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We consider a measurement of the position of a spot painted on the surface of a trapped nano-optomechanical
sphere. The measurement extracts information about the position of the spot and in doing so measures a
combination of the orientation and position of the sphere. The quantum backaction of the measurement entangles
and correlates these two degrees of freedom. Such a measurement is not available for atoms or ions and provides
a mechanism to probe the quantum mechanical properties of trapped optomechanical spheres. In performing
simulations of this measurement process we also test a numerical method introduced recently by Rouchon
and collaborators [H. Amini, M. Mirrahimi, and P. Rouchon, in Proceedings of the 50th IEEE Conference on
Decision and Control (CDC, 2011), pp. 6242–6247; P. Rouchon and J. F. Ralph, Phys. Rev. A 91, 012118 (2015)]
for solving stochastic master equations. This method guarantees the positivity of the density matrix when the
Lindblad operators for all simultaneous continuous measurements are mutually commuting. We show that it is
both simpler and far more efficient than previous methods.
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I. INTRODUCTION

The optical trapping of atoms, molecules, and even very
small objects is now an established experimental tool used
to explore fundamental physics at nanoscopic length scales
[1–17]. The development of this technology has been a crucial
step in the exploration of the physics of individual atoms and
plays an important role in testing the boundaries of quantum
theory [18–20]. The ability to levitate a single particle of matter
in an electromagnetic field allows the particle to be isolated
from many of the environmental effects that would inhibit the
experimental investigation of subtle quantum effects [20]. One
particular area of active study which relies on optical trapping
is the levitation and cooling of nanospheres [15], nanorods
[21,22], and other nanostructures [23]. By cooling such
objects to very low temperatures, systems should approach
the quantum mechanical ground states of their motional
degrees of freedom. In this regime, one would expect quantum
mechanical effects to appear and any deviations from standard
quantum mechanics to be evident [18–20]. Probing the ability
of quantum mechanics to describe relatively large systems
(relative to single atoms) is an important scientific question,
one that could have implications for the emergent fields of
quantum technology and quantum computing; as quantum
systems grow in size and complexity, any modifications to
the fundamental theory may become limiting factors in the
ability to construct large-scale systems.

The present paper has two principal objectives: the in-
troduction of a measurement interaction for small optically
trapped objects and the demonstration of the advantages of a
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numerical integration method proposed by Rouchon et al. for
stochastic master equations [24,25]. The measurement relies
on the fact that the object is spatially extended, which allows
one part of it to be localized without necessarily localizing
the position of the whole object (that is, without localizing
the center of mass). We demonstrate the power of Rouchon’s
numerical method by employing it for an example system
which contains an order of magnitude more quantum states
than the qubit-based examples for which it has been tested
previously [25]. We find that, for the integration of those
stochastic master equations for which it applies, Rouchon’s
method is significantly more stable and more accurate than the
Euler-Milstein stochastic integration method [26].

In this paper we choose as an example a nanoscopic
dielectric sphere held in a one-dimensional harmonic potential
formed by optical tweezers [1]. For the purposes of modeling
the measurement process, we approximate the system to two
degrees of freedom (one translational and one rotational).
We show that the effect of the backaction of the quantum
measurement is to induce a coupling between the two degrees
of freedom and that this leads to correlations in the motional
states of the sphere. The continuous measurement produces a
continuous stream of measurement results with a necessarily
random component. The dynamics of the sphere induced
by the measurement are described by a stochastic master
equation (SME), an equation of motion for the density
matrix driven by the noise on the measurement results. At
a time t , the SME provides the observer’s complete state
of knowledge of the system, in the form of the density
matrix, ρ(t), based on all of the information provided by
the stream of measurement results obtained up to that time
[27]. The evolution of the density matrix under a continuous
measurement is often called a quantum trajectory [28,29]. The
effect of the coupling is maximized when the energy scales
associated with the two degrees of freedom are similar, and
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FIG. 1. Schematic representation of the dielectric sphere with
fluorescent “spot.” The position of the spot along the x axis is a
combination of the position of the center of the sphere along the x

axis, X, and the angle of the rotation of the sphere in the xy plane, θ .
The spot is shown larger than it would be in an experiment.

the coupling can be controlled by modulating the measurement
interaction, using the information provided by the density
matrix to modify the measurement strength. In addition to the
environmental interaction that mediates the measurement, the
sphere may be coupled to other environments which may cause
thermalization, dephasing, and other forms of decoherence.

We consider a measurement of the position of a small
“spot” of fluorescent material placed on the surface of the
dielectric sphere. This measurement could be implemented,
for example, by exciting the fluorescence of the spot and
imaging the emitted light. A derivation of the usual SME that
describes a continuous measurement for this implementation
can be found in [30]. What is different here is that the position
of the spot has two contributions, one from the position of
the center of mass of the sphere and one from its orientation.
Thus, we measure a sum of these two degrees of freedom,
and this provides the mechanism for entangling them. As an
example, in the extreme case of a very strong measurement,
the location of the spot would be fixed by the Zeno effect
[31–33], allowing the sphere to be in exactly one location for
each orientation, and so the two degrees of freedom would
be perfectly correlated. A much weaker measurement will
generate correlations via a less constrained version of the
same mechanism. While we consider here a measurement of
a single spot on an otherwise “dark” sphere (akin to the “8
ball” in the billiard game pool; see Fig. 1), we note that this
approach to joint measurements of position and orientation
could be generalized: A selection of different patterns (e.g.,
“spots” and “stripes”) on the sphere might be arranged to
produce various types of coupling between translational and
rotational states. We also note that this type of measurement
could not be performed on a trapped atom or an ion, but might
be envisaged for very large molecules, where the position of a
spatially localized excitation could be measured within a much
larger, extended molecular structure.

The second objective of the present work is to apply a
numerical stochastic integration method proposed by Rouchon

et al. [24,25] to a system which is significantly larger, in terms
of its quantum state space, than that studied previously [25].
The integration method is specific to stochastic master equa-
tions and we confirm here that it offers significant advantages:
(i) It requires far fewer time increments to obtain an accurate
solution when compared to more general numerical integration
methods; (ii) it is simpler in that each time increment requires
fewer operator calculations than comparable methods [both (i)
and (ii) reduce the simulation time]; and (iii) it is much more
stable in that, unlike previous methods, it does not produce
unphysical density matrices in which the purity is greater than
unity.

This paper is structured as follows. We start by introducing
the basic optomechanical system, a nanoscopic dielectric
sphere levitated by optical tweezers, and the approximations
required to model the system as two degrees of freedom (one
translational and one rotational). In Sec. III, we introduce
the measurement operator and construct the stochastic master
equation for a continuous measurement. We then describe the
numerical integration method in Sec. IV and the numerical
results in Sec. V. Section VI provides a discussion of
the control of the coupling through the modulation of the
measurement strength, how the properties of the system may
provide a route to investigate the boundary between quantum
and classical physics, and the effect of the approximations used
in realizing the measurements described in the paper. The main
conclusions are then summarized in Sec. VII.

II. OPTOMECHANICAL SYSTEM

The optical trap dates to 1970 with the work of Ashkin
[1]. Optical traps have become common tools in the manip-
ulation of tiny neutral objects, down to individual atoms and
molecules. Such systems have a wide range of applications:
sensors for measuring tiny forces [34], tests of fundamental
science and the laws of gravity [35], and investigation of
the quantum mechanical behavior of macroscopic objects
[18–20,36]. To probe the quantum behavior of nanoscopic
objects rather than individual atoms (i.e., objects that, while
only tens of nanometers across, contain a relatively large
number of atoms), the key is to cool the system down to very
low temperatures so that many of the microscopic excitations
associated with the internal structure can be neglected [15].

A standard experimental system is a small dielectric sphere
that is held in a harmonic trapping potential generated by
optical tweezers and coupled to an optical cavity field. The
cavity field can be used to manipulate its motion (including
feedback cooling) and to measure its position [15,17]. The
general theory and experimental setup for such a system are
described in Refs. [15–17]. The main degrees of freedom of
a nanoscopic dielectric sphere are its three-dimensional (3D)
translational states, its 3D rotational states, and its internal
(vibrational) states. The vibrational states can be shown to have
significantly higher frequencies than the motional states, and
so can be neglected at low temperatures [15]. Direct coupling
between the translational states, described by the operators
X,Y,Z, and the rotational states, described by the total angular
momentum J = j (j + 1), j = 0,1,2, . . ., and the components
Jx,Jy,Jz, are very weak and usually neglected [15,16]. The
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Hamiltonian for this system is given by [15,16]

Ĥ =
∑

k=x,y,z

ω
(k)
t â

†
kâk + Ĵ2

2I
+

∑
ωc

ωcb̂
†(ωc)b̂(ωc) + Hab,

(1)
where the frequencies of the (harmonic) optical trapping
potential are denoted by ω

(k)
t , the operators â

†
k (âk) are the

corresponding raising (lowering) operators for translational
excitations of the center of mass of the sphere in the trap, I =
(2/5)mR2 is the moment of inertia (R is the radius and m the
mass of the sphere), b̂

†
k(ωc) (b̂k(ωc)) are the raising (lowering)

operators for the optical cavity modes with frequency ωc, and
Hab is the coupling between the center-of-mass modes and the
cavity modes. We have set � = 1 for simplicity.

The translational motion associated with the sphere’s
center of mass within the potential generated by the optical
tweezers can be represented by a 3D harmonic trap, where,
for convenience, we assume that the motion in the Y and the
Z directions is sufficiently constrained for the problem to be
reduced to one spatial dimension (motion in the X direction).
In practice, the potential generated by the optical tweezers is
asymmetric and one motional state will have a lower frequency
than the other two, and often it is this axis which is aligned
to the optical cavity [15]. The rotational states are more com-
plicated, because, in addition to the familiar atomic angular
momentum states for a total angular momentum J, a rigid
body has an additional angular momentum J ′ corresponding
to the angular momentum component in body fixed axes (as
opposed to the space fixed axes components Jx,Jy,Jz) [37].
This means that each of the angular momentum components
corresponding to Jx,Jy,Jz are multiply degenerate, giving a
total number of angular momentum states of (2j + 1)2 rather
than the more familiar (2j + 1) states. However, we will
reduce the rotational degrees of freedom to one by making an
approximation corresponding to J → ∞ [38] so that we are
left with one angular momentum operator Jz and one angular
variable θ . In this case, the multiply degenerate angular states
corresponding to the body fixed axes do not couple to the one
remaining angular degree of freedom and can be neglected
for simplicity. With these approximations, and dropping the
explicit dependence on X and ωc, the standard optomechanical
Hamiltonian for the system is given by [39]

Ĥ = ωt â
†â + ωcb̂

†b̂ + g0â
†â(b̂† + b̂) + Ĵz

2

2I
, (2)

where the coupling Hamiltonian is expressed in terms of a
coupling constant g0, a number operator â†â, and an cavity
position operator (b̂† + b̂),

Hab = g0â
†â(b̂† + b̂).

For the sake of simplicity, we also remove the explicit
optical cavity from the Hamiltonian. However, we later couple
the center-of-mass motion to a dissipative thermal bath to
represent all of the unprobed (i.e., unmeasured) degrees of
freedom present in the system. The reduced Hamiltonian for
the one-dimensional center-of-mass motion and quasi-one-
dimensional rotational motion is then given by

Ĥ � ωt â
†â + Ĵz

2

2I
. (3)

The parameters that we use for the system are based on those
given in Ref. [15]: a fused silica sphere with a density of
2201 kg/m3, but with a significantly smaller sphere radius
of around 1.5–3 nm (corresponding to approximately 10–20
atomic radii), and optical tweezers with a resonant frequency of
ωt = 2π × 135 kHz. The size of the sphere is smaller to match
the relative energy scales of the translational and rotational
energies of the tweezers and the angular momentum of the
sphere: rotational energies, ERot � �

2/(2I ), and translational
energies, ETr � �ωt . This maximizes the effect of the coupling
or energy exchange between the two degrees of freedom.
An alternative would be to use a larger sphere and vary the
frequency of the optical tweezers.

III. MEASUREMENT-INDUCED COUPLING

A standard approach to the measurement of a dielectric
sphere in an optical trap would be to couple to the sphere’s
center-of-mass motion via a laser cavity [15]. The measured
position of the sphere can then be used as an input into
a feedback cooling mechanism [15,17]. In this paper, we
envisage an alternative measurement, where the sphere has
a “bright” spot (possibly due to a fluorescent atom or a few
fluorescent atoms on its surface) and it is the location of the
bright spot that is measured (e.g., via an optical microscope).
Using a fluorescent spot would have the advantage that the
rate at which the measurement extracts information could
be modulated by varying the illumination of the sphere. We
assume that any illumination is at a sufficiently low wavelength
and low intensity that recoil of the sphere can be neglected.

The dynamics of the sphere under the continuous measure-
ment of the spot’s position is described by the usual SME for
a continuous measurement, namely [27,30],

dρc = −i[Ĥ ,ρc]dt − k[x̂,[x̂,ρc]]dt

+
√

2k(x̂ρc + ρcx̂ − 2Tr[x̂ρc]ρc)dW, (4)

where x̂ is the operator of the spot’s position, k is the
measurement strength, ρc is the density matrix for the sphere,
and dW is calculated from the stream of measurement results,
y(t), using

dW (t) =
√

8k(dy − Tr[x̂ρ]dt), (5)

with dy = y(t + dt) − y(t). The subscript “c” in our notation
for the density matrix denotes the fact that the density matrix
is the observer’s state of knowledge based on the stream of
measurement results (the conditioned density matrix). If the
observer discards the measurement results, then her state of
knowledge is instead given by taking the SME and averaging
over the stochastic increment dW to obtain the master equation

ρ̇ = −i[Ĥ ,ρ] − k[x̂,[x̂,ρ]]. (6)

Because the spot is on the surface of the sphere, the position
of the spot is a function of the position of the center of the

sphere, X̂ =
√

�

2mωt
(â† + â), and the angle of rotation of the

sphere, θ̂ . Specifically, we have

x̂ = X̂ + RŜ, (7)
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where the operator Ŝ represents the sine of the angular variable
θ and it obeys the commutation relation [38]

[Ŝ,Jz] = iĈ, (8)

where the Ĉ operator represents the cosine of the angle.
Technically, in order for the measured observable, x̂, to be
given by Eq. (7) the sphere would need to be transparent at
the wavelength used for the illumination. This is to ensure that
the position of the spot could be measured even when on the
“back” of the sphere. An alternative would be to have two
spots, one on each side, but the operator would then represent
| sin θ | rather than the sine operator. However, this addition
complicates the scenario unnecessarily.

In addition to the measurement given above we include
the effects of the thermal environment on the center-of-mass
motion of the sphere [40]. The action of an environment is
very similar to that of a continuous measurement; this action
is described by adding terms to the master equation that have
the Lindblad form, and these are equivalent to a continuous
measurement in which the “observable” being measured is a
non-Hermitian operator and the results of the measurement
are averaged over. In fact, it is, in theory, possible to turn the
environmental interaction into a continuous measurement by
monitoring the environment, but this is not always practical.
With the addition of the thermal bath the SME describing the
sphere becomes

dρc = −i[Ĥ ,ρc]dt − k[x̂,[x̂,ρc]]dt

+
√

2k(xρc + ρcx − 2Tr[x̂ρc]ρc)dW

+
∑
r=2,3

{
L̂rρL̂†

r − 1

2
(L̂†

r L̂rρ + ρL̂†
rLr )

}
dt, (9)

in which

L̂2 =
√

(n̄ + 1)ωt

Q
â, L̂3 =

√
n̄ωt

Q
â†. (10)

Here Q is the quality factor of the harmonic potential and
n̄ = [exp(−�ωt/kBT ) − 1]−1, where kB is Boltzmann’s
constant and T is the temperature of the environment.

The thermal environment introduces decoherence, dephas-
ing, and dissipation into the dynamics of the sphere, and, in
general, will cause an initially pure state to evolve into a mixed
state. This limits our ability to purify the state of the system via
the measurement of x̂. At some level all physical systems are
coupled to a thermal bath, even if weakly. We set the quality
factor of the harmonic potential to be Q = 100 and T = 5 μK
to ensure that only a few lowest-lying energy states will be
populated by the thermal noise. This choice also reduces
the computational demands of the simulations by reducing
the dimension of the required state space.

IV. NUMERICAL METHOD

All Markovian stochastic master equations for quan-
tum systems can be written in the general form

[27,29]

dρc = −i[Ĥ ,ρc]dt

+
m∑

r=1

{
L̂rρcL̂

†
r − 1

2
(L̂†

r L̂rρc + ρcL̂
†
r L̂r )

}
dt

+
m∑

r=1

√
ηr [L̂rρc + ρcL̂

†
r − Tr(L̂rρc + ρcL̂

†
r )]dWr,

(11)

where each operator L̂r corresponds to a continuous mea-
surement or the action of an unmonitored or unprobed
environment. The parameters ηr are called the measurement
efficiencies. We have taken dWr to be real Wiener increments
(such that 〈dWr〉 = 0 and dWrdWr ′ = δr,r ′dt , where δr,r ′ is
the Kronecker δ symbol). Setting ηr = 1 describes a perfectly
efficient measurement in which all available information is
collected and ηr = 0 corresponds to an unmonitored environ-
ment. The stream of measurement results for those values of r

that are monitored are given by yr in which

yr (t + dt) = yr (t) + √
ηj Tr(L̂rρc + ρcL̂

†
r )dt + dWr. (12)

The SME for our system, Eq. (9), is obtained from the above
general form by setting m = 3, defining L2 and L3 as above,
choosing

L1 =
√

2kx̂, (13)

and setting η1 = 1 and η2 = η3 = 0.
For a given initial state, a system Hamiltonian H , and a

set of environmental operators L̂r , the SME may be integrated
using standard numerical stochastic integration methods, e.g.,
the Euler-Maruyama method, which is weakly convergent to
first order, or the Euler-Milstein method, which is strongly
convergent to first order [26]. Here we adopt instead a
numerical integration method specifically developed for SMEs
[24,25] that we refer to as Rouchon’s method.

When all of the operators L̂r for which ηr 	= 0 are mutually
commuting, Rouchon’s method is convergent to first order
and it guarantees the positivity of the conditional density
matrix (up to numerical rounding errors). It has this property
because it is based on the representation of the SME in terms
of a positive operator-valued measure (POVM) [27,29]. For
Rouchon’s method the increment to the conditional density
matrix for the time step from tn = n�t to tn+1 = (n + 1)�t is
given by �ρ(n)

c = ρ(n+1)
c − ρ(n)

c , where

ρ(n+1)
c = M̂nρ

(n)
c M̂

†
n + ∑m

r=1(1 − ηr )L̂rρ
(n)
c L̂

†
r�t

Tr
[
M̂nρ

(n)
c M̂

†
n + ∑m

r=1(1 − ηr )L̂rρ
(n)
c L̂

†
r�t

] (14)

and M̂n is given by

M̂n = I −
(

iĤ + 1

2

m∑
r=1

L̂†
r L̂r

)
�t

+
m∑

r=1

√
ηrL̂r

[√
ηrTr

(
L̂rρ

(n)
c + ρ(n)

c L̂†
r

)
�t + �Wr (n)

]

+
m∑

r,s=1

√
ηrηs

2
L̂r L̂s[�Wr (n)�Ws(n) − δr,s�t], (15)
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where the �Wr ’s are independent Gaussian variables with zero mean and a variance equal to �t . The stochastic increment �Wr

is only half order in �t , so terms proportional to (�Wr )2 need to be retained [26].
For comparison, the Euler-Milstein increment for a finite time step �t is [26,41]

�ρc = −i[Ĥ ,ρc]�t +
m∑

r=1

{
L̂rρcL̂

†
r − 1

2
(L̂†

r L̂rρc + ρcL̂
†
r L̂r )

}
�t +

m∑
r=1

√
ηr [L̂rρc + ρcL̂

†
r − Tr(L̂rρc + ρcL̂

†
r )]�Wr

+
m∑

r,s=1

√
ηrηs

2
(L̂r L̂sρc + ρcL̂

†
r L̂

†
s + L̂sρcL̂

†
r + L̂rρcL̂

†
s − Tr(L̂r L̂sρc + ρcL̂

†
r L̂

†
s + L̂sρcL̂

†
r + L̂rρcL̂

†
s)ρc

− Tr(L̂sρc + ρcL̂
†
s)(L̂rρc + ρcL̂

†
r ) − Tr(L̂rρc + ρcL̂

†
r )(L̂sρc + ρcL̂

†
s)

+ 2Tr(L̂rρc + ρcL̂
†
r )Tr(L̂sρc + ρcL̂

†
s)ρc)(�Wr�Ws − δr,s�t), (16)

where we have written ρc and �ρc as shorthand for ρ(n)
c and

�ρ(n)
c . The Euler-Milstein increment guarantees neither the

positivity nor the Hermiticity of the conditional density matrix.
In practice, we have found that Rouchon’s method [24,25]
provides more accurate state estimates with fewer time steps
per period of time and involves fewer calculations per time
step than the Euler-Milstein method. For the cases modeled in
this paper, typical savings in computational time are a factor
of four or five for the increment (9) over the increment (16).

As noted above, Rouchon’s increment only guarantees
first-order convergence and the positivity of the density matrix
when all the operators Lr for which ηr > 0 are mutually
commuting. This condition of “commuting measurements” is
fulfilled for our system, but it would be broken if η2 and η3 were
nonzero. To examine the effect of breaking this condition, we
calculated approximate corrections to the stochastic integrals
that would need to be added to Rouchon’s increment to
guarantee first-order convergence when η2 = η3 = 1 [42].
These corrections were found to be at least an order of
magnitude smaller than the errors shown in Fig. 2. This
indicates that Rouchon’s method may also perform favorably
when the SME contains noncommuting measurements.

The results presented in Sec. V were generated using Rou-
chon’s method. The method was implemented using 15 angular
momentum states Jz = −7, . . . , + 7 and a minimum of 11
harmonic oscillator states for the optical tweezers (although

FIG. 2. Accuracy comparison for Rouchon’s stochastic integra-
tion method (solid blue line) versus the Euler-Milstein method
(dashed red line) for sphere radius R = 1.75 nm and k = 0.005ωt .
Other parameter values for the optical tweezers and the dielectric
sphere are given in the text.

slightly larger oscillator bases are required in some cases; see
below). This gives a minimum of 165 states formed from the
tensor product of 11 translational and 15 rotational states. The
resulting conditional density matrix, ρc, is a 165 × 165 matrix
with complex off-diagonal elements and is more than 40 times
larger than the 4 × 4 two-qubit example studied in [25].

We now compare the accuracy of Rouchon’s method against
the standard Euler-Milstein method, Eq. (16), and display the
results in Fig. 2. To evaluate the accuracy of both methods,
we first generate a very accurate reference solution by using
either integration method with a time step of �t = Tosc/104,
in which Tosc = 2π/ωt is the period of the oscillator formed by
the optical tweezers. We then perform simulations with both
methods using a range of larger time steps and compare the
resulting evolution of the density matrix, ρc(t), to that given
by the reference solution. Denoting the latter by ρ0(t), we
compare the solutions by calculating the “infidelity” between
ρc and ρ0. The infidelity is defined as ε = 1 − F , where F is
the fidelity and is given by [43]

F = F (ρ0,ρc) = |Tr[
√√

ρcρ0
√

ρc]|2.

Our measure of the error of a solution ρc(t) is the infidelity,
ε, between ρc(t) and ρ0(t), averaged over the duration of the
simulation.

From Fig. 2 we see that Rouchon’s method offers sig-
nificantly higher accuracy than the Euler-Milstein method
for larger time steps. For our example, Rouchon’s method
produces an acceptably accurate solution using as few as 500
time steps per oscillator period, whereas the Euler-Milstein
method requires at least this number merely to produce a
solution that is reasonably stable and requires approximately
2500–5000 time steps per oscillator cycle to provide a solution
that does not significantly break the condition that P =
Tr[ρ2] � 1. As noted in [25], Rouchon’s method automatically
enforces this condition.

We also found that for Rouchon’s method the increment
�ρc was 8–10 times faster to calculate than that for the Euler-
Milstein method. Nevertheless, it is important to note that this
speed does depend on the precise method used to implement
the calculation, and the implementations used here may not
have been optimal for either method.
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V. NUMERICAL RESULTS

The parameter space for our system is quite large, so we
concentrate on the regime in which the interaction between the
translational and rotational states is expected to be significant,
that is, where the energy scales for the two degrees of freedom
are comparable and any effect of the measurement interaction
would be expected to be maximized.

As discussed above, we expect the measurement to both
entangle and correlate the position and orientation of the sphere
in the conditioned state. By virtue of the continual extraction
of information, the measurement will also purify the state and
will drive both degrees of freedom with backaction noise, noise
that, in this case, is correlated between the degrees of freedom.
This backaction noise will increase the energy associated with
the sphere’s motion, but we can expect that the addition of
thermal noise from the unprobed environment will act to
reduce the purity of the conditioned state and any correlations
between the position and the orientation of the sphere. We now
examine the entanglement, classical correlations, purity, and
energy of the conditioned state.

As an indication of the level of entanglement between the
translational and rotational degrees of freedom we use the
“negativity” of the density matrix. The negativity is defined in
the following way. Given a joint density matrix, ρAB, for two
degrees of freedom, A and B, the partial transpose of ρAB with
respect to A is denoted by ρ

T(A)
AB . The negativity of ρ is then

[44]

N (ρ) = ||ρT(A)||1 − 1

2
, (17)

in which || · ||1 is the trace norm.
The classical correlations between the two degrees of

freedom can be quantified by the mutual information. Denoting
the von Neumann entropy of a density matrix ρ by S(ρ), the
mutual information may be written as

I (ρAB) = S(ρA) + S(ρB) − S(ρAB), (18)

where ρAB is the joint density matrix and ρA (respectively, ρB)
is the density matrix obtained from ρAB by taking the partial
trace over B (respectively, A).

In the simulations, we start the system in the steady state
that the master equation possesses in the absence of the
measurement. This means that the initial state is a tensor
product state of the ground state for the rotational degree of
freedom (that is, the zero eigenstate of Jz) and a thermal state
for the translational degree of freedom. We set the temperature
of the thermal state to be T = 5 μK.

In Fig. 3 we plot the negativity generated between the two
degrees of freedom by the measurement interaction in the
absence of the thermal environment, where this negativity is
averaged over all trajectories. While the entanglement may
have an important role in distinguishing coherent quantum
measurements from uncorrelated quantum measurements and
classical measurements (see below), the amount of entangle-
ment created by the measurement is relatively small in view
of the number of states involved in the joint dynamics. Our
interest in the negativity is not only as a measure of the
entanglement, but as an indication of the size of the effect
of the coupling induced by the measurement on the dynamics

FIG. 3. Average negativity for dielectric sphere versus ratio
between the rotational and translational energies, ERot/ET r for k =
0.005ωt and (inset) average negativity versus radius of the dielectric
sphere R. Error bars shown are 1σ fluctuations about the mean value.
The mean and standard deviation were calculated in the steady state
(after 100 oscillator cycles) and over 200 individual realizations for
each point. Other parameter values for the optical tweezers and the
dielectric sphere are given in the text.

of the sphere. Figure 3 shows that the average negativity is
maximized when the rotational and translational energy scales
are comparable, as expected, and the error bars show that there
is appreciable variability in the level of negativity, and hence
entanglement, between the two degrees of freedom. As seen
from the inset in Fig. 3, the negativity is maximized when the
radius of the dielectric sphere is around R = 1.75 nm, and so
we use this value in what follows. These were obtained using
Rouchon’s method with 500 integration steps per oscillator
period Tosc.

In Fig. 4 we plot both the average negativity and the average
mutual information between the two degrees of freedom as
functions of time. We see that the quantum correlations,

FIG. 4. Average mutual information (crosses) and average neg-
ativity (circles) for a dielectric sphere as a function of time for
k = 0.005ωt . Sphere radius is fixed to be R = 1.75 nm so that
ERot/ETr � 1, and averages are calculated over 500 realizations with
(dashed red line) and without the thermal environment (solid blue
line).
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FIG. 5. Average purity for dielectric sphere as a function of time
for k = 0.005ωt . Sphere radius is fixed to be R = 1.75 nm so that
ERot : ETr � 1. Averages are calculated with (dashed red line) and
without the thermal environment (solid blue line). (Inset) The purity
of an example trajectory, with and without the thermal environment.

indicated by the negativity, and the classical correlations are
essentially proportional to each other.

We consider next the purity of the evolving conditional
density matrix. Since the translational degree of freedom starts
in a thermal (mixed) state, in the absence of the thermal noise
the action of the measurement is to purify this state. Without the
thermal noise, for all realizations of the measurement process
the system tends towards a purity of unity, but the evolution
is stochastic. We show this behavior in Fig. 5. Adding the
coupling to the dissipative thermal environment via L̂2 and L̂3

reduces the asymptotic value of the average purity to P̄ = 0.7,
indicating that information regarding the evolution of the sys-
tem is lost to the environmental degrees of freedom. The purity
of the individual realizations (or quantum trajectories) is still
stochastic, but not limited to values around P = 0.7. The purity
of the individual realizations can approach P = 1, even if the
value does not remain there for very long (see Fig. 5 inset).

In Fig. 6 we plot the average energy as a function of time
for the cases shown in Fig. 5. The average energy, Ē, is
especially simple to calculate because it is a linear function
of the density matrix. Instead of calculating trajectories using
the SME we need merely integrate the master equation to
obtain the averaged state, ρ, and use Ē = Tr[ρĤ ]. From Fig. 6
we see that the average energy of each subsystem increases
due to the effect of the measurement operator x̂ = (X̂ + RŜ).
The partial localization of the center-of-mass position through
the use of the X̂ operator and an associated reduction in
the variance of the state cause the energy to increase as the
width of state is reduced relative to that of the initial thermal
mixed state. A similar process occurs for the rotational states
due to the partial localization of sin θ . In the absence of the
thermal environment, the energy for both the translational and
the rotational degree of freedom grow linearly in time. The
addition of the thermal environment limits the energy growth
in the translational degree of freedom, but not the rotational
degree of freedom. This produces a steady state on average for
the oscillator, where the energy increase due to the localizing

FIG. 6. Average energy for dielectric sphere as a function of
time for k = 0.005ωt . Sphere radius is fixed to be R = 1.75 nm so
that ERot : ETr � 1. Average energies are calculated with the thermal
environment, translational (dashed red line) and rotational (dashed
red circles); and without the thermal environment, translational (solid
blue line) and rotational (dotted blue pluses).

effect of the measurement is balanced by the dissipative effect
of the environment. The measurement strength and parameters
associated with the thermal environment (the strength of the
coupling parameter k, and the temperature T and quality factor
Q) are such that the system would be expected to approach
a steady state after between 50 and 100 oscillator cycles; the
average purity, the average negativity, and the translational
mode energy all reach a steady state value after around 50
cycles of the simulation.

The dissipative effect of the environmental operators also
has a numerical benefit since it limits the number of states
required in the simulation. As the energy increases, more and
more oscillator states are required to solve the SME. In fact, to
produce the linear energy growth for the translational degree
of freedom shown in Fig. 6 requires up to 25 oscillator states in
the numerical basis (giving a 375 × 375 density matrix). The
use of thermal environment operators allows the truncation of
the oscillator basis to 11 states without losing the accuracy of
the numerical solutions. The energy growth of the rotational
states used in the simulations would also ultimately be limited
by the finite basis used in the calculations. In practice, it
could itself be coupled to additional environmental operators.
However, the simulation of a thermal environment for such
a subsystem is more problematic because the energy level
spacings are not uniform and it would require coupling the
states to an environment which could contain a number of
different frequencies and dissipation mechanisms.

VI. DISCUSSION

The solution of the SME provides, in the form of a density
matrix, a complete description of the observer’s knowledge of
the sphere’s motion that she/he obtains from the continuous
measurement. In the presence of a thermal environment, the
density matrix contains some classical uncertainty (it will,
in general, be mixed), but it represents everything that the
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observer knows about the motion of the sphere at each point in
time for a given measurement record, including any classical
and quantum correlations. The reconstruction of quantum
trajectories from measurement records has been demonstrated
experimentally, albeit for systems with a smaller number of
basis states [45,46]. The reconstruction of a quantum trajectory
from an experimental measurement record using Rouchon’s
method has also been demonstrated and is found to be in
good agreement with quantum tomography performed on the
final state [47]. Given these developments, it is likely that
more complex quantum states of individual systems will be
reconstructed by solving the SME in the near future. The
density matrices obtained in this way will provide estimates of
the purity and the quantum and classical correlations between
different degrees of freedom. A benefit of this approach would
be the ability to use the state estimates as part of a feedback
loop to control the behavior of the quantum system [28,29].

In the scenario we have considered here, we did not apply
classical forces to the sphere specifically to control its motion.
As previously noted, it is possible to introduce an optical cavity
which can be used to manipulate the behavior of the dielectric
sphere, for example, to implement feedback cooling [15,17].
In our description of the trapped sphere we have removed the
explicit optical cavity to simplify the system and to make the
integration of the SME tractable. The inclusion of a cavity
could also provide a direct measurement of position, and this
could affect the combined measurement of the position and
rotation by localizing X independently. In the absence of a
cavity field, one can apply a feedback process by adjusting
the measurement strength, k, based on the current motion
of the sphere. For example, if the measurement interaction
is turned off at some point during the evolution, the two
degrees of freedom will evolve independently, ignoring the
very weak indirect coupling noted above [15]. Since the
translational mode is coupled to a thermal bath, removing
the measurement will cause the translational state to relax
back to a thermal mixed state. In such situations, any quantum
correlations between the translational and rotational states will
decay very rapidly and classical correlations will decay more
slowly. This can be seen in Fig. 7, where the average negativity
vanishes within 15–20 oscillator cycles and the mutual entropy
decays slowly over more than 50 cycles. Eventually, the two
degrees of freedom will evolve towards a separable state, in
which the translational state is a thermal mixed state and the
rotational state is “frozen” at the point that the measurement
was turned off. Typically, the rotational states generated by
the measurement interaction are equal superpositions of ±jz

eigenstates of the Ĵz operator; the average value of jz grows
with time, resulting in the linear energy growth seen in Fig. 6.
While the final state could be controlled using a simple
feedback process in which the measurement is turned on
and off, this does not seem like a very efficient procedure
since one would have to wait for the final state to occur
stochastically (preferably with high purity) before turning off
the measurement. In view of this, we note that there may
be more sophisticated ways to modulate the measurement
strength that would produce desired states more predictably
or efficiently [48].

In addition to feedback control, the measurement-induced
coupling we have considered could have applications in the

FIG. 7. Average mutual information (crosses) and average nega-
tivity (circles) for a dielectric sphere as a function of time with k =
0.005ωt for t < 50Tosc (measurement “on”) and k = 0 for t > 50Tosc

(measurement “off”). Sphere radius is fixed to be R = 1.75 nm so
that ERot : ETr � 1, and averages are calculated over 500 realizations
with the thermal environment.

verification of quantum mechanics in extended systems (i.e.,
systems that are “large” compared to single atoms and ions).
In particular, the use of a continuous measurement model
and the derivation of an accurate quantum trajectory require
that the measurement operator accurately reflect the effect of
the measurement on the quantum system. If the measurement
model is inaccurate, or the Hamiltonian evolution is incorrect,
the estimated state ρc derived from the classical measurement
results y(t) will deviate from the true state of the system.
One can test the deviation by using tomography to reconstruct
the final state. Experiments to reconstruct quantum trajecto-
ries have already demonstrated such agreement for “small”
systems [45–47].

The measurement of the operator x̂ = X̂ + RŜ is a quantum
mechanical process, relying on the coherence of the coupled
measurement. The energy growth noted in Fig. 6 is a result
of the quantum backaction associated with the measurement
of the two degrees of freedom, but it does not show whether
the measurement was coherent or not. There is more than
one way to make a simultaneous measurement of two
observables, or equivalently, more than one way to model a
simultaneous measurement. The alternative models include (1)
making separate measurements of each observable—LX ∝ X̂

and LRS ∝ RŜ—thus obtaining two separate measurement
records—yX(t) and yRS(t), respectively—and independent
state updates and (2) making the same separate measurements
but combining the two measurement records so that the
observer has access to only the single record ỹ(t) = yX(t) +
yRS(t). The evolution of ρc predicted by the SME would
be different for each of the three different measurement
models: (i) x̂ = X̂ + RŜ → y(t), (ii) X̂,RŜ → yX(t),yRS(t),
and (iii) X̂,RŜ → ỹ(t) = yX(t) + yRS(t). It could be rigor-
ously verified that an experiment was performing a coherent
measurement of x̂ [model (i)], for example, by comparing
the final states predicted by the three models and com-
paring these, via hypothesis testing [49,50], to the state
obtained experimentally using tomography. All three cases
would show the same energy growth but the quantum and
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classical correlations would be different. Case (i) would show
quantum and classical correlations, as discussed above. For
case (ii), the respective quantum states would purify under
the action of the measurements, but the subsystem states
would remain separable and the correlations (including the
negativity) would be zero. By contrast, case (iii) would predict
classical correlations between the translational and rotational
subsystems, but not quantum correlations; i.e., the negativity
of the reconstructed state would be zero. A similar situation
would occur with purely classical measurements. Classical
correlations could arise from a combined measurement on a
single system, but quantum correlations would not occur. The
appearance of entanglement would be evidence of quantum
mechanical behavior and a coherent measurement process. A
nonzero value for the negativity from quantum tomography
of the final state would provide such evidence, even if the
value of the negativity was relatively small. These differences
between quantum measurements and the ability to differen-
tiate between different types of correlated and uncorrelated
measurements may provide interesting and nontrivial litmus
tests for alternative macroscopic quantum theories [18–20].

Last, we consider the approximations we have used to
simplify the dynamics of the dielectric sphere to render the
stochastic integration of the SME tractable: the reduction
to one translational and one rotational degree of freedom.
The key to each of these approximations is a separation of
energy scales for the various excitations. Treating the optical
trap and tweezers as a one-dimensional harmonic potential
is fairly standard [15–17], as is neglecting the very weak
coupling between the rotational and translational states [15].
More problematic is the reduction of the rotational degrees
of freedom to one dimension. The approximation we have
used is based on a mathematical limit [38]. While it allows
a simple angular momentum basis to be used in calculations,
this basis may not completely represent the three-dimensional
nature of rotations of a dielectric sphere. Nevertheless, spheres
are not the only type of extended structures to be trapped
in optomechanical levitation experiments. Other asymmetric
structures, such as rods or tops, would provide a physical
mechanism that separates the energy scales of the different
angular momentum states [21–23] and could allow the same
type of measurements to be performed. The internal states,
however, may be even more problematic than the rotational
states. The vibrational states of the sphere have a much higher
energy than those of the center-of-mass motion [15], but there
are other issues that already present significant challenges in
experimental systems. A trapped dielectric sphere tends to
scatter photons, which causes heating of the motional states

and the material of the crystal itself [17]. This scattering could
itself act as a form of position measurement and thus affect
the dynamics induced by the measurement proposed in this
paper. However, given the present interest in demonstrating
the quantum behavior of macroscopic objects, and in probing
the quantum-classical boundary, addressing these issues is a
focus of current experimental efforts.

VII. CONCLUSIONS

In this paper we have studied a simple model of a form
of measurement for an optomechanically levitated dielectric
sphere. This measurement exploits the spatially extended
nature of the sphere to provide a coupling between the
rotational and the translational states of the system through
the localization of a spot on the surface of the sphere.

The stochastic master equation that describes the evolution
of the system under the continuous measurement was solved
numerically using a method proposed by Rouchon and
collaborators that was specially designed for these types of
equations [24,25]. In doing so we have confirmed, for systems
much larger than those previously considered, that Rouchon’s
method provides significant computational advantages com-
pared to the standard Euler-Milstein method.

We have shown that the effect of the continuous measure-
ment on the sphere was to generate correlations between the
two degrees of freedom. We found that the growth of energy
in the translational degree of freedom was limited by the intro-
duction of a thermal environment, which reduced but did not
remove the quantum and classical correlations between the two
subsystems. We also discussed briefly the possibility of using
the measurement in a feedback loop to control the motion.

The effect of the measurement proposed in this paper is
quantum mechanical in nature, arising from the backaction
of the measurement on the evolution of the system (en-
ergy growth) and the correlated or coherent nature of the
measurement interaction. As such, the interaction provides a
method to explore the quantum-classical interface and possible
deviations from standard quantum mechanics in large systems.
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