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Feshbach P- Q partitioning technique and the two-component Dirac equation

Da-Wei Luo,1,2,3 P. V. Pyshkin,1,2,3 Ting Yu,1,4 Hai-Qing Lin,1 J. Q. You,1 and Lian-Ao Wu2,3,*

1Beijing Computational Science Research Center, Beijing 100094, China
2Department of Theoretical Physics and History of Science, The Basque Country University (UPV/EHU), PO Box 644, 48080 Bilbao, Spain

3Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
4Center for Controlled Quantum Systems and Department of Physics and Engineering Physics, Stevens Institute of Technology,

Hoboken, New Jersey 07030, USA
(Received 18 May 2016; revised manuscript received 19 August 2016; published 13 September 2016)

We provide an alternative approach to relativistic dynamics based on the Feshbach projection technique.
Instead of directly studying the Dirac equation, we derive a two-component equation for the upper spinor. This
approach allows one to investigate the underlying physics in a different perspective. For particles with small
mass such as the neutrino, the leading-order equation has a Hermitian effective Hamiltonian, implying there is
no leakage between the upper and lower spinors. In the weak relativistic regime, the leading order corresponds
to a non-Hermitian correction to the Pauli equation, which takes into account the nonzero possibility of finding
the lower-spinor state and offers a more precise description.

DOI: 10.1103/PhysRevA.94.032111

I. INTRODUCTION

The Dirac equation [1] offers a quantum-mechanical de-
scription of the relativistic dynamics of any spin-1/2 particles,
and is the first theory that merges these two most impor-
tant discoveries of modern physics. This elegant equation
successfully predicts the existence of the antimatter [2] and
offers a theoretical justification for the introduction of electron
spin and spin-orbit coupling [3] and the fine-structure of the
hydrogenlike atoms [3]. The Dirac equation also predicts a
quivering motion of free relativistic quantum particles called
Zitterbewegung [4–6], which is attributed to the interfer-
ence between the positive and negative energy part of the
spinor.

Recently, experimental advances allows for the implemen-
tation of various proposals to study the relativistic quantum-
mechanics phenomena using ion traps [7] as quantum simula-
tors for the Dirac equation, and Zitterbewegung [7,8] as well as
the Klein paradox [9,10] have been experimentally observed.
While formally simple and elegant, the Dirac equation has
some peculiar properties. For example, one needs to change
the idea of bare vacuum to an infinite negative energy sea to
interpret the negative energy solution for the Dirac equation,
which may be quite a hurdle for many. It also employs four
components for a relativistic spin-1/2 particle, a big departure
from the two-component description people are familiar with
in the nonrelativistic regime. It has been hitherto unclear
what a two-component description of the relativistic dynamics
would look like or if it is even possible. In this paper, we
ask: can we give a reasonable two-component description for
the relativistic dynamics? Indeed, it is often more easy to
glean information from the Dirac equation for two-component
spinors under some special regime. One interesting regime
is for particles with small mass such as neutrinos. Neutrino
mass has been experimentally found to be extremely small and
theoretically assumed to be zero [11]. There had been various
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attempts at reducing the four-component spinors of the Dirac
equation to arrive at two- and one-component descriptions
using various techniques [4,12–17]. Realistically, it is of great
importance to study the different-order contribution of nonzero
neutrino mass on the relativistic dynamics of the particle
in an electromagnetic field, which has been missing in the
literature. On the other hand, the Pauli equation is obtained
by a heavily approximated lower spinor in the nonrelativistic
limit. The Pauli equation provides a good approximation for
the gyromagnetic ratio as well as an explanation for the Stern-
Gerlach experiment [1,3]. However, for a spin-1/2 initially
prepared in a state with no lower-spinor component, the
effective Hamiltonian in the Pauli equation is Hermitian and
produces a unitary evolution for the upper spinor. Therefore,
the Pauli equation predicts that there will be no possibility of
finding the lower spinor, in contradiction to the prediction
of the Dirac equation. High-order correction to the Pauli
equation has also been done using the Foldy-Wouthuysen
(F-W) transform [16], which eliminates the odd terms from
the Hamiltonian through a series of canonical transforms.
It is noteworthy that the F-W transform acts as a series of
unitary transformation, effectively changing the set of basis
and getting a two-component equation in this “dressed basis.”
Here, we take a different approach and provide an alternative
approach to give a non-Hermitian effective Hamiltonian for the
upper spinor component in the original, i.e., “bare” basis. By
using the Feshbach P -Q partition technique [18–20] for the
Dirac equation, we obtain a two-component spinor equation,
which may further be cast into a time-convolutionless (TCL)
form. Especially, two regimes are investigated, one with small
particle mass and the other with weak relativistic effects.
It is found that the leading-order equation for the small
mass case takes a very compact form and has a Hermitian
effective Hamiltonian. In the weak relativistic limit, the
leading-order equation gives a non-Hermitian correction to
the Pauli equation, and therefore more accurately predicts the
nonzero possibility of finding the lower-spinor state for an
initial state with no lower-spinor component and offering a
much more precise perspective.
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II. FESHBACH P- Q PARTITION FOR THE TCL
DIRAC EQUATION

The Dirac equation merges quantum mechanics with spe-
cial relativity and has predicted many interesting phenomena,
such as spin-orbit coupling. Taking � = 1 and assuming
minimal coupling for the electromagnetic field, we have

i∂t� = (βmc2 + eϕ + cααα · πππ )�, (1)

where e is the charge carried by the particle, πππ = ppp − eAAA/c

and (ϕ,AAA) is the vector four-potential for the electromagnetic
field. A widely used procedure is to partition the state into
upper and lower halves, corresponding to normal particle
and lower-spinor solutions with positive energies. It can be
very illustrative to study the equation of motion for the upper
component. For example, in the nonrelativistic approximation,
the upper spinor dominates and follows the Pauli equation.
Since the effective Hamiltonian of the Pauli equation is
Hermitian, the upper spinor evolves unitarily. As a result,
this approximation ignores the small but nonzero possibility
of finding the negative energy part, i.e., a lower-spinor state.
Here we want to derive a time-convolutionless equation for
the upper spinor by using a systematic projection technique.

To do that, we first use a Feshbach P -Q partition technique
[18–20]. Define the projectors

P ≡
(
1 0
0 0

)
, Q ≡ I − P =

(
0 0
0 1

)
, (2)

where 0 and 1 are both 2 × 2 matrices. The wave function � =
[�1,�2,�3,�4]T can be partitioned as P� = [�1,�2,0,0]
and Q� = [0,0,�3,�4]T , where T stands for matrix trans-
pose. Accordingly, the Hamiltonian can be partitioned into
four 2-by-2 matrices as

H =
(

h̃ R̃

W̃ D̃

)
, (3)

where h̃,R̃,W̃ ,D̃ are nonzero matrix blocks corresponding
to h = PHP, R = PHQ,W = QHP , and D = QHQ. The
exact integral-differential equation for the upper spinor is then
given by

i∂tP|ψ(t)〉 = eϕP|ψ(t)〉 − ic2
∫ t

0
ds{φ(t − s)σσσ ·

× [−eA/c − e(t − s)∇ϕ]}σσσ · πππP|ψ(s)〉

− ic2
∫ t

0
dsφ(t − s)[πππ2 − eσσσ · BBB/c]P|ψ(s)〉,

(4)

where φ(t − s) = exp[i(2mc2 − eϕ)(t − s)]. Depending on
the problem under consideration, we take the dominant part of
the Hamiltonian as H0 and work in the interaction picture with
respect to it, i.e., iψ̇ = HI (t)ψ , where HI (t) = U

†
0 (t)(H −

H0)U0(t),ψ = U
†
0 (t)�, and U0(t) is the propagator associated

with H0. Applying the P -Q partition, and assuming we start
with a particle state, we can formally solve for Qψ(t) and get

∂tPψ(t) = −iPHI (t)Pψ(t) −
∫ t

0
dsC(t,s)Pψ(s), (5)

where C(t,s) = PHI (t)v(t,s)QHI (s) is the memory kernel,
v(t,s) = T̂ {exp[−i

∫ t

s
QHI (τ )dτ ]}, and T̂ is the time-ordering

operator. This is the exact Nakajima-Zwanzig equation for the
state vector Pψ .

We now cast the equation into a time-convolutionless form
by using a time local projection [21]. Writing the formal
solution for Qψ(t) as

[1 − �(t)]Qψ(t) = �(t)Pψ(t),

where

�(t) = −i

∫ t

0
dsv(t,s)QHI (s)Pu†(t,s)

and u(t,s) = T̂ exp[−i
∫ t

s
dτHI (τ )], we get

∂tPψ(t) = K(t)Pψ(t), (6)

where K = −i{PHI (t)P + PHI (t)[1 − �(t)]−1�(t)P} is
the TCL generator. The invertibility of the operator 1 − �(t)
is ensured due to the fact that it is a perturbation of the
identity operator since limHI →0 �(t) = 0. We can now expand
[1 − �(t)]−1�(t) = ∑

k=1 �k(t), up to any order of HI .
As a first application, we consider a particle with very small

mass in a static field, such as the neutrino particle. In this case,
H0 = eϕ + cααα · πππ , and HI (t) = mhI (t), where hI (t) is mass
independent. At the leading order of mass m, we have

∂tPψ(t) = −imPhI (t)Pψ(t),

which, remarkably, has a Hermitian effective Hamiltonian,
generating a unitary propagator. Therefore, for a state ini-
tially prepared in the P space, i.e., Qψ(0) = 0, it will
stay in the P space up to the first order. Especially, in
absence of external field, we explicitly have ∂tPψ(t) =
−2imc2 cos2(c|ppp|t)Pψ(t) as a first-order approximate equa-
tion, where |ppp| denotes the norm of the momentum ppp. The
equation has a plane-wave solution,∫

dpcp(0)eipx−imc2t[1+sinc(2cpt)],

where cp(0) is the initial condition. Up to O(m2), this is in
agreement with the plane-wave solution obtained by directly
solving the Dirac equation.

On the other hand, in the weak relativistic regime, we have
a dominant diagonal Hamiltonian which we take as H0. In
this case, we have H0 = PHP + QHQ = h + D and Hc =
PHQ + QHP = R + W , where h,R,W,D correspond to
the blocks in Eq. (3). Here H0 � Hc, so Hc can be treated
as a correction. In the interaction picture with respect to Hc,
we have HI (t) = U

†
0 (t)HcU0(t), |ϕ(t)〉 = U

†
0 (t)|ψ(t)〉, U0 =

T̂ exp[−i
∫

dsH0(s)] = gh ⊕ gD , where gh and gD are the
propagators associated with the h and D blocks, respectively.
Notice here Hc and therefore HI has no diagonal elements.
The lowest order of �(t) is on the order of HI with �(t) =
−i

∫
dsQHI (s)P , and the lowest-order P |ϕ〉 equation is on

the order of H 2
I and

∂tP|ϕ〉 = −iPHI (t)P|ϕ〉 − iPHI (t)
∑
k=1

�k(t)P|ϕ〉

≈ −iPHI (t)�(t)P|ϕ〉
= −

∫
ds[PHI (t)Q][QHI (s)P]P|ϕ〉.
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It can be readily shown that [PHI (t)Q][QHI (s)P] = PHI (t)HI (s)P . Therefore, at the leading order, we have ∂tPψ(t) =
−[

∫ t

0 dsPHI (t)HI (s)P]Pψ(t). Going back to the original picture and rotating out a trivial global phase exp [−imc2t] for the
whole Hamiltonian, we have

∂tP�(t) =
[
−ieϕ − c2

∫ t

0
ds(σσσ · πππ ) exp[−ieϕ(t − s)](σσσ · πππ ) exp[ieϕ(t − s)] exp[2imc2(t − s)]

]
P�(t). (7)

Using [AAA,ϕ] = 0, [ppp,f (qqq)] = −i∇f (qqq), and the BCH formula exp[A]B exp[−A] = B + ∑∞
m=1[mA,B]/m!, where [mA,B] =

[A,[m−1A,B]] and [1A,B] = [A,B], we can simplify the equation and arrive at

∂tP�(t) = −i

[
eϕ +

(
πππ2

2m
− eσσσ · BBB

2mc

)
[1 − exp(2imc2t)]

]
P�(t)

− i

[
e

4m2c2
[(∇ · ∇ϕ) + i(∇ϕ) · πππ + σσσ · (∇ϕ) × πππ ][1 − exp(2imc2t)(1 − 2imc2t)]

]
P�(t). (8)

We recognize the first line of the Eq. (8) as a non-Hermitian
correction to the Pauli equation with an effective Hamiltonian
Heff = eϕ + πππ2/2m − eσσσ · BBB/2mc since the long-time aver-
age of exp(2imc2t) = 0. The second line is of order e/4m2c2

and is therefore a higher-order correction. The effective
Hamiltonian TCL equation is no longer Hermitian, and tracks
the nonzero possibility of finding the lower-spinor state up to
the leading order. A higher-order equation can be obtained in
the same fashion by including the higher order of �k(t).

III. EXAMPLES

As an illustrative example, we first consider a free relativis-
tic particle, under zero electromagnetic field. The Dirac equa-
tion [Eq. (1)] and the TCL equation [Eq. (8)] are analytically
solvable as planar waves. We choose a Gaussian wave packet
for the upper spinor as f (x) = 4

√
2/x0π exp[−x2/x0 + ip0x],

corresponding to a Gaussian wave packet centered around p0 in
the momentum space. The lower spinor is initially set to zero.
Therefore, any nonzero Q�(qqq,t) means a nonzero probability
of finding the lower spinor at position qqq, which is ignored by
the Pauli equation. We can use 1 − ∫

dqqqP�(qqq,t) to quantify
the total possibility of finding the lower spinor at all positions
at time t , but a more intricate formula including the positional
dependence can be used. To get that, we use the corresponding
Q part of Eq. (8), Qψ(t) ≈ −i[

∫
dsQHI (s)P]Pψ(t). Going

back to the original picture, we have

Q�(t) = −i{(2imc2σσσ · πππ − eσσσ · ∇ϕ)(1 − exp[2imc2t])

− 2imc2t exp[2imc2t]eσσσ · ∇ϕ}P�(t)/(4m2c3).

(9)

We can study the one-dimensional (1D) equation without loss
of generality. In this case, the upper and lower spinor can be
described by one component each, and the eigenvector of the
Dirac Hamiltonian is

U+ =
√

λ + mc2

2λ

(
1

pc/(λ + mc2)

)
,

U− =
√

λ + mc2

2λ

(−pc/(λ + mc2)
1

)
,

with eigenvalues ±λ, where λ =
√

p2c2 + m2c4.
The solution of the TCL equation is given

by

P� =
∫

dp exp[ipx]cp(0)

× exp

[
p2

4m2c2
[exp(2imc2t) − 2imc2t − 1]

]
,

FIG. 1. Density plot for the possibility of finding lower-spinor
state as a function of position x and time t with no electromagnetic
field, m = c = 1, x0 = 10, and p0 = 0. Panel (a) is obtained from
the Dirac equation and panel (b) is obtained from the TCL equations,
Eqs. (8) and (9). A good agreement between the two can be observed.
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where cp(0) is determined by a Fourier transform of the initial
state in the position space.

In Fig. 1 we plot |Q�(x,t)|2 as a function of position x

and time t using the exact solution via the Dirac equation in
panel (a) and via the TCL equation in panel (b), choosing
m = c = 1, x0 = 10, and p0 = 0. This initial state has an
overlap

∫ ∞
−∞ |cn(p)|2dp ≈ 0.0209 with the negative energy

continuum, where cn(p) = 〈U−|ψp(0)〉 and |ψp(0)〉 is the
initial state in momentum space obtained from a Fourier
transform. It can be observed that the TCL equation can
approximate the nonzero probability of finding the lower
spinor predicted by the Dirac equation, a fact that is completely
ignored in the Pauli equation. The slight difference between the
upper and lower panels of Fig. 1 is due to the fact that only the
leading term is calculated for the TCL equation, where higher
orders should be vanishingly small in the weak relativistic
regime. This TCL equation here is more accurate than the
conventional Pauli equation, where the nonzero lower spinor
component is ignored and gives zero probability of finding the
lower spinor states, i.e., |�3|2 + |�4|2 = 0.

FIG. 2. Density plot for the possibility of finding lower-spinor
state as a function of position x and time t with a static potential eϕ =
ax. Parameters used are m = c = 1, a = 0.1, x0 = 10, and p0 = 0.2.
Panel (a) is obtained from the Dirac equation and panel (b) is obtained
from the TCL equation, which is shown to offer a good approximation
of the exact dynamics.

FIG. 3. The expectation value of the position 〈x〉 as a function of
time, with the same parameters as those of Fig. 2. The solid blue line
is obtained exactly through the Dirac equation, the dashed red line
is obtained from the TCL equations, Eqs. (8) and (9), and the dotted
green line is calculated through the conventional Pauli equation. It can
be seen that the TCL equation as a weak-relativistic approximation
more or less follows the exact dynamics, while the result from the
Pauli equation is not very accurate.

As a second example, we choose a linear static linear
field eϕ = ax and numerically solve the exact equation and
the TCL equation. Choosing m = c = 1, a = 0.1, x0 = 10,
and p0 = 0.2,|Q�(x,t)|2 as a function of position x and
time t is shown in Fig. 2, where panel (a) is obtained using
the exact Dirac equation and panel (b) is obtained via the
TCL equations, where a good agreement between the two
is also observed. Therefore, the TCL equation can give us a
more precise two-component description for the relativistic
particle than the Pauli equation. We also numerically calculate
the expectation value of the particle’s position as a function
of time by means of exact solution, TCL solution and the
conventional Pauli equation solution (see Fig. 3). The TCL
equation as a weak-relativistic approximation matches the
exact dynamics better than the Pauli equation where the
nonzero lower spinor state is ignored.

IV. CONCLUSION

In conclusion, by using a Feshbach P -Q partition and a
time-local projection with the Dirac equation, we obtain a two-
component equation for the upper spinor, which can be further
be cast into a TCL form. This alternative approach allows
for a different perspective to study the relativistic dynamics
for spin-1/2 particles. Both the small mass regime and the
weak relativistic regimes are investigated. The leading-order
equation in the small mass regime takes a compact form.
Remarkably, the effective Hamiltonian for the upper spinor
is Hermitian at the leading order, predicting that the particle
will stay in the P space as a first-order approximation. For
the weak relativistic regime, unlike the Pauli equation whose
effective Hamiltonian for the upper spinor is Hermitian, the
TCL equation obtained here is non-Hermitian and correctly
takes into account the nonzero probability of finding the
lower-spinor state.
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