the public channel is the same as the C channel.
Let us assume in addition that detection by D1, i.e., D1, is
equivalent to the particle emerging from the MZI in channel
F , and consider three propositions expressed in the notation
of Fig. 1:

P1. The particle was in S at t0 and in F at t4.
P2. The particle was in A at t2
P3 The particle was not in C at t2.
The quotation from Ref. [7] given above can be summarized

as follows: P1 implies P2, P2 implies P3, and therefore P1
implies P3.

Let us now examine this argument. The step from P1 to
P2 can be justified using the family FA, (8), since the final
equality in (11) is Pr(A2 | S0,F4) = 1. The trouble is with the
step from P2 to P3. To understand why, it is helpful to insert
between P2 and P3 the proposition

P2′.The particle was not in B + C at t2.

Since B2 + C2 = Ã2 is in FA and Pr(B2 + C2 | S0,F4) = 0,
P2′ is a direct consequence of P1 as well as implied by P2.
However, to get from P2′ to P3 it is necessary to go from “NOT

B + C” to “NOT C,” and this requires refining the framework
containing the projector B + C to one containing both B and
C. This nontrivial requirement was noted in Sec. III D, and
discussed further in Sec. IV A. In the present context such a
refinement would lead to the inconsistent family FABC in (19),
so it is not allowed.

Note that if one were only concerned about events at time
t2 the step from P2 or P2′ to P3 would cause no difficulty; one
would simply refine {A2,B2 + C2} to {A2,B2,C2} and employ
the latter to reason from the presence of the particle in A at time
t2 to its absence from C. The difficulty arises because one wants
to infer P3 from P1, and P1 contains information about events
at t0 and t4. The single framework rule says that we cannot
simply forget the framework used to infer P2 (or P2′) from P1
when carrying out the next step from P2 (or P2′) to P3. It is at
this point where classical reasoning is inadequate. The single

framework rule is not part of the logic of classical physics
because it is never needed: All of classical physics, as seen
from a quantum perspective, requires only a single framework.
But in the quantum world one has to modify classical reasoning
if one is to reach reliable conclusions.

Could one get from P1 to P3 by a direct route that does
not include P2? The coarsest framework that includes C2

along with S0 and F4, and hence both the premises in P1
and the consequences in P3, is FC , (20), and in general
this family is inconsistent, so it cannot be used to assign a
meaningful probability to C at t2. Only for the special choice
of parameters in (22) is FC consistent, and in that case one
can use FC to calculate Pr(C2 | S0,F4). But this probability is
equal to 1, see (23), not 0. Thus for the parameters in (22) P1
implies not that P3 is true, but that it is false! (As noted at
the end of Sec. III D, this result obtained using FC does not
contradict Pr(A2 | S0,F4) = 1 obtained using the family FA,
which is valid in general, including the choice of parameters
in (22), because FA and FC are incompatible—to be precise,
incommensurate—families, and the single framework rule
means they cannot be combined.)

Thus the inference from P1 to P3 does not satisfy the rules
for quantum reasoning, and one cannot conclude that a particle
emerging in channel F was earlier absent from channel C.
Hence the argument employed by Salih et al. in [7] is not
valid. To be sure, the figure in Ref. [7] was presented as a
simplified example to illustrate the point the authors were
trying to make; their full protocol is much more complicated.
But if the reasoning applied to this simplified example is
defective in the manner just discussed, it is hard to accept
their claim about the more complicated protocol unless and
until it has been justified by better arguments than have been
presented up to now.

One may add that the very notion of counterfactual
communication seems problematical in light of the fact that it is
impossible to transmit information between quantum systems
which do not interact with each other [32]. Of course, “interac-
tion” is not the same thing as sending particles, though it is hard
to see how in the protocol under consideration there could be
an interaction sufficient to convey information in the complete
absence of particles (photons) passing from Bob to Alice. In
addition, the claim in Ref. [5] is not that precisely zero particles
are involved, but rather that the number in the Bob to Alice
channel can be arbitrarily small in an asymptotic limit of a large
number of opportunities for the photon to pass back and forth.
But then a proper analysis of the situation requires appropriate
quantitative estimates based on sound quantum principles.

VIII. CONCLUSION

The possible paths followed by a particle (photon) that
enters the nested Mach-Zehnder interferometer in Fig. 1
through channel S and later emerges in channel F to be
detected by D1 have been analyzed using consistent histories.
The consistent family FA in (13) and its refinement in (14)
leads to the conclusion (16) that the particle was in the A arm of
the interferometer at all times while inside the interferometer,
and was not in the small interferometer in the sense that zero
probability is assigned to the projector B + C at time t2. This
result agrees with Li et al. [3] rather than Vaidman [2].
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However, closer inspection shows that this result is not
altogether straightforward; one needs to pay attention to certain
subtleties. Assigning zero probability to B + C at time t2
conditional on S0 and F4 does not by itself mean that zero
probability can be assigned to B and C separately. Whereas
B + C at time t2 is part of a consistent family FA, (13) [and
F ′

A, (14)], refining FA by replacing the projector B + C with
the pair {B,C}, i.e., treating B and C as mutually exclusive
alternatives, leads to an inconsistent family. This is a case
in which straightforward classical reasoning in a quantum
context leads to incorrect results. The difference between the
projector B + C and the pair {B,C} is discussed Sec. IV B;
while Sec. VII shows in detail how the reasoning process
from S0 and F4 to “not C2” breaks down, and why this
has important implications for the claim of counterfactual
communication.

For the special choice of beam splitter parameters in
(22), ignoring the single framework rule leads to a paradox,
Sec. III D: Given the same conditions, S at t0 and F at t4,
the consistent family FA leads to the conclusion that the
particle was in A at t2, whereas the equally consistent family
FC locates the particle at t2 in C. This is an instance of the
three-box paradox in quantum foundations; details of how the
CH approach resolves it (perhaps better, “tames it”) will be
found in Sec. 22.5 of Ref. [22]. Here it suffices to note that FA

andFC are incompatible (to be more precise, incommensurate)
families that cannot be combined, so the contradiction that
arises when using classical reasoning is eliminated when
proper quantum principles are applied.

Both Vaidman [2] and Li et al. [3] have appealed to the
weak values produced by weak measurements to determine
the particle’s path. The analysis in Sec. V, which uses qubit
rather than Gaussian probes, and employs a straightforward
interpretation of the results rather than weak values (whose
connection with actual particle properties is quite obscure),
supports the conclusions reached in Sec. III using the family
FA: At the time t2 the particle was in A. It is worth noting
that even a very weak interaction between the probe and the
measured system can on rare occasions produce very large
perturbations of the latter, and also that for the fairly simple
situation considered here, qubit probes provide just as much
information as Gaussian probes, and in a form which is easier
to interpret.

The comparison of the two-state vector formalism and
the consistent history approach in Sec. VI throws additional
light on the disagreement, mentioned in the introduction,
between Vaidman and Salih et al. on the topic of counterfactual

communication. With reference to the situation in Fig. 1,
Vaidman takes the nonzero weak values for the projectors B

and C at time t2 as evidence that the particle is present in both
those channels. But since the weak values are neither zero nor
one, the consistent histories analysis instead regards them as
evidence that the presence or absence of the particle at these
locations, conditioned on S0 and F4, cannot be discussed in a
consistent manner. This undermines Vaidman’s criticism of the
counterfactual communication protocol on the basis that there
was a particle present where Salih et al. would have said there
was none. But at the same time it undermines the claim of Salih
et al., as discussed in Sec. VII, that there was no particle in the
C channel, for that claim relies upon classical reasoning in a
quantum context in which it fails. (To be sure, the full protocol
for counterfactual communication is much more complicated
than the simple example considered in Ref. [7], and we have
not attempted to analyze it. However, it seems doubtful that
the full protocol is more reliable than the simple example, at
least until it is supported by a consistent quantum mechanical
analysis, and that has not yet been carried out.)

The contrary conclusions reached by Vaidman and by Salih
et al. reflect the fact that the tools needed to analyze events in a
microscopic quantum system prior to a macroscopic measure-
ment are not part of standard quantum mechanics, understood
as what one finds in standard textbooks. Trying to extend
this by using classical reasoning, or a phenomenology based
on the two-state vector formalism, or weak measurements,
can be very misleading. The success of the calculational
tools found in textbooks arises both from the fact that they
employ the quantum Hilbert space and subspaces to represent
physical properties as well as carry out calculations, and
also from a judicious invocation of “measurement,” never
properly explained, to evade the various contradictions and
paradoxes which are well known in quantum foundations.
The consistent histories approach extends standard textbook
quantum mechanics in a way that allows an analysis of mi-
croscopic quantum behavior without leading to contradictions
and insoluble paradoxes. At the same time it provides a fully
quantum mechanical description of the measurement process,
including what it is that is measured, thus getting rid of the
measurement problem. While consistent histories may not be
the final word in quantum interpretation, it deserves to be taken
very seriously in the absence of alternatives which can provide
a plausible description of the microscopic quantum properties
and processes that precede measurements [1].

Note added in proof. D. Sokolovski in [33] has indepen-
dently reached similar conclusions.
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