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Half-period Aharonov-Bohm oscillations in disordered rotating optical ring cavities
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There exists an analogy between Maxwell equations in a rotating frame and the Schrödinger equation for a
charged particle in the presence of a magnetic field. We exploit this analogy to point out that electromagnetic
phenomena in the rotating frame, under appropriate conditions, can exhibit periodicity with respect to the angular
velocity of rotation. In particular, in disordered ring cavities one finds the optical analog of the Al’tshuler-Aronov-
Spivak effect well known in mesoscopic physics of disordered metals.
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Introduction. When written in the four-dimensional covari-
ant form the Maxwell equations (MEs) look the same in any
reference frame, inertial or not. Things change, however, when
the equations are expressed in terms of the three-dimensional
vectors designating the electric and magnetic fields. For
instance, the equation for the electric field in a rotating frame
acquires an additional term, as compared to its counterpart
in an inertial frame [see Eq. (1) below] [1]. This additional
term associated with a nonzero angular velocity of rotation
� �= 0, resembles a magnetic flux � experienced by a quantum
charged particle when it moves through a metallic ring [2].
The situation here is similar to that in mechanics, where
the equation of motion for a particle in a uniformly rotating
frame must be supplemented by the Coriolis and centrifugal
forces—these forces are often called “fictitious,” although
for an observer in the rotating frame they have a very real,
observable effect.

It is therefore natural to expect that the fictitious “magnetic
flux” term appearing in the framework of electrodynamics
of rotating media, can lead to important new fundamental
insights of light propagation in such setups. Of particular
interest to us is the case of rotating disordered optical ring
cavities. The analogous quantum-mechanical situation of an
electron moving around a ring in the presence of magnetic
flux results in Aharonov-Bohm (AB) oscillations [3] and their
half-flux quantum oscillations of conductance [4–10]. The
latter interference effect occurs only in the presence of disorder
and has its origin in a coherent backscattering mechanism.
These half-flux oscillations have been first predicted by
Al’tshuler, Aronov, and Spivak (AAS) [4] and attracted a
lot of theoretical and experimental attention in the frame of
mesoscopic quantum physics. A surprising finding was that
these “anomalous” oscillations emerge only after an ensemble
averaging which restores specific symmetries. We note that
in the cylindrical geometry employed in the experiment [5]
the averaging is automatic, since there are many independent
channels, while in the one-dimensional (1D) ring geometry
considered in [6] averaging over an ensemble of disordered
rings was needed to reveal the half-flux oscillations.

Do similar effects occur also in the frame of light propaga-
tion in rotating disordered ring cavities? As we will show below
a direct inspection of the ME in the rotating frame uncovers
many differences with the quantum-mechanical Schrödinger
equation in the presence of a magnetic field. The most

noticeable one is that the fictitious “magnetic field,” related
to the rotation, depends not only on the angular rotation
velocity � but also on the electromagnetic wave frequency ω.
We demonstrate that, these differences notwithstanding, wave
interference effects can lead under appropriate conditions to
the optical analog of the AAS oscillations. Our theoretical
results are supported by detailed numerical calculations.

Model. We demonstrate the existence of half-period AB
oscillations in the presence of rotations using the simple case
of a 1D ring cavity of radius R [11]. We assume that the
effective refraction index n(s) of the 1D ring generally depends
on the coordinate s defining the position on the circumference
of the ring. The ring rotates uniformly about the axis going
through its center perpendicular to its plane (z direction),
so that the vector angular velocity is �� = �ẑ. Assuming a
monochromatic electric field, having only the z component,
�E(s,t) = ẑ�(s)e−iωt , one can write the ME for � in the

rotating frame as

∂2�

∂s2
+ n2(s)

ω2

c2
� − 2iβ

ω

c

∂�

∂s
= 0, (1)

where s increases from 0 to L = 2πR (in the counterclockwise
direction) and β ≡ �R/c � 1. This equation can be rewritten
as (

∂

∂s
− iβ

ω

c

)2

� + [n2(s) + β2]

(
ω

c

)2

� = 0 (2)

which makes the analogy with quantum mechanics transparent
[11]. The quantum analog of the quantity βωR/c is the
magnetic flux � through the ring, measured in units of the
fundamental quantum flux �0 = hc/e. This analogy is rather
formal because the “vector potential” in Eq. (2) depends
on the wave frequency ω which (for the isolated ring) is
the quantity to be determined from the same Eq. (2). As a
result, Eq. (2) is not periodic with respect to the “fundamental
flux,” as opposed to its quantum-mechanical equivalent, and
therefore it is not a priori obvious that it will demonstrate an
AB periodicity in any observable including its own spectrum.
Nevertheless the analogy is useful and it enables us to identify
system parameters and physical conditions for which AB-type
optical interference effects [12], similar to those known in
mesoscopic physics of electronic systems, can emerge also in
the framework of Eq. (2).
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FIG. 1. Evolution of the spectrum ω[ c

l1
] (we assume l1 = 1)

versus β

n0
for (a) an ideal ring cavity with n0 = 1.5 and circumference

L = 50l1, in the large N limit. A large portion of the spectrum, near
N ≈ 48, is accurately mapped onto itself when β

n0
= 1

N
≈ 0.021.

(b) One defect with n1 = 1.7 and length l1. In this case the strict
degeneracies turn into avoided crossings (dashed lines). Note the
crossing for β

n0
= 1

2N
≈ 0.01 which plays a major role in the disorder-

related effect discussed in the text.

Let us consider, for example, a perfect ring cavity with
a constant index of refraction n(s) = n0. In the absence
of any rotation the spectrum is degenerate with eigen-
frequencies ω

(N)
0 = Nc/Rn0, with N = 1,2,3 . . . . Drawing

analogies from the quantum mesoscopic physics we expect
that significant changes in the spectrum will occur when
the effective magnetic flux � = βω

(N)
0 R/c = βN/n0 reaches

values comparable to unity. It follows that, due to the smallness
of β, this can only happen for large mode numbers N . For
example, for a ring of radius R = 3 cm in the optical range of
frequencies ω

(N)
0 ∼ 1015 s−1, we have that N = ω

(N)
0 Rn0/c =

105, corresponding to � ∼ 105 s−1. This number can be
decreased further to � ∼ 103 s−1, which is easily achievable,
if we consider a loop fiber of length L ≈ 1 m coiled in many
turns onto a mandrel.

Isolated ring cavity. To find the eigenvalues of an isolated
ring one has to solve Eq. (2), with periodic boundary
conditions. It is instructive to start with an ideal ring, i.e.,
n(s) = n0 = const. For this case the eigenfrequencies, to first
order in β, are ω

(N)
± = ω

(N)
0 (1 ∓ β

n0
), where the subscript +(−)

denotes a wave propagating in (opposite to) the direction of
increasing s. In the absence of rotation each eigenfrequency
is doubly degenerate. Rotations remove this degeneracy,
introducing frequency splitting 	ω = 2βω

(N)
0 /n0. This lifting

of degeneracy is similar to that in a metallic ring penetrated by
flux �. There is, however, an important difference: in a metallic
ring there is a strict universal periodicity, i.e., energy spectra for
� = 0 and � = �0 are exactly the same. There is no such strict
periodicity in a rotating optical ring cavity. Indeed, it follows
from the above expression for ω

(N)
± that under an increase of β

the doubly degenerate eigenvalue ω
(N)
0 is mapped onto ω

(N−1)
0

and ω
(N+1)
0 . The point is that this mapping occurs at the value

β = n0/N which depends on N itself, so there is no single
period for mapping the entire spectrum onto itself.

The crucial observation is that in the limit of large N one
can choose a large set of levels, in an interval 	N near N ,
such that 1 � 	N � N for which the period is almost the
same (see Fig. 1). Specifically, we get a periodicity n0/N—up
to small corrections of the order of 	N/N2. This period also
follows from the aforementioned analogy between �/�0 and
βωR/c, since � = �0 translates into β = c/Rω

(N)
0 = n0/N .

In addition, a degeneracy at β = n0/2N develops when the
nearby levels N and N − 1 cross (see Fig. 1).

Next we investigate the effect of one defect on the
eigenfrequencies ω(N) of a rotating ring cavity. The impurity
splits the ring into two sections. The first one consists of the
cavity formed by the defect which has an index of refraction n1

and length l1. The second one is associated with the rest of the
ring and has an index of refraction n0 and length l0 = L − l1 (L
is the length of the ring circumference). We choose the origin
s = 0 in the middle of the section with refraction index n0. The
interfaces between the two sections are at positions s0 = l0/2
and s1 = l0/2 + l1. In each of the two uniform sections, the
solution �j (s) of Eq. (1) can be written as the superposition
of two counterpropagating waves,

�j (s) = aj (s) + bj (s) = aj e
ik

j
+s + bj e

−ik
j
−s , (3)

where k
j
± = nj

ω
c

(1 ± β

nj
) are the wave numbers associated

with a propagating wave in (+) or opposite (−) to the direction
of increasing s, while j = 0,1 indicates the section associated
with the index of refraction nj .

At each position s, the field �(s) in Eq. (3) and its derivative
are continuous. Implementation of these boundary conditions
at the interfaces allows us to calculate the transmission t+ ≡
a0(L)/a0(0) and reflection r+ ≡ b0(0)/a0(0) amplitudes for a
wave traveling in the direction of increasing s and experiencing
scattering events due to the presence of the defect. Specifically,

t+ = 4n0n1e
i(ω/c)n0l0

e−i(ω/c)n1l1 (n0 + n1)2 − ei(ω/c)n1l1 (n0 − n1)2
,

r+ = 2i sin
(

ω
c
n1l1

)(
n2

1 − n2
0

)
ei(ω/c)n0l0

e−i(ω/c)n1l1 (n0 + n1)2 − ei(ω/c)n1l1 (n0 − n1)2
. (4)

Moreover the fields at s = 0 and at s = L (i.e., across the
whole ring) are connected via the total transfer matrix Ttot [13]
as(

a0(L)
b0(L)

)
= Ttot

(
a0(0)
b0(0)

)
; Ttot =

[
1
t∗+

− r∗
+
t∗+

− r+
t+

1
t+

]
ei(ω/c)Lβ, (5)

where t+ ≡ √
T+eiφt and r+ ≡ √

1 − T+eiφr can be further
parametrized in terms of the transmission modulo T+ and phase
φt , and the reflection phase φr .

The eigenmodes and the associated eigenfrequencies are
calculated by imposing periodic boundary conditions in
Eq. (5), i.e., a0(L) = a0(0) and b0(L) = b0(0). The eigenfre-
quencies of the ring cavity are the solutions of the secular
equation

det [Ttot(ω) − I2] = 0, (6)

where I2 is the 2 × 2 identity matrix. Once the eigenvector
(a0(0),b0(0))T (corresponding to unity eigenvalue) of Ttot

is evaluated, the associated eigenfunctions are calculated
via a straightforward implementation of the aforementioned
boundary conditions for �(s) and Eq. (3).

The above formalism can be easily generalized to the
case of multiple defects (disordered ring cavity) where now
Ttot = ∏

j Tj is a product of transfer matrices Tj [13]. The
latter takes into consideration the free propagation within a
uniform defect and the boundary conditions that the wave
function has to satisfy at the interface between two consequent
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FIG. 2. Participation ratio PL vs θ

2π
= ωavg

2πc
βL for a disordered

ring with the circumference L = 50l1. All defects have the same
length l1 while their refraction index is given by a box distribution n ∈
[n0 − 	n,n0 + 	n] with n0 = 2. Different colors represent various
disordered strengths 	n (indicated in the figure). (a) Single level
around average angular frequency ωavg ≈ 4[ c

l1
] for one arbitrary

realization. (b) An average over a small frequency window around
ωavg = 4[ c

l1
] and over disordered realizations is taken.

defects. The only β dependence in the Ttot, Eq. (5), is in the
overall phase, irrespective of the number of defects. Therefore
the eigenfrequencies (around a constant high ωavg value) and
the corresponding eigenmodes will respect a β = 2πc/ωavgL

periodicity.
The substitution of Eq. (4) in Eqs. (5) and (6) allows us to

calculate numerically the eigenfrequencies ω(β) of the rotating
ring cavity with one defect. The results are shown in Fig. 1
together with the eigenfrequencies of the uniform ring. We
find that the defect lifts the degeneracies at β = 0, n0/2N and
n0/N . The same conclusions apply also to disordered rings
(not shown). The lift of these degeneracies due to the presence
of the defects is crucial for the interference effects that we will
discuss below.

Next we turn to the analysis of the eigenmodes and
investigate the so-called participation ratio PL:

PL(β) = 1

L

〈( ∫ L

0 ds|ψ (N)(s)|2)2∫ L

0 ds|ψ (N)(s)|4

〉
, (7)

where 〈· · · 〉 indicates an average over a small frequency win-
dow around a frequency ωavg and over a number of disordered
realizations of index of refraction n(s) ∈ [n0 − 	n,n0 + 	n].
The participation ratio allows us to determine the localiza-
tion of the eigenmodes in the ring and how their spatial
distribution within the ring is affected by rotations β �= 0.

0.25

0.5

0.75

1

Δn=0.1
Δn=0.2
Δn=0.3
Δn=0.4

0 0.5 1

0.75

1

Θ/2π

T
ra

ns
m

it
ta

nc
e 

T Σ

Ω

s

(a)

(b)

FIG. 3. Transmittance T vs θ

2π
= ω

2πc
βL for disordered rings

described in Fig. 2 with n0 = 1.5 and 	n indicated in the figure.
The frequency of incoming wave is fixed at ω = 4[ c

l1
]. The coupling

parameters between the fiber and the disordered ring are τ =
1/

√
2 and κ = 1/

√
2. Different colors represent various disordered

strengths 	n (indicated in the figure). (a) Single realization of
disordered ring. (Inset: a schematic of the scattering setup.) (b) An
average over 800 disordered realizations is taken.

Specifically, PL(β) takes values between unity (uniformly
extended states) and zero (exponentially localized states).
From the previous discussion it is clear that since the secular
equation, Eq. (6), is periodic with period β = 2πc/ωavgL,
the same will apply also for PL(β). This AB-type periodicity
occurs for each individual eigenmode, in the absence of any
averaging [see Fig. 2(a)]. However, we have found that when
the ensemble averaging of the participation ratio (for large ω’s)
is taken, PL(β) demonstrates a half-flux periodicity, similar
to the one found in mesoscopic quantum physics [6,10] [see
Fig. 2(b)]. Further, for strong disorder, such that PL � 1, the
oscillatory behavior of PL(β) completely disappears.

Scattering setup. Since properties of the isolated ring
eigenmodes are closely related to transmission through the
ring, when the latter is connected to external leads, we expect
oscillating behavior also in transmittances. The leads are
realized by a straight fiber [14] coupled with the 1D ring cavity
[see the inset of Fig. 3(a)]. The coupler between the fiber and
the ring cavity is modeled by a 4 × 4 scattering matrix �

defined as [15]

� =
[

O K

KT O

]
; K =

[
κ τ

−τ κ

]
, (8)

where O is the null 2 × 2 matrix, τ ∈ (0,1), and κ = √
1 − τ 2.

At the same time the scattering at the ring is described by the
transfer matrix of Eq. (5). Combining Eqs. (5) and (8) together
leads to the following expression for the transmittance T :

T = 1 − (1 − τ 2)2(1 − T+)

1 + τ 4 + 2τ 2T+
[
1 + cos(2θ ) + cos(2φt )

T+

] + 4τ (1 + τ 2)
√

T+ cos(θ ) cos(φt )
, (9)

where θ ≡ ω
c
βL. The above expression applies equally well

for both one scatterer and for a disordered ring. It follows from
Eq. (9) that T (θ + 2π,φt ) = T (θ,φt ), i.e., for a single disorder
configuration, the transmittance T is a periodic function of θ

with period 2π . This expectation is confirmed by our numerical
simulations for single disorder realization [see Fig. 3(a)].
When, however, we average T over disorder realizations
we obtain the half-period oscillations in the transmittance,
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in complete analogy with our previous results for PL. Our
numerical results, for various disorder strengths, are shown in
Fig. 3(b).

In the weak disorder limit, corresponding to fixed T+(≈1)
and uniform random phase distribution φt ∈ [0,2π ], one can
evaluate the average total transmittance as

〈T (θ )〉 = 1

2π

∫ 2π

0
dφtT (θ,φt ). (10)

Direct substitution of Eq. (9) in the above equation leads to
the AAS relation

〈T (θ + π )〉 = 〈T (θ )〉. (11)

The AAS oscillations are due to interference between a
pair of waves traversing the ring in opposite directions and
recombining after making one (or more) full circle [10]. It is
important to note that the “trivial” phase, not related to rotation
(i.e., to the “flux”) is exactly the same for the two waves and
it cancels out in the interference pattern, which is governed
by the relative phase equal to 2θ . This relative phase does
not depend on the specific disorder realization which explains
the robustness of the “half-flux” oscillations against averaging
over disorder. The picture is different for the AB oscillations.
For those the topological phase θ is always accompanied by
the “trivial,” sample specific phase φt . Therefore averaging
over disorder leads to a decrease of the amplitude of the AB
oscillations until, for sufficiently strong disorder, they become
negligible and only the AAS oscillations remain visible. The
above argumentation is supported by a direct inspection of
Eq. (9) where one sees that the cos(2θ ) term stands alone, not

getting mixed with terms containing φt . In contrast, the cos θ

term is multiplied by cos φt , and therefore does not survive an
averaging over φt . Finally as the disorder increases further, the
amplitude of the oscillations decreases and eventually, in the
strong localized regime, approaches zero. This is due to the
fact that the total transmittance in Eq. (9) involves T+ terms
which control the amplitude of the oscillations and which in
the strong disorder limit go to zero.

Conclusions. We have shown that the wave equation for
light propagating in a rotating ring bears certain analogies
with the Schrödinger equation describing a quantum particle
moving in a ring in the presence of a magnetic flux. These
analogies have, however, constraints—the most severe being
the fact that the ME is not periodic with the angular velocity,
which formally is associated with the magnetic flux in the
quantum problem. Despite this distinction, we have found that
in the optical high frequency domain the periodicity of the
spectrum is (approximately) restored. In this frequency do-
main, AB oscillations emerge for single disorder realizations.
When a disorder averaging is considered, the fundamental
periodicity reduces to half of the AB oscillations. Our results
are relevant for other classical waves as well. For example, the
propagation of sound in a randomly corrugated tube with a
moving fluid is described by similar equations as Eq. (1) [16].
In this framework, AB and AAS oscillations must be easily
observed for relatively small fluid velocities due to the low
values of sound velocities.

Acknowledgments. This work was partly sponsored by
AFOSR MURI Grant No. FA9550-14-1-0037 and by NSF
Grant No. DMR-1306984. B.S. acknowledges support from
Wesleyan University during his stay.

[1] J. Van Bladel, Relativity and Engineering (Springer, Berlin,
1984).

[2] G. Rizzi and M. L. Ruggiero, in Relativity in Rotating Frames:
Relativistic Physics in Rotating Reference Frames, edited by
G. Rizzi and M. L. Ruggiero (Kluwer Academic Publishers,
Dordrecht, 2004).

[3] Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959)
[4] B. L. Altshuler, A. G. Aronov, and B. Z. Spivak, Pis’ma Zh.

Eksp. Teor. Fiz. 33, 101 (1981) [JETP Lett. 33, 94 (1981)].
[5] D. Yu. Sharvin and Yu. V. Sharvin, Pisma Zh. Eksp. Teor. Fiz.

34, 285 (1981) [JETP Lett. 34, 272 (1981)]; B. L. Altshuler,
A. G. Aronov, B. Z. Spivak, D. Yu. Sharvin, and Yu. V. Sharvin,
Pisma Zh. Eksp. Teor. Fiz. 35, 476 (1982) [JETP Lett. 35, 588
(1982)].

[6] J. P. Carini, K. A. Muttalib, and S. R. Nagel, Phys. Rev. Lett.
53, 102 (1984); D. A. Browne, J. P. Carini, K. A. Muttalib, and
S. R. Nagel, Phys. Rev. B 30, 6798(R) (1984).

[7] Y. Gefen, Y. Imry, and M. Ya. Azbel, Phys. Rev. Lett. 52, 129
(1984); M. Murat, Y. Gefen, and Y. Imry, Phys. Rev. B 34, 659
(1986).

[8] Q. Li and C. M. Soukoulis, Phys. Rev. Lett. 57, 3105 (1986);
Phys. Rev. B 33, 7318(R) (1986).

[9] A. D. Stone and Y. Imry, Phys. Rev. Lett. 56, 189 (1986).
[10] A. G. Aronov and Yu. V. Sharvin, Rev. Mod. Phys. 59, 755

(1987).
[11] In the general case where the index of refraction n(x,y) depends

on the coordinates x,y, the ME for � takes the form ∇2� +

n2(x,y) ω2

c2 � − 2i ω

c2 (�v · ∇)� = 0, where �v = �� × �r . This
equation can be rewritten in a form similar to Eq. (2), i.e.,
( �∇ − i ω

c

��×�r
c

)2� + [n2(x,y) + ( ��×�r
c

)2] ω2

c2 � = 0. One can make
use of “gauge freedom” in the last equation, in order to simplify
treatment in certain geometries. For instance, if n(x,y) depends
only on one coordinate, then it is clearly advantageous to use
Landau gauge rather than circular gauge. This gauge freedom
also enables one to construct solutions of the “clean” problem
[i.e., for n(x,y) = n0 = const] which can be useful in defining
the appropriate asymptotic states in a scattering setup.

[12] The standard AB oscillations in the frame of rotating optical
rings are also known as the Sagnac effect and have applications
in gyroscopes.

[13] P. Markos and C. M. Soukoulis, Wave Propagation: From
Electrons to Photonic Crystals and Left-Handed Materials
(Princeton University Press, Princeton, NJ, 2008).

[14] A wave propagating at the distance s = x1 − x0 along the fiber

is accumulating an additional phase exp [i ω

c

∫ x1
x0

dx x̂·[−→Ω ×−→
r (x)]

c
]

due to the rotation, where x̂ denotes the unit vector along the
fiber and −→

r (x) is the position vector of position x in the fiber
with respect to the rotation center. This phase does not affect the
calculation of the transmittance.

[15] M. Terrel, M. J. F. Digonnet, and S. Fan, Laser Photonics Rev.
3, 452 (2009).

[16] H. Li, A. Kleeman, T. Kottos, and B. Shapiro, Phys. Rev. B 92,
020201(R) (2015).

031801-4

http://dx.doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1103/PhysRevLett.53.102
http://dx.doi.org/10.1103/PhysRevLett.53.102
http://dx.doi.org/10.1103/PhysRevLett.53.102
http://dx.doi.org/10.1103/PhysRevLett.53.102
http://dx.doi.org/10.1103/PhysRevB.30.6798
http://dx.doi.org/10.1103/PhysRevB.30.6798
http://dx.doi.org/10.1103/PhysRevB.30.6798
http://dx.doi.org/10.1103/PhysRevB.30.6798
http://dx.doi.org/10.1103/PhysRevLett.52.129
http://dx.doi.org/10.1103/PhysRevLett.52.129
http://dx.doi.org/10.1103/PhysRevLett.52.129
http://dx.doi.org/10.1103/PhysRevLett.52.129
http://dx.doi.org/10.1103/PhysRevB.34.659
http://dx.doi.org/10.1103/PhysRevB.34.659
http://dx.doi.org/10.1103/PhysRevB.34.659
http://dx.doi.org/10.1103/PhysRevB.34.659
http://dx.doi.org/10.1103/PhysRevLett.57.3105
http://dx.doi.org/10.1103/PhysRevLett.57.3105
http://dx.doi.org/10.1103/PhysRevLett.57.3105
http://dx.doi.org/10.1103/PhysRevLett.57.3105
http://dx.doi.org/10.1103/PhysRevB.33.7318
http://dx.doi.org/10.1103/PhysRevB.33.7318
http://dx.doi.org/10.1103/PhysRevB.33.7318
http://dx.doi.org/10.1103/PhysRevB.33.7318
http://dx.doi.org/10.1103/PhysRevLett.56.189
http://dx.doi.org/10.1103/PhysRevLett.56.189
http://dx.doi.org/10.1103/PhysRevLett.56.189
http://dx.doi.org/10.1103/PhysRevLett.56.189
http://dx.doi.org/10.1103/RevModPhys.59.755
http://dx.doi.org/10.1103/RevModPhys.59.755
http://dx.doi.org/10.1103/RevModPhys.59.755
http://dx.doi.org/10.1103/RevModPhys.59.755
http://dx.doi.org/10.1002/lpor.200810052
http://dx.doi.org/10.1002/lpor.200810052
http://dx.doi.org/10.1002/lpor.200810052
http://dx.doi.org/10.1002/lpor.200810052
http://dx.doi.org/10.1103/PhysRevB.92.020201
http://dx.doi.org/10.1103/PhysRevB.92.020201
http://dx.doi.org/10.1103/PhysRevB.92.020201
http://dx.doi.org/10.1103/PhysRevB.92.020201



