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Effective transition between the population-inverted optical eigenmodes of two coupled microcavities carrying
mechanical oscillation realizes a phonon analog of optical two-level lasers. By providing an approach that
linearizes the dynamical equations of weak nonlinear systems without relying on their steady states, we study
such phonon laser action as a realistic dynamical process, which exhibits time-dependent stimulated phonon
field amplification especially when one of the cavities is added with optical gain medium. The approach we
present explicitly gives the conditions for the optimum phonon lasing, and thermal noise is found to be capable
of facilitating the phonon laser action significantly.

DOI: 10.1103/PhysRevA.94.031802

Compound structures such as coupled microcavities or
waveguides constitute a large number of interesting systems in
the optical sciences. An important category that has recently
attracted extensive research covers those with alternately
distributed active (gain) and passive (loss) components, as
they can mimic the parity-time (PT ) symmetric quantum me-
chanics [1], a generalization of ordinary quantum mechanics.
In addition to the theoretical investigations (see, e.g., [2–13]),
numerous experiments have demonstrated peculiar features of
light transmission in these systems [14–19]. Richer phenom-
ena could manifest if they incorporate other degrees of freedom
to form hybrid systems, which have been studied by combining
PT symmetric systems with Kerr nonlinearity [20–25] and
mechanical oscillators [26–29].

The device of two coupled microcavities in Fig. 1 can
implement phonon laser action [30], as well as in many other
systems [31–42]. Here the coupling intensity J of the two
microcavities is determined with their adjustable gap. Under
a pump drive of the intensity E and frequency ωL, two
eigenmodes or supermodes of different energy levels, as the
superpositions of the individual cavity modes, will be built
up. If one of the cavities also carries a mechanical oscillation
with the frequency ωm, the cavity supermodes will couple to
the associated phonon field in cavity material via radiation
pressure. Once there is a population inversion between the
cavity supermodes, an amplification of the phonon field will
be realized in analogy to an optical laser.

A recent study [26] proposes the enhancement of phonon
lasing by adding an optical gain medium into one of the cavities
(also see [29] for a continued study in a similar approach).
Then the system will have the exact PT symmetry given the
equal gain rate g and loss rate γ of the respective cavities,
and this PT symmetric point was predicted to be capable of
achieving the best performance of the phonon laser driven by
a resonant pump [26]. A prediction like this was made under
the assumption that the phonon laser operates in a steady state,
in which the expectation values of the cavity modes â1,â2 and
mechanical mode b̂ remain unchanged with time.

However, as we will show below, the phonon laser should
operate under a blue detuned pump which leads to no steady
state. In the presence of optical gain similar systems can
be fully dynamical. A well-known example is that, at the

above-mentioned PT symmetric point g = γ , the intracavity
light fields are totally variable, exhibiting a transition from
periodically oscillating to exponentially growing as the cavity
coupling J decreases across the exceptional point J = γ . A
slight change of a cavity’s size under radiation pressure can
hardly make these dynamically evolving fields become time-
independent. Properly understanding the concerned phonon
laser operation necessitates an approach based on the dynam-
ical picture.

To be more specific, the system’s dynamical equations
read [43]

˙̂a1 = −(γ − igmx̂)â1 − iJ â2 + Ee−i�t +
√

2γ ξ̂p, (1)

˙̂a2 = gâ2 − iJ â1 +
√

2gξ̂ †
a , (2)

˙̂b = −γmb̂ − iωmb̂ + igmâ
†
1â1 +

√
2γmξ̂m (3)

in a frame co-moving at the frequency ωc (� = ωc − ωL)
of the two cavities, where x̂ = b̂ + b̂† is the dimensionless
position operator of the mechanical oscillator damping at the
rate γm and coupled to the passive mode occupation â

†
1â1 with

a constant gm = ωcx0/R (x0 is the mechanical oscillator’s
zero-point fluctuation and R is the cavity size). Without a
classical steady state it will be impossible to linearize the
dynamical equations (1)–(3) following the practice in most
other works about quantum optomechanics. Moreover, these
equations carry the random drive terms of the dissipation
(amplification) noise ξ̂p (ξ̂a) and the thermal noise ξ̂m, which
satisfy the relations 〈ξ̂i(t)ξ̂

†
i (t ′)〉 = δ(t − t ′) (i = p,a) and

〈ξ̂m(t)ξ̂ †
m(t ′)〉 = (nth + 1)δ(t − t ′) (nth is the thermal reservoir

mean occupation number). The effects of these quantum
noises, which are neglected in previous studies but exist
in any concerned quantum dynamical process, should be
well clarified. In this work we develop an approach to such
quantum dynamical processes. The population inversion of
the optical supermodes, as the key to the phonon lasing,
will be determined in this approach capable of dealing
with the quantum noises which are indispensable as shown
below.
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FIG. 1. Setup of coupled microcavities with their coupling rate J

adjusted by their gap distance. The first cavity carries a mechanical
mode. The pump field from the second optical fiber for amplification
does not couple to the first cavity. The stimulated transition of phonons
takes place between two supermode states ô

†
1|0〉 and ô

†
2|0〉 separated

by an energy level difference 2J , and their occupation numbers
〈ô†

i ôi(t)〉 (i = 1,2) are generally time-dependent in the dynamical
operation of the setup.

Our approach makes use of the stochastic Hamiltonian

HSR(t) = i{
√

2γ [â†
1ξ̂p(t) − H.c.] +

√
2g[â†

2ξ̂
†
a (t) − H.c.]

+
√

2γm[b̂†ξ̂m(t) − H.c.]} (4)

in terms of the system-reservoir couplings for the amplification
and dissipations in the system (the notation in [25] for
the amplification part is adopted). The quantum dynamical
equations (1)–(3) can be obtained by the small increments
dô(t) = U †(t + dt,t)ô(t)U (t + dt,t) − ô(t) of the operators
ô = â1,â2, and b̂, which are under the evolution U (t) =
T exp{−i

∫ t

0 dτ [HS(τ ) + HOM + HSR(τ )]} of the total Hamil-
tonian [44]. The Hamiltonians inside the time-ordered expo-
nential include the part

HS(t) = ωcâ
†
1â1 + ωcâ

†
2â2 + ωmb̂†b̂ + J (â1â

†
2 + â

†
1â2)

+iE(â†
1e

−iωLt − â1e
iωLt ) (5)

about the cavity coupling plus the external drive, as well
as the one HOM = −gmâ

†
1â1(b̂ + b̂†) about optomechanical

interaction.
We apply an interaction picture with respect to

the system Hamiltonian HS(t), whose action U0(t) =
T exp{−i

∫ t

0 dτHS(τ )} evolves the cavity modes as the exact
transformation(

U
†
0 â1U0

U
†
0 â2U0

)
= 1√

2
e−iωct

(
â1+â2√

2
e−iJ t + â1−â2√

2
eiJ t

â1+â2√
2

e−iJ t − â1−â2√
2

eiJ t

)

+
√

2e−iωct

(
E1(t)
E2(t)

)
, (6)

where

E1(t) = iE

2
√

2

[
1

� + J
e−iJ t + 1

� − J
eiJ t − 2�

�2 − J 2
ei�t

]
,

E2(t) = iE√
2

[
J

�2 − J 2
ei�t − J

�2 − J 2
cos(J t)

− i
�

�2 − J 2
sin(J t)

]
. (7)

The optical supermodes ô1,2 = (â1 ± â2)/
√

2 with the energy
levels ωc ± J naturally appear in Eq. (6). Taking the interaction
picture is equivalent to the factorization

T e−i
∫ t

0 dτ [HS (τ )+HOM+HSR(τ )]

= U0(t)T e−i
∫ t

0 dτU
†
0 (τ )[HOM+HSR(τ )]U0(τ ) (8)

of the evolution operator U (t) [45], to have the exact
form U

†
0 (t)[HOM + HSR(t)]U0(t) in one of the time-ordered

exponentials above consisting of two parts. One is in a time-
dependent quadratic form plus a mechanical displacement
term and three system-reservoir coupling terms

H1(t) = − gm{[E1(t)(ô†1e
iJ t + ô

†
2e

−iJ t ) + H.c.]

+ 2|E1(t)|2}(b̂e−iωmt + b̂†eiωmt )

+ i
√

g{[ô†1eiJ t − ô
†
2e

−iJ t + 2E∗
2 (t)]eiωct ξ̂ †

a − H.c.}
+ i

√
γ {[ô†1eiJ t + ô

†
2e

−iJ t + 2E∗
1 (t)]eiωct ξ̂p − H.c.}

+ i
√

2γm{b̂†eiωmt ξ̂m(t) − H.c.}, (9)

and the other is the cubic nonlinear one

H2(t) = − 1
2gm(ô†1e

iJ t + ô
†
2e

−iJ t )(ô1e
−iJ t + ô2e

iJ t )

× (b̂e−iωmt + b̂†eiωmt ). (10)

The terms containing ô1ô
†
2b

† or its conjugate in the second
Hamiltonian H2(t) indicate a transition from the blue super-
mode ô1 to the red supermode ô2 while generating a phonon
(see the level scheme in Fig. 1), realizing phonon lasing once
the occupation of the blue supermode surpasses that of the red
one. The Hamiltonian H2(t) also gives the resonant transition
between the two supermodes at ωm = 2J , i.e., the coefficient
of ô1ô

†
2b

† becomes unity, corresponding to the gain spectrum
line center of the stimulated phonon field [30].

Under the simultaneous action of H1(t) and H2(t), the
supermode populations

〈ô†i ôi(t)〉 = TrS[ô†i ôiρS(t)]

= TrS{ô†i ôiTrR[U (t)ρS(0)ρRU †(t)]}, (11)

for i = 1,2, are predominantly determined by the former. Here
ρS(t) and ρR are the reduced system state and the total reservoir
state, respectively. This can be seen from their following
reduction:

〈ô†i ôi(t)〉 = TrS,R

{
ô
†
i ôiU0(t)T e−i

∫ t

0 dτ (H1+H2)(τ )

× ρS(0)ρRT ei
∫ t

0 dτ (H1+H2)(τ )U
†
0 (t)

}
≈ TrS,R{U †

1 (t)U †
0 (t)ô†i

× ôiU0(t)U1(t)U2(t)ρS(0)ρRU
†
2 (t)}

= TrS,R{U †
1 (t)U †

0 (t)ô†i ôiU0(t)U1(t)ρS(0)ρR}, (12)

where Ul(t) = T e−i
∫ t

0 dτHl (τ ) for l = 1,2. In Eq. (12), the
relation U2(t)ρS(0)U †

2 (t) = ρS(0) for the system’s initial state
ρS(0), the product of a cavity vacuum state |0〉c and a
mechanical thermal state, is due to the fact H2(t)|0〉c = 0.
The approximate equality in Eq. (12) comes from factorizing
the actions of the noncommutative Hamiltonians H1(t) and
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H2(t) as

T e−i
∫ t

0 dτ (H1+H2)(τ ) = T e−i
∫ t

0 dτU2(t,τ )H1(τ )U †
2 (t,τ )U2(t)

≈ U1(t)U2(t). (13)

For the experimentally realizable optomechanical systems
of weak coupling, the corrections to the system operators
by the unitary operation U2(t,τ ) = T e−i

∫ t

τ
dt ′H2(t ′) are in the

higher orders of the coefficient gm/ωm � 1 [46], so that they
can be well neglected to use the original form of H1(τ ) in
the time-ordered exponential on the right side of the above
equation. This only approximation we use in the calculations
of the optical supermode populations is independent of the
drive intensity E.

While the unitary operation U0(t) only displaces the super-
mode operators in Eq. (12), the action U1(t) of the Hamiltonian
H1(t) leads to the following dynamical equations [44]:

˙̂o1 = 1/2(g − γ )ô1 + 1/2(g + γ )e2iJ t ô2

+ igmE1(t)eiJ t (b̂e−iωmt + b̂†eiωmt )

+ [γE1(t) − gE2(t)]eiJ t + n̂1(t),

˙̂o2 = 1/2(g + γ )e−2iJ t ô1 + 1/2(g − γ )ô2

+ igmE1(t)e−iJ t (b̂e−iωmt + b̂†eiωmt )

+ [γE1(t) + gE2(t)]e−iJ t + n̂2(t),

˙̂b = −γmb̂ + igmE∗
1 (t)eiωmt (ô1e

−iJ t + ô2e
iJ t )

+ igmE1(t)eiωmt (ô†1e
iJ t + ô

†
2e

−iJ t )

+ 2igm|E1(t)|2eiωmt + n̂3(t) (14)

for the system operators, where

n̂1(t) = √
geiJ t eiωct ξ̂ †

a (t) + √
γ eiJ t eiωct ξ̂p(t),

n̂2(t) = √
ge−iJ t eiωct ξ̂ †

a (t) − √
γ e−iJ t eiωct ξ̂p(t), (15)

n̂3(t) =
√

2γmeiωmt ξ̂m(t).

The noise drive terms in Eq. (15) must be included in
these equations. For example, in the trivial situation of
turning off the pump drive (E = 0), the damping of the
mechanical mode would result in its “cooling” to the ground
state, i.e., 〈b̂†b̂(t)〉 → 0 as t → ∞, were there no thermal
noise term n̂3(t) in the last equation of (14). The invari-
ant occupation number 〈b̂†b̂〉 under such thermal equilib-
rium is preserved with the complete form b̂(t) = e−γmt b̂ +√

2γm

∫ t

0 dτe−γm(t−τ )eiωmτ ξ̂m(τ ) of the evolved mechanical
mode. The evolved supermodes ô1(t),ô2(t), on the same
footing with b̂(t) in Eq. (14), should include the contributions
from the quantum noises as well.

The next question is how to evolve the supermodes so that
a good population inversion �N (t) = 〈ô†1ô1(t)〉 − 〈ô†2ô2(t)〉
can be achieved. One advantage of our approach is that
the conditions for realizing the optimal population inversion
can be straightforwardly read from Eq. (14), which is an
inhomogeneous system of differential equations with the
coherent and noise drive terms. The coefficients of ôi or
ô
†
i on the right side of the last equation, for example, are

generally the sums of complex exponential functions of t

considering the form of E1(t). These coefficients reflect the
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FIG. 2. Population inversion evolutions in a setup with the system
parameters ωm = 22.8γ , gm = 5 × 10−5γ , and γm = 0.037γ , which
are converted from those of the experiment in [30]. The setup
operates under the optimal transition condition ωm = 2J and in
an environment of T = 273 K (nth = 2.4 × 105). The choice of
the other parameters: (a) E = 2.5 × 105γ , � = −3J ; (b) g = 0.5γ ,
� = −3J ; (c) E = 107γ , � = 0; (d) g = 0.5γ , � = J . The inserted
plot in (c) shows the long-term behavior for the curve of g = γ .

intensities of the beam splitter (BS) type coupling in the form
f (t)ôi b̂

† + H.c. or the squeezing (SQ) type coupling in the
form g(t)ô†i b̂

† + H.c., where the exact functions f (t),g(t) can
be found from Eq. (9). These couplings can be enhanced if
a complex exponential function of t in f (t) or g(t) becomes
unity. A significant population inversion will be realized if
an SQ coupling between the blue supermode ô1 and the
mechanical mode b̂ can be strengthened. Such enhancement
will be possible by setting the pump to blue sideband with
its detuning � equal to −ωm − J = −3J [considering the
optimal transition condition ωm = 2J from Eq. (10)], reducing
the factor ei(�+ωm+J )t before ô

†
1 in the last equation of (14) to

a unity.
To illustrate the general theory, we plot the population

inversions in terms of the dimensionless parameters in Fig. 2.
These inversions are numerically calculated with Eq. (14).
Figures 2(a) and 2(b) show that, under the above-mentioned
two optimal conditions, the inversions grow with time due
to the SQ process. Increased gain rate g and drive intensity
E serve as the additional factors to make them go up
monotonically farther. The inversion in a passive setup (g =
−γ ) can increase with time, in addition to reaching the steady
states (not shown here) under lower drive intensity E for this
passive setup (in the absence of considerably high optical gain,
steady states may exist under the condition gm|αi | � γ for
a blue detuned drive, where αi are the average cavity field
amplitudes proportional to the drive intensity E; see, e.g., a
proposed setup in [47]). The enhanced SQ process heats up
the cavity material with increased thermal occupation 〈b̂†b̂(t)〉
different from the quantity |〈b̂(t)〉|2, and the very strong light
fields after a long period will make the system go beyond
the current model of linear amplification and dissipation in
accordance with the specific material properties.
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FIG. 3. Relations between the realized population inversion at
t = γ −1

m and the drive intensity, under the conditions ωm = 2J and
� = −ωm − J . Here we set g = 0.5γ . The regimes of J > γ and
J < γ are illustrated in (a) and (b), respectively. The other fixed
system parameters are the same as those in Fig. 2. At a fixed E, the
inversion increases with the lowered J from 0.3γ to 0.1γ , but drops
as J is decreased further to 0.03γ .

As a comparison we also present two other examples. The
first one in Fig. 2(c) is to drive the passive cavity resonantly at
� = 0, having E1(t) = iE/(2

√
2J )(e−iJ t − eiJ t ). The term

with the factor e−iJ t in the E1(t) provides enhanced SQ
coupling between ô2 and b̂, while the one with eiJ t enhances
the BS coupling between ô1 and b̂, showing that the SQ effect
will dominate in the end. The other example in Fig. 2(d) has
� = J , which happens to be one of the resonant points of
the coupled system so that E1(t) = iE/(4

√
2J )[e−iJ t − 2(1 +

iJ t)eiJ t ]. In this special situation, the extra linearly increasing
factor overshadows the effects of the phase factors (e±iJ t ) and
nonetheless enhances the SQ coupling between ô2 and b̂, to
give negative population inversions.

The influence of the cavity coupling intensity on supermode
population inversion is illustrated in Fig. 3, showing the
relations between the inversion (at the mechanical oscillation
lifetime γ −1

m ) and the drive intensity for different J . To keep
the optimal conditions in Fig. 2(a), the mechanical frequency
ωm is also assumed to be adjustable in the illustrations. One
sees that, given a fixed drive intensity E, a lowered coupling
J actually increases the population inversion until it becomes
small enough to have the two cavities almost decoupled. This
is totally contrasting to the prediction of no phonon lasing in
the regime J < (g + γ )/2 by a previous study [26]. That con-
clusion is based on the diagonalized form (ω+ + iγ+)q̂†

2 q̂2 +
(ω− + iγ−)q̂†

1 q̂1 of the non-Hermitian Hamiltonian (ωc −
iγ )â†

1â1 + (ωc + ig)â†
2â2 + J (â†

1â2 + â
†
2â1) widely used in the

study of PT symmetric optical systems, suggesting that
phonons induce a transition between the modes q̂1,q̂2 with their
gap ω+ − ω− disappearing when J < (g + γ )/2. In fact, these
generally nonorthogonal modes (see more detailed discussion
in [15]) coincide with the supermodes ô1,ô2 only in a special
situation of g = −γ [46]. Similarly to the transitions between
atomic levels, the action of the Hermitian Hamiltonian H2(t)
can only cause an effective transition between two orthogonal
states such as ô

†
1|0〉 and ô

†
2|0〉, and the transition between the

nonorthogonal states q̂
†
1|0〉 and q̂

†
2|0〉 with 〈0|q̂1q̂

†
2|0〉 �= 0 is

forbidden for arbitrary system parameters.
A unique property of the optical medium is that the quantum

noises, which must be considered as mentioned before, can
significantly affect the supermode populations. We illustrate
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FIG. 4. Thermal noise contribution to the supermode population
inversion. The solid curves in (a), (b), and (c) are the portions of those
in Fig. 2(a), with g = γ , 0.1γ , and −γ , respectively. The dashed
curves represent the contributions from the thermal noise drive n̂3 in
Eq. (15).

this important fact in Fig. 4 showing the proportions of
the thermal noise contribution in the results of Fig. 2(a).
The detailed calculation of the noise contributions can be
found in [46]. It is seen from the comparisons in Fig. 4
that, under the enhanced SQ coupling due to the properly
chosen system parameters, the thermal noise acting as a
random drive can predominantly contribute to the population
inversions. The contribution is proportional to the thermal
occupation number nth, a parameter of the environment. This
observation constitutes an interesting feature of the quantum
noises which have been seldom discussed for coupled gain-loss
systems [4,7,25,48].

With the above understandings, one will find how well the
phonon laser can operate. In analogy to an optical laser [49],
the phonon laser dynamical equations similar to those in [30]
are independently found as

ḃs = (−γm − iωm)bs − (1/2)igmp,

ṗ = (1/2)igm�N (t)bs + [1/2(g − γ ) − 2iJ ]p, (16)

where bs = 〈b̂s〉 [the subscript “s” indicates the stimulated
phonon mode to be distinguished from the thermal phonon
mode in Eq. (14)] and p = 〈ô†2ô1〉. Corresponding to the
semiclassical treatment of atomic level transitions, by which
the atomic levels are described quantum mechanically while
the radiations are regarded as classical, we approximate the
phonon laser mode in Eq. (16) as a mean field but insert the
inversion �N (t) determined in a completely quantum way
from Eq. (14) into the same equations. The amplification rates
of the stimulated phonon field numerically found with the
above equations are illustrated in Fig. 5. The threshold drive
intensity Eth for realizing phonon field amplification becomes
lower with increased gain rate g, which is upper bounded in
reality due to gain saturation. Under the optimal transition
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FIG. 5. Amplification of the stimulated phonon field intensity in
terms of the ratio between their values at t = γ −1

m and t = 0. The
system parameters are the same as those in Fig. 2(a).

and optimal population inversion condition as in Figs. 2(a)
and 2(b), adding optical gain medium into one cavity can
enhance the phonon lasing further.

In summary, we have presented a dynamical approach to
the phonon laser model of coupled active-passive resonators,
which only uses a single approximation in Eq. (13) to make
the calculations of the optical supermode populations highly
accurate to the system with gm � ωm. Compared with a
previous study based on the assumed steady states for such
system [26], we find three fundamental differences: (1) the

phonon laser should operate under a blue-detuned pump rather
than the resonant and red-detuned ones considered in [26]—
under blue-detuned drives the phonon laser performance
simply betters with increased optical gain instead of reaching
the optimum at the balanced gain and loss; (2) the phonon laser
can operate even better in the PT symmetry broken regime
[J < (g + γ )/2] in contrast to its nonexistence predicted
in [26]; (3) under the conditions to realize the optimum lasing,
quantum noises can significantly contribute to the supermode
population inversion for magnifying the stimulated phonon
field. These features surely exist in the presence of the realistic
gain saturation, though we use a model of fixed gain rate
to illustrate them more clearly. According to our dynamical
picture, the optimum phonon lasing in any similar setup
(beyond those carrying optical gain) should be reached by
choosing a proper pump detuning � and a suitable cavity
coupling J , and the added optical gain highlighted in [26]
will not help the laser action unless the pump detuning is
within the appropriate range. For the experimentally realizable
optomechanical systems (gm/γ � 1), the approach can be
applied to quantum dynamical processes in the blue-detuned
regime, where the previously available approach of classical
dynamics (see Sec. VIII in [50]) is unable to deal with
the problems involving quantum noises. This approach of
linearizing the dynamical equations of weak nonlinear systems
without relying on their steady states may be applied to solve
other dynamical problems.
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