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Exact form of the exponential Foldy-Wouthuysen transformation operator for
an arbitrary-spin particle
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The exact exponential Foldy-Wouthuysen transformation operator applicable for a particle with an arbitrary
spin is derived. It can be successfully utilized for verifying any Foldy-Wouthuysen transformation method based
on the exponential operator. When a verified method is relativistic, the relativistic exponential operator should be
expanded in the semirelativistic power series. The obtained exponential operator can be also used for a derivation
of the Foldy-Wouthuysen Hamiltonian and its comparison with Hamiltonians found by other methods. This
procedure makes it possible to check the validity of any other method of the Foldy-Wouthuysen transformation.
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The Foldy-Wouthuysen (FW) transformation [1] restoring
the Schrödinger form of relativistic wave equations is one
of the basic methods of contemporary quantum mechanics
(QM). An importance of the FW transformation for physics
has significantly increased nowadays due to the great progress
of the art of analytic computer calculations. A great advantage
of the FW representation is the simple form of operators
corresponding to classical observables. In this representation,
the Hamiltonian and all operators are even, i.e., block diagonal
(diagonal in two spinors). The passage to the classical limit
usually reduces to a replacement of the operators in quantum-
mechanical Hamiltonians and equations of motion with the
corresponding classical quantities. The possibility of such a
replacement, explicitly or implicitly used in practically all
works devoted to the FW transformation, has been rigorously
proved for the stationary case in Ref. [2]. Thanks to these
properties, the FW representation provides the best possibility
of obtaining a meaningful classical limit of relativistic QM not
only for the stationary case [1–4] but also for the nonstationary
one [5,6].

Various properties and applications of the FW method
have been considered in Refs. [7–9]. The FW transformation
is widely used in electrodynamics [10,11], quantum field
theory [12], optics [13–15], condensed matter physics [16],
nuclear physics [6,17], gravity [18–20], in the theory of the
weak interaction [21], and also in quantum chemistry (see
the books [22,23] and the reviews [24–31]). It is applicable
not only for Dirac fermions but also for particles with any
spins [13,32–38].

The general form of an initial Hamiltonian for arbitrary-spin
particles is given by [39]

H = βM + E + O, βM = Mβ, βE = Eβ,

βO = −Oβ. (1)

The even operators M and E and the odd operator O
are diagonal and off-diagonal in two spinors, respectively.
Equation (1) is applicable for a particle with any spin if the
number of components of a corresponding wave function is
equal to 2(2s + 1), where s is the spin quantum number. For a
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Dirac particle, the M operator usually reduces to the particle
rest energy mc2:

HD = βmc2 + E + O. (2)

The Hamiltonian H is Hermitian for fermions and pseudo-
Hermitian (more exactly, β-pseudo-Hermitian, H = H‡ ≡
βH†β) for bosons. We assume that the operators βM,E ,
and O also possess this property. The transformation operator
for bosons is therefore β-pseudounitary (U † = βU−1β). We
mention the existence of bosonic symmetries of the Dirac
equation [40].

The FW transformation operator can be presented in the
two forms, nonexponential (UFW) and exponential (SFW):

�FW = UFW�, UFW = exp (iSFW). (3)

This operator transforms the initial Hamiltonian H to the
FW representation:

HFW = i�
∂

∂t
+ UFW

(
H − i�

∂

∂t

)
U−1

FW. (4)

The FW Hamiltonian obtained with this operator is even.
The FW transformation vanishes either lower or upper spinor
for positive and negative energy states, respectively.

There is an infinite set of representations different from
the FW representation whose distinctive feature is a block-
diagonal form of the Hamiltonian. The FW transformation is
uniquely defined by the condition that the exponential operator
SFW is odd,

βSFW = −SFWβ, (5)

and Hermitian [41,42] (β-pseudo-Hermitian for bosons). This
condition is equivalent to [41,42]

βUFW = U
†
FWβ. (6)

Eriksen [41] has found the exact expression for the
nonexponential FW transformation operator. It is convenient
to present this expression in the form [4],

UE = UFW = 1 + βλ√
2 + βλ + λβ

, λ = H
(H2)1/2

. (7)
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The initial Hamiltonian operator H is arbitrary. It is easy to
see that [41]

λ2 = 1, [βλ,λβ] = 0, [β,(βλ + λβ)] = 0, (8)

where [. . . , . . . ] means a commutator.
The equivalent form of the operator UE [4] shows that it is

properly unitary (β-pseudounitary for bosons):

UE = 1 + βλ√
(1 + βλ)†(1 + βλ)

. (9)

The Eriksen formula is an important achievement of the
theory of the FW transformation. However, the FW transfor-
mation method proposed by Eriksen [41] is semirelativistic.
We use the term “semirelativistic” for methods applying an
expansion of a derived block-diagonal Hamiltonian in a series
of even terms of ascending order in 1/c. For the semirelativistic
and the relativistic methods, the zeroth order Hamiltonian
is the Schrödinger one and the relativistic FW Hamiltonian
of a free particle, respectively. The Eriksen method is not
practically used in specific calculations. Since the exact
equation (7) contains the square roots of Dirac matrices, it
excludes a possibility to obtain a series of relativistic terms
with the relativistic FW Hamiltonian of a free particle [1]
as the zero-order approximation (see Ref. [43] for more
details). Contemporary methods of the FW transformation are
relativistic. The use of all semirelativistic methods is restricted
due to their divergence at large momenta, when p/(mc) > 1.
In this case (which takes place for an electron near a nucleus),
the semirelativistic methods become inapplicable [44] (see
also Ref. [43]).

Nevertheless, the calculation of the FW Hamiltonian by the
perfectly substantiated Eriksen method [45–47] is very impor-
tant for checking results obtained by other semirelativistic and
relativistic methods (see the examples given in Ref. [43]).

We should mention that the condition (5) is used much more
often than the condition (6) to check the correspondence of the
final Hamiltonian to the FW representation. For example, this
is one of the basic conditions for the generalized Douglas-
Kroll-Hess method which is rather widely applied in quantum
chemistry [31,44,48,49]. This fact obviously demonstrates the
importance of the exact derivation of the exponential FW
transformation operator. However, the problem of the exact
form of SFW was never investigated. In the present study, we
solve this problem.

Evidently, the exact form of SFW should be based on the
operator λ. It is convenient to use the following relations (see,
e.g., Ref. [47]):

SFW = −iβ�,

UFW = cos SFW + i sin SFW = cos � + β sin �. (10)

To obtain an explicit expression for SFW, it is instructive
to consider the special case [O,M] = [O,E] = [M,E] = 0.
When the operators M,E , and O do not explicitly depend on
time and

tan 2� = O
M , (11)

the odd terms are eliminated and the Hamiltonian H is
transformed to the FW representation [47]. In the considered

special case,

(H2)1/2 = ε + (βM + O)E
ε

,

H = (βM + O)

[
1 + (βM + O)E

ε2

]
,

ε =
√
M2 + O2,

and the operator λ is determined exactly [50]:

λ = βM + O
ε

. (12)

Equation (11) has two solutions, �1 and �2, differing in
π/2 [10]. Since

tan 2� = 2 tan �

1 − tan2 �
, tan � = tan 2�

1 ± √
1 + tan2 2�

,

they are defined by the relations,

tan �1 = O
ε + M , tan �2 = − O

ε − M . (13)

As

cos 2� = 1 − tan2 �

1 + tan2 �
, sin 2� = tan 2� cos 2�, (14)

the needed trigonometrical operators are given by

cos 2�1 = M
ε

, cos 2�2 = −M
ε

, sin 2�1 = O
ε

,

sin 2�2 = −O
ε

. (15)

This equation shows that cos 2�1 > 0, cos 2�2 < 0.
Thus, there are two unitary transformations of the operator

H to an even form. They are characterized by the angles
�1 and �2, where the angle �1 corresponds to the FW
transformation. As a result of both transformations, one of the
spinors (lower for �1 and upper for �2) becomes zero as for
free particles [10]. Since we consider the FW transformation,
� = �1.

A comparison with Eq. (11) shows that

sin 2� = 1
2 (λ − βλβ). (16)

The corresponding exponential FW transformation operator is
given by

SFW = − iβ

2
arcsin

λ − βλβ

2
. (17)

Let us check that Eqs. (16) and (17) obtained in the above-
mentioned special case remain valid in the general case of a
relativistic particle in arbitrary stationary fields. We can utilize
the operator relations (cf. Ref. [47]),

sin � = sin 2�√
2(1 + cos 2�)

= sin 2�√
2(1 + √

1 − sin2 2�)
, (18)

cos � = 1 + cos 2�√
2(1 + cos 2�)

= 1 + √
1 − sin2 2�√

2(1 + √
1 − sin2 2�)

. (19)
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These relations repeat the corresponding trigonometrical ones.
We can mention that the FW transformation operator UFW is
equal to unit when the initial Hamiltonian does not contain
odd terms (O = 0).

As follows from Eq. (10), the nonexponential FW transfor-
mation operator reads

UFW = 1 + √
1 − sin2 2� + β sin 2�√

2(1 + √
1 − sin2 2�)

. (20)

Equations (8) and (16) result in

1 − sin2 2� = 1
4 (βλ + λβ)2. (21)

The use of Eqs. (16) and (21) shows the equivalence of
Eqs. (7) and (20). This equivalence rigorously proves the
validity of Eq. (17) in the general case.

Equation (17) cannot be used for a derivation of the FW
Hamiltonian in the relativistic case because the operator SFW

contains the square root of Dirac matrices (or corresponding
matrices for particles with other spins). However, this equation
opens a wonderful possibility to check a validity of semirel-
ativistic and relativistic methods of the FW transformation.
Indeed, a calculation of a semirelativistic series for the
exponential operator is straightforward.

The numerator and denominator in the formula for λ

commute. Therefore, it is convenient to present this quantity
in the form,

λ = 1
2 {H,(H2)−1/2}, (22)

where {. . . , . . . } means an anticommutator. Then, we apply
the expansion of the square root in the power series. It is
important that this procedure can be performed for arbitrary-
spin particles because the initial Hamiltonians can be presented
in the form (2). For example, the operator M for a spin-1
particle in a magnetic field reads [38,46]

M = mc2 + π2

2m
− e�

mc
S · B, (23)

where S is the spin matrix for the spin-1 particle, π = p −
(e/c)A is the kinetic momentum operator, A is the vector
potential, and e is the charge of a particle. For the electron, it
is negative (e = −|e|). The two last terms in Eq. (23) can be
added to the operator E and therefore the operator M can be
reduced to mc2.

For analytic calculations with computer, one can use the
formula,

√
H2 = mc2

√
1 + H2 − m2c4

m2c4

= mc2

√
1 + 2βmc2E + O2 + E2 + {O,E}

m2c4
, (24)

and the well-known expansions,

(1 + x)−1/2 = 1 − 1

2
x + 1 × 3

2 × 4
x2 − 1 × 3 × 5

2 × 4 × 6
x3 + · · · ,

arcsin x = x + 1

2 × 3
x3 + 1 × 3

2 × 4 × 5
x5

+ 1 × 3 × 5

2 × 4 × 6 × 7
x7 + · · · (25)

The result of the expansion in the power series can be
written as follows:

(H2)−1/2 = 1 + qE + qO
mc2

, βqE = qEβ, βqO = −qOβ,

(26)

where qE and qO denote the sums of even and odd terms,
respectively. The resulting expansion of the operator (λ −
βλβ)/2 in the semirelativistic power series is given by

λ − βλβ

2
= 1

2mc2
[2O + {E,qO} + {O,qE }]. (27)

The final equation for the exponential FW transformation
operator takes the form,

SFW = − iβ

2
arcsin

(
1

2mc2
[2O + {E,qO} + {O,qE }]

)
. (28)

This operator can be calculated with any necessary precision
while the computational effort depends on this precision.

Equation (28) gives one a wonderful opportunity to verify
any FW transformation method based on the exponential oper-
ator. If the checked FW transformation method is relativistic,
one needs to expand all terms of the relativistic series for SFW

in powers of E/(mc2),O/(mc2). Comparison with an explicit
form of Eq. (28) verifies the checked method. Of course, any
expansion can be performed only if the semirelativistic series
is convergent (see Refs. [43,44]).

We should also add that the FW Hamiltonian can be
calculated with the exponential operator as follows (cf.
Ref. [1]):

HFW = H + i[SFW,G] + i2

2!
[SFW,[SFW,G]]

+ i3

3!
[SFW,[SFW,[SFW,G]]] + · · · , (29)

where

G = H − i�
∂

∂t
,

[
SFW,

∂

∂t

]
≡ −∂SFW

∂t
. (30)

Unlike the original FW approach [1], this approach needs not
subsequent iterations.

This result allows one to verify any other FW transforma-
tion method which is not based on the exponential operator.
For this purpose, one has to expand all terms of the relativistic
series for the FW Hamiltonian calculated by the checked
method in powers of E/(mc2),O/(mc2) and then has to
compare the obtained expression with the FW Hamiltonian
given by Eqs. (29) and (30). The computational effort, of
course, grows when the maximum powers increase. However,
any error usually manifests itself in noncoincidence of the first
few terms (see, for example, Refs. [43,51]).

Let us verify the original method by Foldy and Wouthuy-
sen [1] as an example of the application of Eqs. (24)–(28). A
calculation of the exponential FW transformation operator in
the stationary case with allowance for all terms up to the order
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of m−4 results in

SFW = − i

2mc2
βO − i

4m2c4
[O,E] + i

6m3c6
βO3

− i

8m3c6
β[[O,E],E] + 3i

16m4c8
{O2,[O,E]}

− i

16m4c8
[[[O,E],E],E]. (31)

The original method [1] belongs to iterative methods. The
result of successive iterations expressed by the equation,

U = . . . exp (iS(n)) . . . exp (iS ′′′) exp (iS ′′) exp (iS ′) exp (iS),

(32)

can be presented in the exponential form with the use of
the Baker-Campbell-Hausdorff formula (see Ref. [43] and
references therein). This formula defines the product of two
exponential operators:

exp(A) exp(B) = exp
(
A + B + 1

2 [A,B] + 1
12 [A,[A,B]]

− 1
12 [B,[A,B]] − 1

24 [A,[B,[A,B]]]

+ higher order commutators
)
. (33)

To verify the original method [1], it is sufficient to take
into account three first iterations and to hold terms up to the
order of m−3. In the considered stationary case, they are given
by [7,9,43]

S = − i

2mc2
βO, S ′ = − i

4m2c4
[O,E] + i

6m3c6
βO3,

S ′′ = − iβ

8m3c6
[[O,E],E]. (34)

The result of these iterations can be approximately presented
as follows (see Ref. [43]):

U = exp (iS ′′) exp (iS ′) exp (iS) = exp (iS),

S = S ′′ + S ′ + S − i

2
[S,S ′] = − i

2mc2
βO − i

4m2c4
[O,E]

+ i

6m3c6
βO3 − i

8m3c6
β[[O,E],E] + i

16m3c6
β[O2,E].

(35)

The operator S differs from SFW due to the even last term.
Therefore, the original method of the FW transformation [1]
does not lead to the FW representation. This paradoxical fact
was first mentioned by Eriksen and Korlsrud [42] (see also
Refs. [9,43,45,46]). The original method [1] can be corrected
due to an additional transformation [43]. This correction allows
one to reach the FW representation.

Any representation which block diagonalizes the Hamilto-
nian but differs from the FW representation can be successfully
used for a calculation of energy spectrum of particles in
stationary states. However, an application of such a rep-
resentation for other purposes is restricted. In particular,
the representation which differs from the FW one is, at
least, inconvenient for description of spin processes (see, for
example, Refs. [4,18,52]).

Thus, we have derived the exact exponential FW trans-
formation operator which is applicable for a particle with an
arbitrary spin. This result provides an opportunity to verify any
FW transformation method based on the exponential operator.
Moreover, the validity of any other FW transformation method
can also be checked. For this purpose, one has to use Eq. (29) in
order to calculate the FW Hamiltonian and to compare it with
the corresponding Hamiltonian found by the checked method.
The latter possibility may need a greater computational effort.
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