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Presence of negative entropies in Casimir interactions
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Negative entropy in connection with the Casimir effect at uniform temperature is a phenomenon rooted in the
circumstance that one is describing a nonclosed system, or only part of a closed system. In this paper we show
that the phenomenon is not necessarily restricted to electromagnetic theory but can be derived from the quantum
theory of interacting harmonic oscillators, most typically two oscillators interacting not directly but indirectly
via a third one. There are two such models, actually analogous to the transverse magnetic (TM) and transverse
electric (TE) modes in electrodynamics. These mechanical models in their simplest version were presented some
years ago, by Høye et al. [Phys. Rev. E 67, 056116 (2003)]. In the present paper we reemphasize the physical
significance of the mechanical picture and extend the theory so as to include the case where there are several
mediating oscillators instead of only one. The TE oscillator exhibits negative entropy. Finally, we show explicitly
how the interactions via the electromagnetic field contain the two oscillator models.
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I. INTRODUCTION

Let us begin by recapitulating the conventional procedure
for calculating the Casimir force between two dielectric media,
typically two half-spaces separated by a gap a: One starts from
the two-point function for the electric field at two neighboring
spacetime points, usually by using the fluctuation-dissipation
theorem and assuming uniform temperature, and then uses
Maxwell’s stress tensor to calculate the surface pressure, here
called P . Then, the free energy F per unit surface can be found
by integration of P = −∂F/∂a, and the internal energy U per
unit area follows from the thermodynamic formula

U = ∂(βF )

∂β
, (1)

with β = 1/(kBT ). The corresponding entropy S then finally
follows from

S = U − F

T
= −∂F

∂T
. (2)

This procedure is considered in detail at various places; for
instance, in the standard sources [1–3].

The following point here calls for attention: The theory
is based upon the electrodynamics of a nonclosed physical
system. That is, the force is calculated from the difference in
the electrodynamic stress tensor between the inside and the
outside of a dielectric medium. The properties of the medium
itself are not accounted for. The fact that we are dealing with
an electromagnetic subsystem makes it not so unreasonable
that we can encounter unexpected properties when calculating
physical properties of the subsystem such as the Casimir
entropy.

Consider for definiteness the two-slab system above, as-
suming the separation a to be constant. We let the temperature
T increase, from zero upwards. We further assume the standard

Drude dispersion relation

ε(iζ ) = 1 + ω2
p

ζ (ζ + ν)
, (3)

where ν is the dissipation parameter. As has been shown in
detail by explicit calculations, as long as ν is different from
zero as is always the case for a real material, the slope ∂F/∂T

is zero at T = 0 [4–6]. That is, the Nernst theorem is satisfied
for the Casimir entropy. We ought to emphasize this point,
because assertions to the contrary have often appeared in the
literature. An ambiguity might occur only if the parameter ν

were exactly zero, which is, however, only a fictitious case.
Then for increasing temperature the free energy starts to

increase while for high temperatures it decreases in the usual
way. This increase means that the entropy S = −∂F/∂T

becomes negative in this region. This special property has been
subject to several studies recently; cf., for instance, Refs. [7,8]
with further references therein.

In particular, for high temperature (with the separation a

fixed) the TE contribution to the free energy is negative, but
tends to zero. This means that the TE entropy is negative; in
fact, it typically is always negative for all values of T . Whether
the total entropy is negative depends on the balance with the
TM entropy, which is typically (but not necessarily) positive.
More often that not, there is a region of low temperature when
the total entropy goes negative.

Most previous studies have considered the negative-entropy
problem from the standpoint of electrodynamics. This is quite
a natural approach, because the effect is related to the circum-
stance that the relationship between canonical momentum p
for a particle with mass m and charge q and the electromagnetic
vector potential A(r,t) is (p − qA)2/2m (as known, this is the
reason for the absence of classical diamagnetism, the Bohr–van
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Leeuwen theorem1). It is, however, possible to describe this
effect in a different way which is simpler and does not
involve electromagnetism explicitly; namely, as an interaction
between two quantum-mechanical harmonic oscillators 1 and
2, mediated indirectly via a third oscillator 3. Actually we
presented this oscillator model in an earlier paper (cf. Sec. IV
in Ref. [4]), but it seems that this model has been left largely
unnoticed. And then we come to the main motivations for the
present paper:

(i) to re-emphasize the physical significance of the oscil-
lator model;

(ii) to generalize the theory so as to encompass the case
where there are many interacting oscillators, similar to the
electromagnetic field, instead of only one;

(iii) to provide a general proof that the TE entropy is
negative for high temperature.

II. TWO HARMONIC-OSCILLATOR MODELS

As mentioned above, we assume the validity of the Drude
dispersion relation (3), because this is the most physical
one. The competing dispersion relation, the plasma rela-
tion, corresponds to setting ν = 0. The introduction of our
harmonic-oscillator model in Ref. [4] was actually motivated
by the current discussion about choosing between the Drude
and the plasma relations. There are actually two different
oscillator models, corresponding to the TM and TE modes
of the analogous electromagnetic theory.

Consider first the classical partition function of a harmonic
oscillator with energy

H = 1

2m
p2 + 1

2
mω2x2, (4)

where x is the position, p is the momentum, ω is the eigen-
frequency, and m is the mass. Integrating both momentum and
position, the classical partition function is found to be

Z = 1

2π�

∫ ∞

−∞

∫ ∞

−∞
e−βH dp dx = 1

�βω
. (5)

This gives the free energy and its frequency dependency as

F = − 1

β
ln Z = − 1

β
ln

(
1

�βω

)
∼ ln ω. (6)

Thus, for three noninteracting harmonic oscillators, the inverse
partition function is proportional to

√
Q, where

Q = a1a2a3, ai = ω2
i (i = 1,2,3). (7)

By quantization using the path integral method [10,11],
the classical system turns out to be split into a set of
classical harmonic-oscillator systems described by Matsubara
frequencies. Then, for each Matsubara frequency, expression
(7) is replaced by

Q = A1A2A3, Ai = ω2
i + ζ 2 = ai + ζ 2, (8)

where ζ = iω. (Depending upon convention, ζ = −iω is often
used.)

1However, recall that the Langevin construction gives a reasonable
model of diamagnetism for dielectrics—see, for example, Ref. [9].

Assume now that there is no direct interaction between
oscillators 1 and 2. The interaction between them is mediated
entirely by oscillator 3, which can be imagined to be situated
in an intermediate position. For simplicity we assume all
oscillators are one dimensional. The interaction can now be
represented as cxixj where xi and xj are coordinates and c is
a coupling constant. With this, the quantity Q becomes

Q =
∣∣∣∣∣∣
A1 0 c

0 A2 c

c c A3

∣∣∣∣∣∣ = A1A2A3 − c2(A1 + A2)

= A1A2A3(1 − D1 − D2)

= A1A2A3(1 − D1)(1 − D2)

(
1 − D1D2

(1 − D1)(1 − D2)

)
,

(9)

where

Dj = c2

AjA3
(j = 1,2). (10)

The quantum free energy F is obtained by summing over
the Matsubara frequencies K = �ζ = i�ω = 2πn/β with n

integer

βF = lim
1

2

∑
n

ln Q(ζ ) (+ const.). (11)

Here lim refers to the limit of a discretization procedure. As
pointed out in Ref. [4], this must be carefully defined, as in
Ref. [10], to obtain correctly the well-known result for F .
However, we can skip this discussion here as only the last
factor of Eq. (9) is of interest. The product A1A2A3 represents
the three noninteracting oscillators. Furthermore, the Aj (1 −
Dj ) (j = 1,2) represent each of the two oscillators with their
radiation reaction via the third oscillator. Finally, the last factor
corresponds to the induced Casimir free energy, which is less
than zero because this factor is between one and zero for a
stable oscillator system (i.e., Q > 0).

The above model represents the situation analogous to the
TM mode. To model the TE mode we need another model,
which is the analog of the electromagnetic interaction where
the third oscillator interacts with the momenta pj of the
other two, i.e., the interaction replaces the kinetic-energy
term p2

j /2mj with (pj − const. × x3)2/2mj (mj is the mass,
j = 1,2). Here the x3 corresponds to a component of the
electromagnetic vector potential. By evaluation of the classical
partition function one now will find that the interaction has no
influence in thermal equilibrium (as mentioned, this is the
analog of classical diamagnetism which is equal to zero).
This is easily seen by replacing the p2 in Eq. (4) with
(p − const. × x)2 and then integrating first with respect to
p in integral (5) for the partition function.

Quantum mechanically, the problem is less straightforward.
But we can simplify the calculation by exchanging the roles of
momenta and coordinates of the first two oscillators, i.e., we
use the momentum representation. For a harmonic oscillator
with energy (4) the Hamiltonian operator is

H = 1

2m

(
�

i

∂

∂x

)2

+ 1

2
mω2x2. (12)
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By Fourier transforming the corresponding Schrödinger equa-
tion Hψ = Eψ one obtains the momentum representation
[(�/i)(∂/∂x) → �k, x → i∂/∂k]

H → 1

2m
(�k)2 + 1

2
mω2

(
i

∂

∂k

)2

= 1

2
mω2X2 + 1

2m

(
�

i

∂

∂X

)2

, (13)

where a new coordinate

X = �k

mω
= p

mω
(14)

is used. The k is the Fourier variable. Thus, with X → xj , we
have (aj = ω2

j , j = 1,2)

1

2mj

(pj − const. × x3)2 → 1

2
mjaj

(
xj − c

aj

x3

)2

= 1

2
mj

(
ajx

2
j − 2cxjx3 + c2

aj

x2
3

)
. (15)

Compared with the first model considered above, an extra
x2

3 term has appeared with the consequence that the previous
coefficient a3 has changed to

a3 → a3 + c2

a1
+ c2

a2
, (16)

and in the quantum case

A3 → A3 + c2

a1
+ c2

a2
. (17)

Inserted into expression (9), this means that the coefficient Dj

has changed to

Dj = c2

A3

(
1

Aj

− 1

aj

)
= − ζ 2c2

ajAjA3
. (18)

Again the free energy due to the interaction follows by
summation of the logarithm of the last factor of expression
(9). In the classical high-temperature limit (β → 0), only the
term �ζ = 2πn/β = 0 is present, but with expression (18) its
contribution is zero. This is similar to what happens for the
TE zero mode (in the Drude model) for the Casimir effect.
For finite temperatures the corresponding free energy must
be negative since this last factor is less than one, but greater
than zero with Dj given by Eq. (18). Furthermore, since it
approaches zero when T → ∞, there will be a temperature
interval for which the Casimir free energy increases with
increasing temperature, corresponding to a Casimir entropy
S = −∂F/∂T being negative.

III. INTERACTIONS VIA MANY OSCILLATORS

In the models of Sec. II, two oscillators interacted via a
third one. This situation we can extend and generalize to
interactions via many oscillators. Such a situation is the analog
of electromagnetic interactions which have a continuum of
frequencies. Then the a3 and A3 of Eqs. (6) and (8) are

generalized to

a3 → ai, A3 → Ai, i = 3,4,5,6, . . . , (19)

with ai = ω2
i and Ai = ai + ζ 2 as before.

Again oscillators 1 and 2 interact via oscillators i (i � 3)
where the coefficient c of Eq. (9) becomes coefficients ci .
(Different coefficients c1i and c2i for the two oscillators 1 and
2 will also be possible.) With this one we find that the inverse
partition function will be the determinant that generalizes
Eq. (9) to

Q =

∣∣∣∣∣∣∣∣∣

A1 0 c3 c4 · · ·
0 A2 c3 c4 · · ·
c3 c3 A3 0 · · ·
c4 c4 0 A4 · · ·
· · · · · · · · · · · · · · ·

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

A1(1 − D1) −A1D1 c3 c4 · · ·
−A2D2 A2(1 − D2) c3 c4 · · ·

0 0 A3 0 · · ·
0 0 0 A4 · · ·

· · · · · · · · · · · · · · ·

∣∣∣∣∣∣∣∣∣
= A1A2(1 − D1)(1 − D2)

(
1 − D1D2

(1 − D1)(1 − D2)

)

×
⎛
⎝∏

i�3

Ai

⎞
⎠, (20)

where now

Dj = 1

Aj

∑
i�3

c2
i

Ai

(j = 1,2). (21)

Here, to evaluate the determinant, columns i = 3,4, . . . have
been multiplied by ci/Ai and subtracted from columns 1
and 2.

The second model is again the analog of the electromagnetic
interaction for the TE mode. Then the momenta of oscillators
1 and 2 interact with all the oscillators of the electromag-
netic interaction. Thus the interaction will have the form
[pj − ∑

i�3(cixi)]2/(2mj ) (j = 1,2), and again one finds that
the interaction has no influence upon the classical partition
function. To simplify in the quantum case we again can
exchange the roles of momenta and coordinates of oscillators
1 and 2. As in Eq. (15) the interaction then ends up with the
form

aj

⎛
⎝xj − 1

aj

∑
i�3

(cixi)

⎞
⎠

2

= ajx
2
j − 2xj

∑
i�3

(cixi) + 1

aj

∑
i�3

∑
l�3

(ciclxixl). (22)

The coefficients ci can be extended to the more general cji

(j = 1,2), but to simplify the matrices below a bit this is
not done. With Eq. (22) and short-hand notations μ = 1/a1 +
1/a2 and qj = Aj (1/Aj − 1/aj ), Eq. (9) is generalized to
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(Ai = ai + ζ 2)

Q =

∣∣∣∣∣∣∣∣∣∣∣

A1 0 c3 c4 · · ·
0 A2 c3 c4 · · ·
c3 c3 A3 + c2

3μ c3c4μ · · ·
c4 c4 c4c3μ A4 + c4c4μ · · ·
· · · · · · · · · · · · · · ·

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

A1 0 c3 c4 · · ·
0 A2 c3 c4 · · ·

c3q1 c3q2 A3 0 · · ·
c4q1 c4q2 0 A4 · · ·
· · · · · · · · · · · · · · ·

∣∣∣∣∣∣∣∣∣
. (23)

In Eq. (23), rows j = 1,2 have been multiplied with ci/a1

and ci/a2, respectively, and subtracted from rows i = 3,4, . . . .
Next, similar to Eq. (20), columns i = 3,4, . . . are multiplied
by qj ci/Ai for j = 1,2 and subtracted from columns 1 and 2.
The resulting contributions to the inverse partition function is
again (20), but now with Dj given by

Dj = qj

Aj

∑
i�3

c2
i

Ai

= − ζ 2

ajAj

∑
i�3

c2
i

Ai

. (24)

Altogether, this is just a straightforward generalization of
result (9) for Q with Dj either given by Eqs. (10) or (18) in the
two cases. The main difference lies in the quantities Dj that in
the present section contain many contributions. Thus, with Dj

given by Eq. (24) as with Eq. (18), the corresponding Casimir
entropy will be negative in an interval, as concluded at the end
of Sec. II. This constitutes a proof that the TE entropy must
always be negative at high temperature. Typically, in fact, it is
negative at all temperatures [8,12].

An additional notable and interesting feature of the inverse
partition function, which is the square root of Eq. (20) for each
Matsubara frequency, is the product term for i � 3. Clearly
this part is not affected by the presence of oscillators 1 and 2
and their influence upon the resulting eigenfrequencies of the
coupled system of all oscillators. Thus oscillators i � 3 can
without any approximation be eliminated or disregarded to be
replaced by the interaction quantities Dj at thermal equilib-
rium. Correspondingly, with polarizable media, the quantized
electromagnetic field can be eliminated to be replaced by
the radiating dipole-dipole interaction. This simplification we
have utilized in Ref. [11] and later works.

IV. INTERACTION VIA ELECTROMAGNETIC DIPOLE
RADIATION FIELD

For two oscillators interacting via the electromagnetic field
it should now be possible to identify this situation with
Eq. (20), where Dj is expression (21) for the TM mode
and expression (24) for the TE mode. The free energy of
interaction (Casimir energy) follows from the logarithm of
the penultimate factor of (20) when inserted into Eq. (11). As
we will see, the radiating dipole interaction has the form and
structure consistent with the expressions for Dj .

For two oscillators interacting via the potential ψ(r)s1s2

with oscillator coordinates si , which can be identified with
polarization (here in one dimension for simplicity). The
Casimir free energy F in the classical case is given by Eq. (3.4)

in Ref. [11] as

βF = 1
2 ln (1 − (αψ)2) ≈ − 1

2 [αψ(r)]2, (25)

where α is polarizability. In the quantum case, one sums over
Matsubara frequencies as in Eq. (5.8) of that reference, by
which

βF = 1

2

∑
K

ln (1 − (αKψK )2). (26)

With two equal oscillators (same α) it should be possible
to make the identification

Dj

1 − Dj

→ αKψK. (27)

It is clear that 1/Aj corresponds to αK ∝ 1/(aj + ζ 2) for a
simple oscillator with eigenfrequency ω = √

aj not interacting
with its surroundings. As pointed to below Eq. (9), Aj (1 − Dj )
represents oscillator j = 1 or 2 alone and their interactions
with oscillator 3. Thus, in Eq. (20), the same factor represents
the interaction of oscillator j with the electromagnetic field
represented by oscillators i � 3. So 1/[Aj (1 − Dj )] corre-
sponds to αK with radiation reaction taken into account. With
this, the remaining part ψK of Eq. (26) should represent AjDj .
According to Eq. (21) or (24), this gets contributions from the
oscillators through which oscillators 1 and 2 interact. Then
the remaining crucial question is whether the radiating dipole
interaction ψK is consistent with the two expressions for Dj .
Thus we must look for the eigenmodes of the electromagnetic
field. In free space these modes are plane waves of wave vector
k and frequency

ω = ck, (28)

where c is the light velocity. These waves should, if possible,
be identified with the oscillators i � 3 of Sec. III. And
this identification we find from the Fourier transform of
the radiating dipole interaction. This interaction is given by
Eq. (6.1) in Ref. [13] (ζ = iω):

φ̃(12) = 4π

3
s1s2

1

(ck)2 + ζ 2
[(ck)2D̃(12) + 2ζ 2�̃(12)]

(+const.), (29)

with D̃(12) = 3(k̂ · ŝ1)(k̂ · ŝ2) − ŝ1 · ŝ2, �̃(12) = ŝ1 · ŝ2. The
hats denote unit vectors. Here, sj are the (frequency-
dependent) polarizations of the two oscillators. The constant
term can be disregarded because it only contributes to a δ

function δ(r) in r space and is thus zero anyway with r �= 0.
It is now easily seen that expression (29) has precisely

the form where both expressions (21) and (24) for AjDj are
present, with Ai given by Eq. (8). The D̃(12) and �̃(12) terms
of expression (29) correspond to expressions (21) and (24),
respectively. With the Fourier transform (29), the frequency
dependent dipole interaction ψ(k) → φ(12) is given by

φ(12) = 1

(2π )3

∫
φ̃(12)eik·r dk

= ψDK (r)D(12) + ψ�K (r)�(12), (30)
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where from Eq. (5.10) of Ref. [11]

ψDK (r) = −e−τ

r3

(
1 + τ + 1

3
τ 2

)
and

ψ�K (r) = −2e−τ

3r3
τ 2 [+ const. δ(r)], (31)

with τ = iωr/c and D(12) = 3(r̂ · ŝ1)(r̂ · ŝ2) − ŝ1 · ŝ2,
�(12) = �̃(12). This leads to the familiar Casimir–Polder
interaction [14].

Thus, altogether, interactions via the electromagnetic field
contain both the two oscillator models considered in Sec. III.
The dipole-dipole interaction (29) is then a sum (→ integral)
of eigenmodes (Fourier components) that induce the resulting
interaction between the two oscillators. An implication of this,
as we have seen, is that the contribution to the entropy can be
negative in some regions.

V. SUMMARY

We studied the reason for possible negative entropy related
to the Casimir interaction between two media. This negative
entropy may seem unphysical. To show that this is not so, we
studied two harmonic oscillator models where two oscillators
interact via a third one. For one of the models, the momenta
of the two oscillators interact with the amplitude of the third
one in a way similar to the interaction with the electromagnetic
vector potential, and in fact corresponds to the TE polarization.
Then a negative-entropy contribution is found. This shows that
this type of behavior is not unphysical. Then the situation with
the third oscillator is generalized to a set of oscillators that
mediates the induced interaction between the two oscillators.
Finally, it is noticed that the induced radiating dipole-dipole
interaction between a pair of oscillating dipole moments can
be identified with a combination of the induced ones of the
two-oscillator models. This paper gives a proof that the TE
contribution to the entropy must be negative for large T , being
typically negative for all T . The TM contribution is typically
positive. The total entropy, therefore, is likely to contain a
negative-entropy region.
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APPENDIX: FIELD-THEORY APPROACH

The point of this appendix is to show that the considerations
of the main text have a close correspondence with the field
theoretic approach in quantum electrodynamics. The latter
starts from the expression for the free energy as a sum over
Matsubara frequencies (here � = c = 1)

F = −T

2

∞∑
n=−∞

Tr ln ��−1
0 , (A1)

where �0 is the free electromagnetic Green’s dyadic, and
� is that in the presence of bodies which interact with the
electromagnetic field, e.g., dielectric or metallic bodies. For
the case of dielectrics, we can define a potential in terms of
the permittivity ε, V = ε − 1, and then we can readily show
for two disjoint bodies, for which V = V1 + V2, that the free
energy is

F = T

2

∑
n

Tr ln [(1 − �0V1)(1 − �0T1�0T2)(1 − �0V2)],

(A2)

in terms of the scattering matrices

Ti = Vi(1 − �0Vi)
−1. (A3)

Evidently, Eq. (A2), sometimes called the TGTG formula,
is identical to Eq. (20) inserted into Eq. (11), which was
derived long before the modern renaissance of multiple-
scattering formulations of Casimir problems [15]. Here the
Ai have been disregarded as not involving interaction with the
electromagnetic field, and the Di are identified with

Di ↔ �0Vi. (A4)

And the breakup into electromagnetic modes, detailed in
Sec. IV, is just the well-known decomposition

�0 = (∇∇ − 1∇2
)e−|ζ |r

r

=
[

(3r̂r̂ − 1)

(
1 + |ζ |r + 1

3
ζ 2r2

)
− 1

2

3
ζ 2r2

]
e−|ζ |r

r3
,

(A5)

which restates Eqs. (30) and (31). So the correspondence is
not merely analogous, it is precise.
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