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Mixed states appear naturally in experiment over pure states. So for studying different notions of nonlocality
and their relation with entanglement in realistic scenarios, one needs to consider mixed states. In a recent paper
[Phys. Rev. Lett. 108, 020502 (2012)], a complete characterization of entanglement of an entire class of mixed
three-qubit states with the same symmetry as the Greenberger-Horne-Zeilinger state, known as GHZ-symmetric
states, has been achieved. In this paper we investigate different notions of nonlocality of the same class of
states. By finding the analytical expressions of maximum violation value of most efficient Bell inequalities we
obtain the conditions of standard nonlocality and genuine nonlocality of this class of states. Also the relation
between entanglement and nonlocality is discussed for this class of states. Interestingly, genuine entanglement
of GHZ-symmetric states is necessary to reveal standard nonlocality. However, it is not sufficient to exploit the
same.
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I. INTRODUCTION

Quantum nonlocality is an inherent character of quantum
theory where Bell inequalities [1] are used as witnesses to
test the appearance of the same. Recently analysis of quantum
nonlocality has become an interesting topic not only from a
foundational viewpoint (see [2] and references therein) but
also has been extensively used in various quantum informa-
tion processing tasks, quantum communication complexity
[3], randomness amplification [4], no-signaling [5], device-
independent quantum key distribution [6], device-independent
quantum state estimation [7,8], randomness extraction [9,10],
etc. There exist several experimental evidences supporting the
fact that presence of entanglement is necessary for nonlocality
of quantum correlations. But determining which entangled
state reveals nonlocality (i.e., violates Bell inequality) is
difficult work. Any pure entangled state of two qubits violates
Clauser-Horne-Shimony-Holt (CHSH) inequality [11,12], the
amount of violation being proportional to the degree of
bipartite entanglement [13]. However no such conclusion
holds for mixed bipartite entangled states as there exists a class
of mixed entangled states which admits a local hidden variable
model and this class cannot violate any Bell inequality [14,15].
To date nonlocality in two-qubit systems has been explored in
detail. However, the multiqubit case is much more difficult
to analyze. There is an increasing complexity while shifting
from bipartite to multipartite systems. This is mainly because
of the fact that multipartite entanglement has comparatively
much more complex and rich structure than that of bipartite
entanglement [16,17]. So any study related to multipartite
entanglement or dealing with multipartite nonlocality requires
a deeper insight of the physics of many-particle systems which
in general differ extensively from that of single or two party
systems. However, study of many-particle systems gives rise to
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new interesting phenomena, such as phase transitions [18] and
quantum computing. In this context, it is quite interesting to
study the relationship between entanglement and nonlocality
for multipartite system. To extend the two-qubit relationship
between entanglement and quantum nonlocality, one needs to
classify both entanglement and nonlocality in the multipartite
system. In particular, entanglement of any tripartite state can
either be biseparable or genuinely entangled [16,17]. Nonlocal
character of a tripartite system can be categorized broadly in
two categories of standard nonlocality and genuine nonlocality
[2]. In the former case, nonlocality is revealed in at least
one possible grouping of the parties whereas a state is said
to be genuinely nonlocal if any possible grouping of parties
reveals nonlocality. In [19], Śliwa gave the whole class of
Bell inequalities which acts as a necessary and sufficient
condition for detecting standard nonlocality. The relation
between this notion of nonlocality and tripartite entanglement
has been studied for three-qubit pure states [20–25] where
it has been shown that entanglement (biseparable or genuine
entanglement) of the pure state suffices to produce standard
nonlocality. The notion of genuine tripartite nonlocality has
been discussed in [26–28], which represents the strongest form
of nonlocality for tripartite systems. There exists a relation
between genuine tripartite nonlocality and three-tangle [29]
(measure of genuine tripartite entanglement) which has been
analyzed for some important classes of pure tripartite states
[28,30–33]. Interestingly, Bancal et al. conjectured that all
genuinely entangled pure quantum states can produce genuine
nonlocal correlations [28]. While tripartite nonlocality turns
out to be a generic feature of all entangled pure states, the
situation becomes much more complex when we consider
mixed states as there exists a genuine tripartite entangled
state which admits a local hidden variable model [34,35].
In this context, it is interesting to characterize the state
parameters for any class of tripartite mixed states on the basis
of different notions of tripartite nonlocality and their relation
with entanglement. Our paper goes in this direction. Recently,
a new type of symmetry for the three-qubit quantum state was
introduced [36], the so-called Greenberger-Horne-Zeilinger
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(GHZ) symmetry. In [36], they provided the whole class of
states which has this type of symmetry. This class of states is
referred to as GHZ-symmetric states. A complete classification
of different types of entanglement of this class of tripartite
mixed states is made in [36]. In this work we have classified
the GHZ-symmetric states on the basis of different notions of
tripartite nonlocality so that one can use this class of state in
different information theoretic tasks. This helps us to establish
the relationship between entanglement and nonlocality for
this class of tripartite mixed states. The relation implies that
genuine entanglement is necessary to reveal any type of
nonlocality (standard nonlocality or genuine nonlocality) for
this class of states.

The paper is organized as follows. In Sec. II, we give a brief
introduction to some concepts and results which we will use in
later sections. Subsequently, in Sec. III, we obtain the condition
for which GHZ-symmetric states reveal standard nonlocality
by deriving the analytical expressions of maximum violation
value of the two most efficient facet inequalities. In Sec. IV,
we deal with the classification of the class of states on the
basis of genuine nonlocality. Section V shows how different
types of entanglement are related with different notions of
nonlocality for this class of mixed states. Finally we conclude
with a summary of our results in Sec. VI.

II. BACKGROUND

A. GHZ-symmetric three-qubit states

As an important class of mixed states from a quantum
theoretical perspective, GHZ-symmetric three-qubit states
have been paid much attention [36–39]. In particular, in the
eight-dimensional state space of three-qubit states, the set
of GHZ-symmetric states defines a two-dimensional affine
section, specifically a triangle of the full eight-dimensional
set of states [40]. In this section, we review the properties
of GHZ-symmetric three-qubit states [36]. GHZ-symmetric
three-qubit states are defined to be invariant under the follow-
ing transformations: (i) qubit permutations, (ii) simultaneous
three-qubit flips (i.e., application of σx ⊗ σx ⊗ σx), and (iii)
qubit rotation about the z axis of the form U (φ1,φ2) =
eiφ1σz ⊗ eiφ2σz ⊗ e−i(φ1+φ2)σz . Here σx and σz are the Pauli
operators. The GHZ-symmetric states of three qubits can be
written as

ρ(p,q) =
(

2q√
3

+ p

)
|GHZ+〉〈GHZ+|

+
(

2q√
3

− p

)
|GHZ−〉〈GHZ−| +

(
1 − 4q√

3

)
1
8

(1)

where |GHZ±〉 = |000〉±|111〉√
2

. The requirement ρ(p,q) � 0

gives the constraints: − 1
4
√

3
� q �

√
3

4 and

|p| � 1

8
+

√
3

2
q. (2)

This family of states forms a triangle in the state space
and includes not only GHZ states, but also the maximally
mixed state 1

8 (located at the origin, see Fig. 1). Any point
inside that triangle represents a GHZ-symmetric state. The

FIG. 1. The triangle of the GHZ-symmetric states for three qubits
[36]. The upper corners of the triangle are the standard GHZ states
|GHZ+〉 and |GHZ−〉. Mixed state 1

8 is located at the origin. The
black dashed line represents the generalized Werner state. We have
indicated different types of three-qubit entanglement: GHZ (green),
W (gray), biseparable (magenta), and separable (yellow).

generalized Werner states are found on the straight line

q =
√

3p

2 connecting the origin with the |GHZ+〉 state.
A GHZ-symmetric state is fully separable iff it is in the
polygon defined by the four corner points (0, − 1

4
√

3
), ( 1

8 ,0),

(0,
√

3
4 ), and (− 1

8 ,0) (yellow area in Fig. 1). It is at most

biseparable if and only if |p| � 3
8 −

√
3

2 q( magenta area
in Fig. 1). It is of W type (gray area in Fig. 1) if and
only if 9216p4 + p2(−6768 + 17856

√
3q − 34560q2 −

1024
√

3q3) � 1521 − 5148
√

3q + 13536q2 + 2432
√

3q3 −
13056q4 − 3072

√
3q5 and |p| > 3

8 −
√

3
2 q.

B. Genuine multipartite concurrence (CGM)

In order to facilitate the discussion of our results, we
briefly describe the genuine multipartite concurrence, a mea-
sure of genuine multipartite entanglement defined as [41]
CGM(|ψ〉) := minj

√
2[1 − �j (|ψ〉)] where �j (|ψ〉) is the

purity of the j th bipartition of |ψ〉. The genuine multipartite
concurrence of three-qubit X states has been evaluated in [42].
It is given by

CGM = 2 maxi{0,|zi | − wi} (3)

with wi = ∑
j �=i

√
ajbj where aj , bj , and zj (j = 1,2,3,4) are

the elements of the density matrix of tripartite X states:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 0 0 0 0 0 0 z1

0 a2 0 0 0 0 z2 0
0 0 a3 0 0 z3 0 0
0 0 0 a4 z4 0 0 0
0 0 0 z4

∗ b4 0 0 0
0 0 z3

∗ 0 b3 0 0
0 z2

∗ 0 0 0 0 b2 0
z1

∗ 0 0 0 0 0 0 b1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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C. Tripartite nonlocality

In this section we provide a brief overview of the various
notions of tripartite nonlocality and corresponding detectors
of tripartite nonlocality for subsequent discussions. Consider
a Bell-type experiment consisting of three spacelike separated
parties, Alice, Bob, and Charlie. The measurement settings
are denoted by x, y, z ∈ {0,1} and their outputs are denoted
by a, b, c ∈ {−1,1} for Alice, Bob, and Charlie respectively.
The experiment is thus characterized by the joint probability
distribution (correlations) p(abc|xyz). Now the correlations
can exhibit different types of nonlocality. Any tripartite
correlation p(abc|xyz) is said to be local if it admits the
following decomposition:

p(abc|xyz) =
∑

λ

qλPλ(a|x)Pλ(b|y)Pλ(c|z) (4)

for all x, y, z, a, b, c, where 0 � qλ � 1 and
∑

λ qλ =
1. Pλ(a|x) is the conditional probability of getting outcome a

when the measurement setting is x and λ is the hidden variable;
Pλ(b|y) and Pλ(c|z) are similarly defined. Otherwise they are
standard nonlocal. We denote L3 as the set of local correlations
that can be produced classically using shared randomness. The
local set L3 was fully characterized by Pitowsky and Svozil
[43] and Śliwa [19]. It has 53 856 facets defining 46 different
classes of inequalities that are inequivalent under relabeling
of parties, inputs, and outputs [19]. Violation of any of these
facet inequalities guarantees standard nonlocality. A tripartite
correlation is local if it satisfies all the 46 facet inequalities.
Inequality 2 (we follow Śliwa’s numbering) is the Mermin
inequality [44]:

M = |〈A1B0C0〉 + 〈A0B1C0〉 + 〈A0B0C1〉 − 〈A1B1C1〉|
� 2. (5)

Note that it is possible to violate Mermin inequality maximally
(i.e., M = 4) using |GHZ±〉. However, in the tripartite sce-
nario, Svetlichny [26] showed that there exist certain quantum
correlations which can exhibit an even stronger form of
nonlocality. Such type of correlations cannot be decomposed
in the following form:

P (abc|xyz) =
∑

λ

qλPλ(ab|xy)Pλ(c|z)

+
∑

μ

qμPμ(ac|xz)Pμ(b|y)

+
∑

ν

qνPν(bc|yz)Pν(a|x). (6)

Here 0 � qλ, qμ,qν � 1 and
∑

λ qλ + ∑
μ qμ + ∑

ν qν = 1.

The above form of correlations is not fully local as in Eq. (4);
nonlocal correlations are present only between two particles
(the two particles that are nonlocally correlated can change in
different runs of the experiment) while they are only locally
correlated with the third. If a correlation P (abc|xyz) cannot
be written in this form then such a correlation is said to exhibit
genuine tripartite nonlocality. In [28], this type of nonlocality
is referred to as Svetlichny nonlocality. Focusing on this form
of correlations [Eq. (6)], Svetlichny designed a tripartite Bell

type inequality (known as Svetlichny inequality):

S � 4 (7)

where

S = |〈A0B0C0〉 + 〈A1B0C0〉 − 〈A0B1C0〉
+〈A1B1C0〉 + 〈A0B0C1〉 − 〈A1B0C1〉
+〈A0B1C1〉 + 〈A1B1C1〉|.

Thus violation of such inequality implies the presence of
genuine tripartite nonlocality, implying in turn the presence of
genuine tripartite entanglement. This inequalit y(7) is violated
by GHZ and W states [30,31,45]. While Svetlichny’s notion
of genuine multipartite nonlocality is often referred to in the
literature, it has certain drawbacks. As has been pointed out in
[27,28], Svetlichny’s notion of genuine tripartite nonlocality
is so general that no restrictions were imposed on the bipartite
correlations used in Eq. (6). They are allowed to display
arbitrary correlations in the sense that there may be one-way
or both-way signaling between a pair of parties or both the
parties may perform simultaneous measurements. As a result,
grandfather-type paradoxes arise [28] and inconsistency from
an operational viewpoint appears [27]. Moreover it is found
that there exist some genuine nonlocal correlations which
satisfy this inequality [27,28,33]. In order to remove this sort of
ambiguity, Bancal et al. [28], introduced a simpler definition of
genuine tripartite nonlocality which is based on no-signaling
principle, in which the correlations are no-signaling for all
observers. Suppose P (abc|xyz) is the tripartite correlation
satisfying Eq. (6) with no-signaling criteria imposed on the
bipartite correlations terms, i.e.,

Pλ(a|x) =
∑

b

Pλ(ab|xy) ∀ a, x, y, (8)

Pλ(b|y) =
∑

a

Pλ(ab|xy) ∀ b,x, y (9)

and similarly for the other bipartite correlation terms
Pμ(ac|xz) and Pν(bc|yz). The above form of correlations is
called NS2 local (where NS denotes nonsignaling). Otherwise,
we say that they are genuinely three-way NS nonlocal (NS2

nonlocal). In [28], 185 Bell-type inequalities are given which
constitute the full class of facets of NS2 local polytope.
Violation of any of these facets (Bell-type inequalities)
guarantees NS2 nonlocality. Svetlichny inequality constitutes
the 185th class. Throughout the paper, we use this notion of
nonlocality as genuine tripartite nonlocality.

III. STANDARD NONLOCALITY
OF GHZ-SYMMETRIC STATES

We have already discussed in the Introduction that all
tripartite pure entangle states exhibit standard nonlocality but
this relation does not hold for mixed states. From that point of
view and also from experimental perspectives, characterization
of mixed states on the basis of their ability to generate nonlocal
correlations is far more interesting compared to that of pure
states. As already discussed before, we aim to characterize
the state parameters of the mixed class of GHZ-symmetric
three-qubit states on the basis of their nonlocal nature. In
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this section we not only classify this class on the basis
of standard nonlocality but also derived the necessary and
sufficient condition of detecting standard nonlocality.

A. Maximum violation of Mermin inequality

We have already mentioned that standard nonlocality of
correlations can be detected if the correlations violate at least
one of the 46 inequivalent facet inequalities characterizing the
local set(L3). Among the 46 inequivalent facet inequalities,
Mermin inequality is most frequently used. In [24], they gave
a sufficient criterion to violate Mermin inequality for pure
three-qubit states. Here we find a necessary and sufficient
condition to obtain a violation of Mermin inequality for
three-qubit GHZ-symmetric states. For this class of tripartite
mixed entangled states the maximum value of M [Eq. (5)]
with respect to projective measurement is given by 8|p| (see
the Appendix). Then the Mermin inequality in Eq. (5) becomes

Mmax = 8|p| � 2. (10)

Hence ρ(p,q) violates Mermin inequality if and only if |p| >
1
4 . Due to this restriction on p, together with state constraints
Eq. (2), the other state parameter q gets restricted: q > 1

4
√

3
.

So standard nonlocality of any three-qubit GHZ-symmetric
states with |p| > 1

4 and q > 1
4
√

3
is guaranteed via violation of

Mermin inequality [see Fig. 2(a)].

B. Efficiency of 15th facet inequality over Mermin inequality

Mermin inequality, discussed in the last section, is not the
most efficient detector of standard nonlocality. In this section it
is argued that there exists another facet inequality which can be
considered as a better tool for detecting standard nonlocality
compared to use of Mermin inequality for doing the same. It is
observed that the 15th facet can be considered as an inequality
which is more efficient than Mermin inequality.

The 15th facet inequality is given by [19]

L � 4 (11)

where L=|2〈A0B0〉+2〈A1B0〉+〈A0C0〉 + 〈A1C0〉 − 2〈B0C0〉
+ 〈A0B1C0〉 − 〈A1B1C0〉 + 〈A0C1〉 + 〈A1C1〉 − 2〈B0C1〉 −
〈A0B1C1〉 + 〈A1B1C1〉|. The maximum value of L for
three-qubit GHZ-symmetric states with respect to projective

measurement is given by max[ 8(9|p3|−8
√

3|q3|)
9p2−12q2 , − 16

√
3q|] (see

the Appendix). Using this, 15th facet inequality [Eq. (11)]
gets modified as

Lmax = max

[
8(9|p3| − 8

√
3|q3|)

9p2 − 12q2
, − 16

√
3q|

]
� 4. (12)

As −16
√

3q � 4 for − 1
4
√

3
� q �

√
3

4 , so 15th facet inequality

is violated only when 8(9|p3|−8
√

3|q3|)
9p2−12q2 > 4. Using this relation

and Eq. (2), we have q > 3
148 (8 + 3

√
3). It follows that for

every q > 3
148 (8 + 3

√
3) there is at least one p for which

the GHZ-symmetric states violate 15th facet inequality. In
Fig. 2(b) we have plotted the range of the state parameters for
which nonlocality is observed via the violation of 15th facet
inequality. We have already discussed that a GHZ-symmetric
state does not violate Mermin inequality if and only if |p| � 1

4 .

FIG. 2. (a) The blue areas represent the nonlocal region obtained
via the violation of Mermin inequality [Eq. (5)]. (b) Regions of
violation of 15th inequality are given by the brown regions. Clearly,
the regions restricted by p � 1

4 in the brown regions indicate the
areas where 15th facet inequality [Eq. (11)] emerges as a more
efficient tool over Mermin inequality [Eq. (5)] for revealing nonlocal
nature of GHZ-symmetric states. (c) The cyan areas give the optimal
region of standard nonlocality of GHZ-symmetric states. The states
characterized by the state parameters lying in this region, when shared
between Alice, Bob, and Charlie, do not admit any local hidden
variable model.

Now this restriction, when imposed on Lmax > 4 gives at
least one q > 1

16 (
√

15 + √
3) for all nonzero p. Hence there

exists a region for |p| � 1
4 where 15th facet inequality helps

us to reveal standard nonlocality unlike Mermin inequality
where the same is revealed only for |p| > 1

4 . For example,
let us consider the GHZ-symmetric states with p = 0.2 and
q ∈ [− 1

4
√

3
,
√

3
4 ]. This state does not violate Mermin inequality

for any value of q but the same state violates 15th facet
inequality for q > 0.37861. This in turn points out that 15th
facet inequality is more efficient than the Mermin inequality
over some restricted range of state parameters.

C. Necessary and sufficient detection criteria
of standard nonlocality

By comparing the criteria necessary and sufficient for
violation of each of the remaining 44 inequivalent facet
inequalities (following procedure similar to that used for
Mermin inequality, see the Appendix) with that of Mermin
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inequality and 15th facet inequality, we have observed that
the region of standard nonlocality, as detected by any of the
remaining 44 inequivalent facet inequalities, forms a subset of
the region of standard nonlocality of Mermin and 15th facet
inequality. So these two inequalities are the most efficient to
detect standard nonlocality of this class of states. This in turn
points out that the optimal region of standard nonlocality of
GHZ-symmetric states is provided by the union of regions
of standard nonlocality detected by Mermin and 15th facet
inequality [see Fig. 2(c)]. So in totality the restricted state
conditions for revealing standard nonlocality are given by

(i) 4|p| > 1, q >
1

4
√

3
and

(ii)
8(9|p3|−8

√
3|q3|)

9p2−12q2
>4, q >

3

148
(8 + 3

√
3). (13)

A state exhibits standard nonlocality under projective mea-
surements if and only if it satisfies at least one of the two sets
of conditions [(i) or (ii) of Eq. (13)].

IV. GENUINE NONLOCALITY
OF GHZ-SYMMETRIC STATES

Genuine nonlocality is the strongest form of nonlocality.
So for a tripartite correlation it is natural to ask whether
all three parties are nonlocally correlated. Such correlations
play an important role in quantum information theory, phase
transitions, and the study of many-body systems [18]. Also,
the presence of genuine nonlocality implies the presence of
genuine entanglement. So after discussing standard nonlocal-
ity, it becomes interesting to explore genuine nonlocality of
this class of states. To be specific, in this section we have
derived necessary and sufficient criteria for detecting genuine
nonlocality.

A. Maximum violation of Svetlichny inequality

As we have discussed before, if we consider that all
correlations between the observers are no-signalling, then the
set of 185 facet inequalities acts as a necessary and sufficient
condition for detecting genuine tripartite nonlocality. Among
all of them, Svetlichny inequality is frequently used for the
detection of genuine tripartite nonlocality. In [30], necessary
and sufficient criteria for maximal violation of Svetlichny
inequality are derived for some classes of tripartite pure states.
Here we have derived the same for the class of GHZ-symmetric
states. For this class of tripartite mixed entangled states, the
maximum value of S [Eq. (7)] with respect to projective
measurement is given by 8

√
2|p| (see the Appendix). Thus

Eq. (7) gives

Smax = 8
√

2|p| � 4. (14)

Hence ρ(p,q) violates Svetlichny inequality if and only
if |p| > 1

2
√

2
. Using this relation and Eq. (2), we have

q > 1√
3
( 1√

2
− 1

4 ). So Svetlichny nonlocality is revealed for
three-qubit GHZ-symmetric states if and only if the relation
|p| > 1

2
√

2
and q > 1√

3
( 1√

2
− 1

4 ) holds. In Fig. 3(a) we present
the range of the state parameters of the three-qubit GHZ-
symmetric states for which Svetlichny nonlocality is observed.

FIG. 3. (a) The purple areas give the restricted region of state
parameters for which genuine nonlocality of the corresponding
states is guaranteed by violation of Svetlichny inequality [Eq. (7)].
(b) Analogously, the orange regions represent the areas where genuine
nonlocality is observed due to violation of 99th facet inequality
[Eq. (15)]. Now the regions restricted by |p| � 1

2
√

2
in the orange

regions give the the areas where the 99th facet serves as a better tool
to exploit genuine nonlocality of GHZ-symmetric states compared
to Svetlichny inequality. (c) The optimal region of nonlocality of
GHZ-symmetric states is given by the red regions.

B. Efficiency of 99th facet inequality over Svetlichny inequality

As we have mentioned in Sec. II, the newly introduced
weaker definition of genuine nonlocality (genuine three-way
NS nonlocality) gives advantage over Svetlichny’s definition
of genuine nonlocalty. So after completing the analysis of
genuine nonlocality with respect to Svetlichny inequality, we
search for an inequality which can be considered more efficient
than Svetlichny inequality. In [33], we have shown that for
detecting genuine nonlocality of some classes of tripartite
pure entangled states, 99th facet inequality is more efficient
compared to Svetlichny inequality. Here also, for the class of
GHZ-symmetric states, 99th facet inequality emerges to be a
more powerful tool for detecting genuine nonlocality for some
subclasses. The 99th facet inequality is given by

NS � 3 (15)

where NS = |〈A1B1〉 + 〈A0B0C0〉 + 〈B1C0〉 + 〈A1C1〉 −
〈A0B0C1〉|. If projective measurement is considered, the

maximum value of NS is given by 4q√
3

+ 2
√

16q2

3 + 4p2 (see
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the Appendix). Thus 99th facet inequality in Eq. (15) becomes

NSmax = 4q√
3

+ 2

√
16q2

3
+ 4p2 � 3. (16)

Hence 99th facet inequality is violated if and only if
4q√

3
+ 2

√
16q2

3 + 4p2 > 3. Using this along with the state

constraints [Eq. (2)], we have q > 1
28 (8

√
5 − 5

√
3). Thus

NS2 nonlocality is observed if 4q√
3

+ 2
√

16q2

3 + 4p2 > 3 and

q > 1
28 (8

√
5 − 5

√
3). Hence for every q > 1

28 (8
√

5 − 5
√

3)
there exists at least one GHZ-symmetric state which is NS2

nonlocal. We have already observed that any state restricted
by |p| � 1

2
√

2
fails to violate Svetlichny inequality. Now this

restriction, when imposed on NSmax > 3 gives at least one
q > 1

4 (
√

10 − √
3) for all nonzero p. Hence we get a subclass

of GHZ-symmetric states restricted by q > 1
4 (

√
10 − √

3) and
NSmax > 3 which is genuinely nonlocal even when |p| � 1

2
√

2
.

This in turn points out efficiency of 99th facet inequality over
Svetlichny inequality.

C. Necessary and sufficient criteria for detecting
genuine nonlocality

A detailed comparison of the criteria required for vio-
lation of each of the remaining 183 facets (following the
same procedure as that for Mermin inequality) with that of
Svetlichny and 99th facet points out the fact that these two
inequalities (99th facet inequality and Svetlichny inequality)
are the most efficient detectors of genuine nonlocality. This
in turn points out the fact that the optimal region of genuine
nonlocality is given by

(i) |p| >
1

2
√

2
q >

1√
3

(
1√
2

− 1

4

)
and

(17)

(ii)
4q√

3
+ 2

√
16q2

3
+ 4p2 > 3, q >

1

28
(8

√
5 − 5

√
3).

Genuine nonlocality of any state up to projective measure-
ments is guaranteed if and only if it satisfies at least one of the
two possible sets of conditions [(i) or (ii) of Eq. (17)].

V. RELATION BETWEEN ENTANGLEMENT
AND NONLOCALITY

Entanglement of any state is necessary for nonlocality of
the state. So after completing classification of GHZ-symmetric
states with respect to different forms of nonlocality, we
proceed to establish the relationship between nonlocality and
entanglement of this class.

A. Relation between biseparable entanglement
and standard nonlocality

Biseparable entanglement of a tripartite quantum state is
necessary to produce standard nonlocality. Their relationship
has been analyzed in [25] for three-qubit pure states where
it is shown that biseparable entanglement of tripartite pure
quantum states also turns out to be sufficient to exhibit standard
nonlocality. Here we analyze whether it is sufficient for this

class of tripartite mixed quantum states to obtain standard
nonlocality. The criterion of biseparability of this class of states
is [36,39] |p| � 3

8 −
√

3
2 q. Interestingly, no biseparable GHZ-

symmetric state can reveal standard nonlocality. We present
our argument below.

We have already discussed that to detect standard nonlo-
cality, Mermin and 15th facet inequality are the most efficient
inequalities. In order to violate Mermin inequality the state
parameters should satisfy |p| > 1

4 and q > 1
4
√

3
. However,

|p| > 1
4 , along with the biseparability criterion, gives q � 1

4
√

3
.

This contradicts the required criterion for violation of Mermin:
q > 1

4
√

3
. So violation of Mermin inequality is impossible.

Now we consider the 15th facet inequality. Using the bisepa-

rability criterion, we get Lmax � 8(9( 3
8 −

√
3q

2 )3−8
√

3|q3|)
9(( 3

8 −
√

3q

2 )2−12q2)
(say, f )

where f � 4 and that makes violation of 15th inequality
impossible by any biseparable state belonging to this class.
Hence no biseparable state is capable of showing standard
nonlocality.

B. Relation between genuine entanglement
and standard nonlocality

In general for any tripartite state, genuine entanglement
is necessary to reveal genuine nonlocality. So for GHZ-
symmetric states, as argued in the last section, genuine
entanglement is necessary to reveal even the weaker notion
of standard nonlocality. However, one cannot claim it to be a
sufficient criterion for revealing standard nonlocality for this
class of states. We proceed with our argument below. For that
we first consider genuinely entangled states. Such states are
restricted by [36,39]

|p| >
3

8
−

√
3

2
q. (18)

As we have discussed earlier the locality criteria are

4|p| � 1

and

8(9|p3| − 8
√

3|q3|)
9p2 − 12q2

� 4. (19)

Clearly the conditions [Eqs. (18) and (19)] are feasible with the
restricted range of the parameter q given by 1

4
√

3
� q �

√
3

4 .
This in turn proves the existence of genuinely entangled local
states (see the pink region of Fig. 4). So any GHZ-symmetric
state is genuinely entangled but local if it satisfies Eqs. (18)
and (19). So strongest form of entanglement, i.e., genuine
entanglement, turns out to be insufficient to generate even
the weaker form of nonlocality, i.e., standard nonlocality.
Hence we are able to present a class of genuinely entangled
three-qubit states which does not violate a complete set of facet
inequalities for standard nonlocality. Recently a similar type
of result has been presented in [35], for some other class of
states. In this context it will be interesting to study variation of
standard nonlocality with the amount of genuine entanglement.
Since Mermin and 15th facets are the most efficient Bell
inequalities to detect standard nonlocality, now we deal with
the variation of violation of these facet inequalities with the
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FIG. 4. The figure gives the nonlocality classification of three-
qubit GHZ-symmetric states ρ(p,q). The red regions give the optimal
area where genuine nonlocality (GNL) is revealed with respect to
projective measurement for GHZ-symmetric states. The cyan regions
indicate the optimal area where standard nonlocality (NL) is revealed
(except genuine nonlocality). As genuine nonlocality also implies
standard nonlocality so red regions also give the region of standard
nonlocality. Genuinely entangled but local states (GL) are represented
by pink regions. Clearly, no nonlocal region lies within the biseparable
region (magenta).

amount genuine entanglement (Cρ(p,q)
GM ). Since the three-qubit

GHZ-symmetric states belong to the class of tripartite X states,
their amount of entanglement can be measured by Eq. (3). So

C
ρ(p,q)
GM = 2|p| − 3

4 +
√

3q. (20)

For the state ρ(p,q), one has Mmax = 4(Cρ(p,q)
GM + 3

4 − √
3q).

Hence, GHZ-symmetric states violate Mermin inequality if
(Cρ(p,q)

GM + 3
4 − √

3q) > 1
2 . As we have proven in Sec. III,

GHZ-symmetric states with |p| > 1
4 and q > 1

4
√

3
violate

Mermin inequality. For this subclass of GHZ-symmetric states
C

ρ(p,q)
GM > 0 as |p| > 1

4 and q > 1
4
√

3
. This subclass always

violates Mermin inequality and the amount of violation
(i.e., Mmax − 2) increases monotonically with C

ρ(p,q)
GM for

any fixed value of q. Also for each C
ρ(p,q)
GM > 0 there is

a GHZ-symmetric state (i.e., a value of q) which violates
Mermin inequality [see Fig. 5(a)]. Similarly, using Eq. (20),

we have Lmax = 8(−8
√

3q3+ 9
8 (Cρ(p,q)

GM + 3
4 −√

3q)3)

−12q2+ 9
4 (Cρ(p,q)

GM + 3
4 −√

3q)2)
, which increases

monotonically with C
ρ(p,q)
GM for any fixed value of q. GHZ-

symmetric states violate 15th facet inequality if and only

if
2(−8

√
3q3+ 9

8 (Cρ(p,q)
GM + 3

4 −√
3q)3)

−12q2+ 9
4 (Cρ(p,q)

GM + 3
4 −√

3q)2)
> 1. Clearly, for each value of

C
ρ(p,q)
GM there is a GHZ-symmetric state with q > 3

148 (8 + 3
√

3)
which violates 15th facet inequality. These are also shown in
Fig. 5(b).

C. Relation between genuine entanglement
and genuine nonlocality

To date no relationship between genuine entanglement and
genuine nonlocality has been proved even for three-qubit

FIG. 5. Both of these figures depict variation of C
ρ(p,q)
GM with state

parameter q for standard nonlocal states. Precisely, in (a) and (b),
we have considered C

ρ(p,q)
GM of the states whose standard nonlocality

is guaranteed by violation of Mermin and 15th facet inequality,
respectively. Interestingly, for any arbitrarily small value of C

ρ(p,q)
GM

there exists at least one GHZ-symmetric state which exhibits standard
nonlocality.

pure quantum states. However, recently a conjecture has been
reported in [28], which states that all three-qubit genuinely en-
tangled pure states exhibit genuine nonlocality. More recently
this conjecture has been proved for some important class of
pure states [33]. But no such straightforward conclusion can
be drawn for any class of three-qubit mixed states as there exist
genuinely entangled mixed states which do not exhibit genuine
nonlocality [34]. Here we obtain the relationship between the
above two phenomena for three-qubit GHZ-symmetric states.
In this context, we have presented a subclass of states of
the GHZ-symmetric class of mixed tripartite states which
is genuinely entangled yet fails to violate any of the 185
facet inequalities and thereby is not genuinely nonlocal (see
Sec. V E). However, the discussion of genuine nonlocality
(Sec. IV) points out that out of the 185 facet inequalities,
Svetlichny inequality and the 99th facet inequality are the two
most efficient detectors of genuine nonlocality for this class of
states. In this section we have studied the variation of violation
of these two efficient Bell inequalities with the amount of
entanglement content C

ρ(p,q)
GM . Using Eq. (20), the maximum

violation value of Svetlichny inequality [Eq. (14)] becomes
Smax = 4

√
2(Cρ(p,q)

GM + 3
4 − √

3q). The algebraic expression
clearly points out the relation between genuine nonlocality
and entanglement [see Fig. 6(a)]. It is already argued in
Sec. IV that for violation of Svetlichny inequality the state
parameters get restricted as |p| > 1

2
√

2
and q > 1√

3
( 1√

2
− 1

4 ).
These restrictions, when imposed in Eq. (20), imply that for
C

ρ(p,q)
GM >

√
2 − 1 Svetlichny inequality is violated. So any

state having C
ρ(p,q)
GM �

√
2 − 1 cannot violate the Svetlichny

inequality [see Fig. 6(a)]. Similarly by Eq. (20), the maximum
violation value of the 99th facet becomes

NSmax = 4q√
3

+ 2

√
16q2

3
+

(
C

ρ(p,q)
GM + 3

4
−

√
3q

)2

� 3.

(21)
Clearly for any arbitrary value of q, the amount of genuine
nonlocality (NSmax − 3) increases monotonically with the
amount of entanglement C

ρ(p,q)
GM . Interestingly, for any positive

value of C
ρ(p,q)
GM , there exists a subclass which violates 99th
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FIG. 6. Variations of state parameter q with that of C
ρ(p,q)
GM for

genuinely nonlocal states are shown in these figures. The genuinely
nonlocal states, as detected by Svetlichny inequality and 99th facet
inequality, are considered separately in (a) and (b), respectively. It is
interesting to note that for any positive value of C

ρ(p,q)
GM , there exist

some states whose genuine nonlocality is observed via violation of
the 99th facet. However for the states whose genuine nonlocality
is guaranteed by the violation of Svetlichny inequality, no such
conclusion can be made. In fact for violation of Svetlichny inequality,
the range of C

ρ(p,q)
GM gets restricted: C

ρ(p,q)
GM >

√
2 − 1.

facet inequality [see Fig. 6(b)]. To be precise, there exists a
subclass of GHZ-symmetric states which is genuinely nonlocal
for any amount of C

ρ(p,q)
GM .

D. Genuinely nonlocal subclass

The genuinely nonlocal subclass is obtained for a fixed
value of one of the two state parameters. Putting q =

√
3

4 in
Eq. (1), we get

ρ

(
p,

√
3

4

)
=

(
1

2
+ p

)
|GHZ+〉〈GHZ+|

+
(

1

2
− p

)
|GHZ−〉〈GHZ−|. (22)

This subclass of GHZ-symmetric states is genuinely entangled,
the amount of entanglement given by [Eq. (20)]

C
ρ(p,

√
3

4 )
GM = 2|p|. (23)

The optimal region of standard nonlocality of this subclass is
detected by 15th facet inequality:

Lmax = 4
8p3 − 1

4p2 − 1
> 4. (24)

Clearly for any nonzero value of p, Lmax > 4. The relation
between entanglement (Cρ(p,q)

GM ) and standard nonlocality is
given by

4

(
C

ρ(p,
√

3
4 )

GM

)3
− 1(

C
ρ(p,

√
3

4 )
GM

)2
− 1

> 4. (25)

Equation (25) points out that the amount of standard
nonlocality (Lmax − 4) increases monotonically with amount

of entanglement (C
ρ(p,

√
3

4 )
GM ). Clearly any arbitrary amount of

entanglement is sufficient for violation of the 15th facet
inequality (see Fig. 7). A similar sort of analysis can be made

FIG. 7. The red dashed curve gives variation of amount of
standard nonlocality (Lmax − 4) with the amount of entanglement
(Cρ(p,q)

GM ) whereas the solid green curve represents the variation
of amount of genuine nonlocality (NSmax − 3) with the amount of
entanglement (Cρ(p,q)

GM ). The figure shows that standard nonlocality
(NL) and genuine nonlocality (GNL) both are obtained for any
positive value of C

ρ(p,q)
GM . The curve showing variation of GNL with

C
ρ(p,q)
GM for this mixed subclass of GHZ-symmetric states is the same

as that of the curve showing variation of GNL with C
ρ(p,q)
GM for the

pure generalized GHZ state [33].

when we consider the stronger notion of genuine nonlocality.
The 99th facet inequality is the most efficient detector of
genuine nonlocality for this subclass:

NSmax = 1 + 2
√

1 + 4p2 > 3. (26)

Using Eq. (23), the above inequality gets modified as

1 + 2

√
1 +

(
C

ρ(p,
√

3
4 )

GM

)2
> 3. (27)

Clearly for any arbitrary amount of C
ρ(p,

√
3

4 )
GM , this subclass

can reveal genuine nonlocality (see Fig. 7). Interestingly,
comparison between the NSmax of this class ρ(p,

√
3

4 ) and
that of the pure class of generalized Greenberger-Horne-
Zeilinger (GGHZ) states [30,32,33] points out that for these
two classes genuine nonlocality varies similarly with that of
their corresponding entanglement content though one of these
classes is pure (GGHZ) whereas the other one is mixed [33].

E. Genuinely entangled but not genuinely nonlocal subclass

In this subsection we present a subclass of GHZ-symmetric
states which is genuinely entangled but satisfies all the 185
facet inequalities detecting genuine nonlocality. For that we
first consider Eq. (18), which gives the criterion of genuine
entanglement: |p| > 3

8 −
√

3
2 q. Now any subclass having state

parameters p and q restricted by this criterion cannot reveal
genuine nonlocality if it cannot violate either Svetlichny
inequality or 99th facet inequality, i.e., if p � 1

2
√

2
and criteria

for satisfying 99th facet inequality: 4q√
3

+ 2
√

16q2

3 + 4p2 �
3 , q � 1

28 (8
√

5 − 5
√

3). Clearly these three restrictions to-
gether give a feasible region in state parameter space (p,q)
and that any GHZ-symmetric state having a state parameter
lying in this feasible region fails to reveal genuine nonlocality
in spite of being genuinely entangled.
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VI. CONCLUSION

In summary, the above systematic study exploits the nature
of different notions of nonlocality thereby giving the necessary
and sufficient conditions for detecting nonlocality of an entire
family of high-rank mixed three-qubit states with the same
symmetry as the GHZ state. Generally Mermin inequality
(which is a natural generalization of CHSH inequality)
is used to detect standard nonlocality. However, we have
showed that this inequality is not the most efficient Bell
inequality for this class of three-qubit mixed states as for
some restricted range of state parameters 15th facet inequality
gives advantage over Mermin inequality. Our findings confirm
that the nonlocality conditions given by 15th facet inequality
and Mermin inequality are the best detector of standard
nonlocality for this class of states. Analogously genuine
nonlocality of the class is discussed. For detection of genuine
nonlocality 99th facet inequality and Svetlichny inequality
turn out to be the most effective tools. Further comparison
between these two inequalities points out that 99th facet
inequality is even far better than Svetlichny for some restricted
subclasses of this class though the latter is extensively used for
detection of genuine nonlocality. Also, our result illustrates
the relationship between entanglement and nonlocality of this
class of three-qubit mixed states. Interestingly no biseparable
state is capable of revealing standard nonlocality. This in
turn points out the necessity of genuine entanglement of this
class for this purpose. However, for revelation of standard
nonlocality existence of genuine entanglement is not sufficient.
This fact becomes clear from the existence of a genuine
entangled local subclass of GHZ-symmetric states. It will
be interesting to explore the presence of hidden nonlocality
(if any) [46–48] of this class of states. Also one may try to
activate nonlocality of this class of states by using it in some
suitable quantum network [49,50]. Also, the GHZ-symmetric
class of states forms a two-dimensional affine subspace of
the whole eight-dimensional space of three-qubit states [40].
So a study analyzing the relation between entanglement and
nonlocality of tripartite states from other subspaces, or if
possible characterization of the whole space itself, can be made
in the future.

APPENDIX

In order to obtain the maximum value Mmax [Eq. (10)]
we consider the projective measurements: A0 = 
a. 
σ1 or

A1 = 
́a. 
σ1 on the first qubit, B0 = 
b. 
σ2 or B1 = 
́b. 
σ2

on the second qubit, and C0 = 
c. 
σ3 or C1 = 
́c. 
σ3 on the

third qubit, where 
a,
́a,
b, 
́b and 
c,
́c are unit vectors and


σi are the spin projection operators that can be written in
terms of the Pauli matrices. Representing the unit vectors
in spherical coordinates, we have 
a = (sin θa0 cos φa0,

sin θa0 sin φa0, cos θa0),
b= (sin αb0 cos βb0, sin αb0 sin βb0,

cos αb0), and 
c = (sin ζc0 cos ηc0, sin ζc0 sin ηc0, cos ζc0)

and similarly we define 
́a, 
́b, and 
́c by replacing zero in the
indices by one. Then the value of M [Eq. (5)] for the state
ρ(p,q) can be written as

M[ρ(p,q)] = |2p[cos(βb0 + ηc0 + φa0) sin(αb0) sin(ζc0)

× sin(θa0) − cos(βb1 + ηc1 + φa0) sin(αb1)

× sin(ζc1) sin(θa0) + cos(βb1 + ηc0 + φa1)

× sin(αb1) sin(ζc0) sin(θa1) + cos(βb0 + ηc1

+φa1) sin(αb0) sin(ζc1) sin(θa1)]|. (A1)

To obtain the maximum value of M we have to maximize the
above function M[ρ(p,q)] over all measurement angles. We
first find the global maximum of M[ρ(p,q)] with respect to θa0

and θa1. We begin by finding all critical points of M[ρ(p,q)]
inside the region R = [0,2π ] × [0,2π ] which are, namely,
(π

2 ,−π
2 ),(−π

2 , π
2 ), (π

2 , π
2 ), and (−π

2 ,−π
2 ). The function gives

maximum value with respect to θa0 and θa1 in all these critical
points. In particular if we take (π

2 , π
2 ) as the maximum critical

point, then Eq. (A1) becomes

M[ρ(p,q)] � |2p[cos(βb0 + ηc0 + φa0) sin(αb0) sin(ζc0)

− cos(βb1 + ηc1 + φa0) sin(αb1) sin(ζc1)

+ cos(βb1 + ηc0 + φa1) sin(αb1) sin(ζc0)

+ cos(βb0 + ηc1 + φa1) sin(αb0) sin(ζc1)]|.
(A2)

Now we carry out the same procedure over the pair of variables
(βb0,βb1) and (ζc0,ζ c1), one by one. Similar to the previous
case, critical point ( π

2 , π
2 ) gives the maximum value for both

of these pairs of variables. So the last inequality in Eq. (A2)
takes the form

M[ρ(p,q)] � |2pG| (A3)

where G = cos(βb0 + ηc0 + φa0) − cos(βb1 + ηc1 + φa0)
+ cos(βb1 + ηc0 + φa1) + cos(βb0 + ηc1 + φa1). Now the
algebraic maximum value of G is equal to 4 which can be
obtained by taking βb0 = 0, βb1 = −π

2 , φa0 = 0, φa1 = π
2 ,

ηc0 = 0, and ηc1 = −π
2 . Thus, Mmax = 8|p| as obtained in

Eq. (10). Similarly one can obtain Lmax [Eq. (12)], Smax

[Eq. (14)], and NSmax [Eq. (16)].
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