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One of the fundamental principles of statistical physics is that only partial information about a system’s
state is required for its macroscopic description. This is not only true for thermal ensembles, but also for
the unconventional ensemble, known as generalized Gibbs ensemble (GGE), that is expected to describe the
relaxation of integrable systems after a quantum quench. By analytically studying the quench dynamics in a
prototypical one-dimensional critical model, the massless free bosonic field theory, we find evidence of a novel
type of equilibration characterized by the preservation of an enormous amount of memory of the initial state that
is accessible by local measurements. In particular, we show that the equilibration retains memory of non-Gaussian
initial correlations, in contrast to the case of massive free evolution which erases all such memory. The GGE in its
standard form, being a Gaussian ensemble, fails to predict correctly the equilibrium values of local observables,
unless the initial state is Gaussian itself. Our findings show that the equilibration of a broad class of quenches
whose evolution is described by Luttinger liquid theory with an initial state that is non-Gaussian in terms of the
bosonic field, is not correctly captured by the corresponding bosonic GGE, raising doubts about the validity of
the latter in general one-dimensional gapless integrable systems such as the Lieb-Liniger model. We also propose
that the same experiment by which the GGE was recently observed [Langen et al., Science 348, 207 (2015)] can
also be used to observe its failure, simply by starting from a non-Gaussian initial state.

DOI: 10.1103/PhysRevA.94.031605

Introduction. Understanding the physics of quantum many-
body systems out of equilibrium is one of the most challenging
open problems today [1,2]. Of central interest is the problem
of quantum quenches, i.e., abrupt changes of the Hamiltonian
parameters of a closed quantum system [3], especially in
one-dimensional (1D) integrable systems where the study of
quantum dynamics has led to intriguing discoveries, like the
experimental observation of lack of thermalization [4] and
the theoretical prediction of the generalized Gibbs ensemble
(GGE) [5] which has recently been observed experimen-
tally [6]. The GGE is expected to describe the equilibration
of local observables after a quantum quench in an integrable
system by taking into account all constraints associated
to its conserved charges [3,5,7–45]. While in its standard
form it was constructed exclusively out of local conserved
charges [28,29], it has been recently shown that quasilocal
charges must also be included [46–60]. This gives an answer
to the fundamental question of how much information about
the initial state survives in the final values of local observables.
Other aspects of interest are the asymptotic behavior towards
equilibrium [13,30,34,41,61] or the restoration of symmetries
of the postquench Hamiltonian that are absent in the initial
state [30,62].

In [34] it was shown that in the case of a quantum quench
from an interacting to a free massive bosonic field theory in
1D, the evolution eliminates memory about non-Gaussian cor-
relations in the initial state so that the large-time values of any
local observable can be expressed solely in terms of the initial
two-point function. This proves the validity of the GGE which
for free systems is a Gaussian ensemble containing precisely
the same information. The argument hinges upon the cluster

decomposition property of the initial state and the presence of
a nonvanishing postquench mass. In the present work we study
the case of massless evolution. We find that, unlike the massive
case, the large-time limit of physical observables retains
memory of non-Gaussian initial correlations in the form of
spatial averages of multipoint connected correlation functions
(CCFs) of all orders. Therefore the equilibrium cannot be
described by a Gaussian ensemble and the GGE fails, unless
the initial state is Gaussian itself. Additionally, we derive exact
results for the asymptotic behavior of physical observables and
correlation functions at large times and distances. We find that
symmetries that characterize the postquench Hamiltonian but
are in general absent in the initial state are restored by the
evolution. Lastly we compare our conclusions with earlier
studies discussing the scope of their validity and proposing an
experimental implementation.

Model and quench protocol. We consider a quantum quench
in a 1D bosonic system, starting from any massive field theory,
free or interacting, to the free massless field theory. Thus the
postquench Hamiltonian is

H =
∫

dx

[
1

2
π2 + 1

2
(∂xφ)2

]
, (1)

while the prequench one is H0 = H + ∫
dx V[φ(x)], with

V(φ) some local “potential energy.” The initial state is the
ground state of H0 and we fix the field φ so that its initial
expectation value vanishes 〈φ〉0 = 0 (the subscript “0” denotes
the initial state). We also assume that the Hamiltonian H0 is
massive, meaning that its ground state exhibits short-range
correlations, i.e., all CCFs decay exponentially with the
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distance within a finite correlation length ξ0 = 1/m0 where
m0 is the (renormalized) mass of its lightest particle [63].

The free massless Hamiltonian (1) describes the sim-
plest CFT, that is, the simplest 1D critical model [64]. Its
ground state exhibits logarithmic φ correlation functions
〈φ(0,0)φ(x,t)〉gs = − log(|x|2 − |t |2)/(4π ) + const. Physical
observables are, however, expressed in terms of the so-called
“vertex operators” Va(x,t) = eiaφ(x,t) or derivatives of φ,
which in the ground state of H exhibit power-law decaying
correlation functions, as expected for a critical model, e.g.,
〈Va(0,0)V−a(x,t)〉gs ∼ (|x|2 − |t |2)−a2/(4π ). All other ground
state multipoint functions can be derived from the above using
Wick’s theorem, since the ground state of any free Hamiltonian
like H is Gaussian. Wick’s theorem for vertex operators reads〈∏

i

eiaiφi

〉
= e−(1/2)

∑
i a2

i 〈φ2
i 〉−∑

i<j aiaj 〈φiφj 〉. (2)

Excitations of H correspond to massless particles with linear
dispersion relation Ek = |k| (to simplify notation, we have set
the speed of sound v = 1).

Note that H is symmetric under the continuous transforma-
tion φ → φ + ε. This is reflected in the fact that correlation
functions of vertex operators vanish unless they satisfy the
“neutrality condition.” more explicitly 〈∏i Vai

(xi,ti)〉gs = 0
for

∑
i ai �= 0. In particular, one-point functions with a �= 0

vanish. The initial state instead, being the ground state of
an arbitrary Hamiltonian, breaks in general this symmetry.
Similarly, H is symmetric under the discrete transformation
φ → −φ.

Evolution of observables. We are interested in the time
evolution of physical observables; in particular, equal time
correlation functions of vertex operators at different points,
focusing on their asymptotic form at large times t after the
quench. The evolution of the one-point function can be derived
most conveniently from the cumulant expansion

〈Va(x,t)〉 = exp

[ ∞∑
n=1

(ia)n

n!
〈〈φn(x,t)〉〉

]
, (3)

where the double brackets 〈〈· · · 〉〉 denote connected correla-
tion functions. We work in the Heisenberg picture, i.e., all
correlation functions 〈· · · 〉 refer to initial state expectation
values of time-evolved operators. Similarly the two-point
correlation function of vertex operators at different points
x1 �= x2 is given by

〈Va(x1,t)Vb(x2,t)〉

= exp

[ ∞∑
n=1

in

n!
〈〈[aφ(x1,t) + bφ(x2,t)]

n〉〉
]
. (4)

The relation between CCFs and standard ones is that between
joint cumulants and moments.

From the above we see that it is sufficient to study the
evolution of each CCF of φ. The equation of motion for φ

after the quench is simply the 1D wave equation in infinite
space

φ̈(x,t) = ∂2
xφ(x,t), t > 0 (5)

with two initial conditions φ(x,0) and φ̇(x,0). The solution is
given by d’Alembert’s formula

φ(x,t) = 1

2
[φ(x − t,0) + φ(x + t,0)] + 1

2

∫ x+t

x−t

dx ′ φ̇(x ′,0)

(6)

or in terms of the Green’s function

φ(x,t) =
∑
s=0,1

∫
dx ′ G(s)(x − x ′,t)φ(1−s)(x ′,0), (7)

where G(x,t) is the (retarded) Green’s function for the
1D wave equation in infinite space, that is, G(x,t) =

1
2π

∫
dk eikx(sin kt)/k = 1

2�(t − |x|) [we use the notation
f (0)(t) ≡ f (t),f (1)(t) ≡ ḟ (t) ≡ ∂tf (t)]. Note the light-cone
structure of G(x,t). It then follows that the time evolution of
CCFs is〈〈

n∏
i=1

φ(xi,t)

〉〉
=

∫ n∏
i=1

dx ′
i

n∏
i=1

∑
si=0,1

G(si )(xi − x ′
i ,t)

×
〈〈

n∏
i=1

φ(1−si )(x ′
i ,0)

〉〉
. (8)

It is now clear that using the cumulant expansion and the last
formula, we can directly express any correlation function of
vertex operators in terms of a suitable convolution of initial
CCFs of φ and the large-time asymptotics is controlled by the
scaling of the above convolution, that is, by the large distance
behavior of initial correlations. Below we study separately the
case of Gaussian and non-Gaussian initial states.

Gaussian initial states. In this special case, all n-point CCFs
of φ with n � 3 vanish. This holds when H0 is essentially
noninteracting (i.e., either explicitly free, as when V(φ) =
1
2m2

0φ
2, or interacting that can be mapped into free). Since

we have set 〈φ(x,0)〉 = 0 we now have 〈〈φ(0,0)φ(x,0)〉〉 =
〈φ(0,0)φ(x,0)〉, i.e., the only nonvanishing initial correlation
function is the two-point function.

The one-point function of vertex operators is 〈Va(0,t)〉 =
e−(1/2)a2〈φ2(0,t)〉 and from (6) and (8), taking into account
the exponential large-distance decay of initial correlation
functions, we find that the leading large-time behavior is given
by 〈φ2(0,t)〉 = 1

2 t
∫ +t

−t
dr〈φ̇(0,0)φ̇(r,0)〉 + · · · where the dots

denote terms that increase slower with time for t 
 ξ0. The
last integral tends to a finite value λ2 as t → ∞, since the
initial two-point function 〈φ̇(0,0)φ̇(r,0)〉 decays exponentially
with the distance r . Therefore the leading large-time behavior
of the vertex operator one-point function is

〈Va(0,t)〉 ∝ e−(1/4)a2λ2t , (9)

where using time translation invariance for t < 0 and the pre-
quench equation of motion φ̈(x,t) = ∂2

xφ(x,t) − V ′[φ(x,t)]
evaluated at t → 0−, we obtain

λ2 =
∫ +∞

−∞
dr〈φ̇(0,0)φ̇(r,0)〉 =

∫ +∞

−∞
dr〈φ(0,0)V ′[φ(r,0)]〉.

(10)

We therefore find that the one-point function decays exponen-
tially with a decay rate λ2 determined for any Gaussian initial
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state by (10). Note that in the continuum limit λ2 is typically
an ultraviolet-divergent quantity [3] meaning that it depends
on microscopic details of the actual physical system (lattice
spacing, etc.).

Similarly we calculate the two-point function
of vertex operators, which is 〈eiaφ(0,t)eibφ(x,t)〉 =
exp [− 1

2 (a + b)2〈φ2(0,t)〉 − ab(〈φ(0,t)φ(x,t)〉 − 〈φ2(0,t)〉)]
For large times t 
 ξ0, t > |x|/2 we find 〈φ(0,t)φ(x,t)〉 −
〈φ2(0,t)〉 = − 1

4

∫ |x|
0 dx1

∫ |x|
0 dx2〈φ̇(0,0)φ̇(x2 − x1,0)〉 + · · · ,

which for |x| 
 ξ0 tends to − 1
4λ2|x|. Essentially the

asymptotics for |x|,t 
 ξ0 can be easily calculated
substituting 〈φ̇(x1,0)φ̇(x2,0)〉 → λ2δ(x2 − x1). From the
above we finally find

〈Va(0,t)Vb(x,t)〉 ∝ e−(1/4)(a+b)2λ2t+(1/4)abλ2|x|, (11)

i.e., two-point functions of vertex operators decay exponen-
tially with time, unless b = −a in which case they equili-
brate to nonzero values. The large-time two-point function
〈Va(0)V−a(x)〉t→∞ ∝ e−(1/4)a2λ2|x| decays exponentially with
the distance with a decay rate controlled by the same parameter
λ2 as the time decay.

For multipoint correlation functions we similarly find〈∏
i

Vai
(xi,t)

〉
∝ e−(1/4)λ2(

∑
i ai )2t+(1/4)λ2

∑
i<j aiaj |xi−xj | (12)

in agreement with Wick’s theorem (2) which holds because
both the initial state and its evolution are Gaussian. The
above shows that all multipoint correlation functions of vertex
operators decay exponentially with time, unless they satisfy the
neutrality condition, that is, the massless evolution restores the
symmetry under φ → φ + ε transformations.

Non-Gaussian initial states. In the more general case
of a non-Gaussian initial state, like the ground state of a
genuinely interacting Hamiltonian H0 (nonparabolic potential
V(φ) = 1

2m2
0φ

2 + ∑∞
n=3 cnφ

n/n!) the large-time asymptotics
of vertex correlation functions can be calculated following
the same arguments as above, taking into account that for
a massive self-interacting prequench Hamiltonian, all initial
CCFs decay exponentially within a range of the order of
the correlation length ξ0. The vertex operator one-point
function is given by (3) with φ correlation functions given
by (8) where at large times we now find 〈〈φn(0,t)〉〉 =
21−nt

∏n
i=2

∫ +∞
−∞ dri〈〈φ̇(0,0)

∏n
i=2 φ̇(ri,0)〉〉 + · · · and, as be-

fore, for t 
 ξ0 we can replace 〈〈∏n
i=1 φ̇(xi,0)〉〉 →

λn

∏n
i=2 δ(xn − x1) where

λn =
∫ +∞

−∞

n∏
i=2

dri

〈〈
φ̇(0,0)

n∏
i=2

φ̇(ri,0)

〉〉
. (13)

Thus we finally find

〈Va(0,t)〉 ∝ exp

[
−

( ∞∑
n=2

(−in)

n!2n−1
anλn

)
t

]
. (14)

The expression in round brackets is a series of spatial averages
of all initial multipoint CCFs. Since all λn are real numbers,
it is generally a complex number, whose real (imaginary)
part is the sum of even (odd) terms, respectively. This means
that the one-point function decays exponentially with time

with decay rate γ (a) = ∑∞
n=1(−1)n+1a2nλ2n/[(2n)!22n−1]

and also exhibits oscillations with frequency ω(a) =∑∞
n=1 (−1)na2n+1λ2n+1/[(2n + 1)!22n]. If the prequench

Hamiltonian is symmetric under reflections φ → −φ, then
all odd correlation functions vanish and the evolution is purely
decaying. The quantities λn clearly depend on all parameters
of H0: e.g., if perturbation theory describes correctly its ground
state, then at first order in the couplings cn they are λ2 ∝ m0

and λn�3 ∝ cn.
Similarly for the two-point function, from (4) and (8) we

find

〈Va(0,t)Vb(x,t)〉 ∝ exp

[
−

(
−

∞∑
n=2

(a + b)n
in

n!2n−1
λn

)
t

−
( ∞∑

n=2

[(a + b)n − (an + bn)]
in

n!2n
λn

)
|x|

]
, (15)

which decays with time, unless b = −a in which case it
equilibrates to 〈Va(0)V−a(x)〉t→∞ ∝ e−γ (a)|x|. Note that the
equilibrium values depend not only on the initial two-point
CCF of φ as for Gaussian initial states, but also on all even
higher ones, through the values of the independent parameters
λ2n. This shows that information about non-Gaussian features
of initial correlations survive at t → ∞. It should also be
noted that the evolution restores the symmetries under both
φ → φ + ε and φ → −φ.

Failure of the bosonic Gaussian GGE. The GGE density
matrix in one of its standard forms for free systems, is
constructed using as integrals of motion the number operators
nk , i.e., it is written as ρGGE ∝ e− ∑

k βknk with βk fixed by the
condition that the values of the charges in the GGE equal their
initial values 〈nk〉GGE = 〈nk〉0 [3]. The operators nk are linear
combinations of the local integrals of motion and, in any finite
lattice system, equal in number to them [28,29]. Written in this
form, despite being nonlocal, the GGE takes into account the
quasilocal charges of continuous models defined in [59].

Since this is a Gaussian density matrix, the GGE prediction
for any multipoint correlation function of vertex operators
satisfying the neutrality condition is given by Wick’s the-
orem (2) 〈∏i e

iaiφ(xi )〉GGE = e− ∑
i<j aiaj [〈φ(xi )φ(xj )〉GGE−〈φ(0)2〉GGE]

with
∑

i ai = 0 (as already mentioned, if the neutrality
condition is not satisfied the correlation functions vanish
at t → ∞). This means that all information about the
GGE is included in its two-point function of φ, which
can be expressed in terms of 〈nk〉0 as 〈φ(0)φ(x)〉GGE =

1
2π

∫
dk eikx[1 + 〈(nk + n−k)〉0]/(2Ek) where Ek = |k|. In

terms of initial correlation functions, using the prequench
equation of motion, we find

〈φ(0)φ(x)〉GGE = 〈φ(0)φ(x)〉0

−
∫

dr
|x − r|

4
〈φ(0)V ′[φ(r)]〉0, (16)

which can be seen as a GGE version of the virial theorem
that relates the temperature of a thermal ensemble with the
interparticle potential energy. The asymptotic form at large
|x| is 〈φ(0)φ(x)〉GGE ∼ − 1

4λ2|x| + const, where λ2 is given
by (10). Note that in the special case V(φ) = 1

2m2
0φ

2 which
corresponds to a free massive prequench Hamiltonian, the
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parameter λ2 equals m0/2 and the GGE is in agreement with
our t → ∞ results for Gaussian initial states.

As already mentioned, the above ensemble is by construc-
tion Gaussian and captures only information about the initial
two-point function of φ but not of higher order initial CCFs.
Therefore its predictions do not give the correct t → ∞ values
of vertex operators. This is also true for the generalization of
the GGE that includes the quasilocal charges of [59] since
that too is Gaussian. The fact that local observables retain
memory of all even initial CCFs suggests that an ensemble
that describes correctly the t → ∞ limit would also include
all products of nk as conserved quantities

ρDE = Z−1 exp

⎛
⎝−

∞∑
�=1

∑
k1,...,k�

βk1,...,k�

�∏
j=1

nkj

⎞
⎠. (17)

This is clearly equivalent to the diagonal ensemble, i.e., the ex-
pansion in terms of projections onto all energy eigenstates [7].
This ensemble includes all information about the initial state
that contributes to the infinite time average of any observable in
a general system [2,7] and is therefore both noneconomic and
impractical. It is still possible that a suitable non-Gaussian
generalization of ρGGE that would include extra conserved
charges that are special of conformal field theory (CFT) can
describe correctly the large-time limit. In either case, the free
massless 1D field theory apparently retains the maximum
possible memory of its initial state.

Note that, while it has been very early pointed out that the
GGE does not capture information about initial correlations
between different nk [16,20,65], in the thermodynamic and
large-time limit local observables typically lose memory
of such correlations [16,66], which is the deeper reason
that allows their economic description through the GGE. In
contrast, in the present problem, information about all such
correlations survives in the above limit and remains accessible
through local measurements. An intuitive explanation of
this memory effect is that, due to the ballistic nature of the
evolution, entangled clusters of quasiparticles carry the initial
correlations intact up to infinite time.

Discussion of results. The massless Gaussian field theory
described by (1) is a prototypical model of 1D physical systems
with gapless (phononic) excitations. Indeed the “bosonization”
method shows that the low-energy behavior of many interact-
ing systems, both fermionic or bosonic, can be described by the
harmonic-fluid or Luttinger liquid (LL) theory [67–69]. These
include the Lieb-Liniger model (which is supposed to describe
the quantum Newton’s cradle experiment [4]) and the gapless
phase of many lattice models (e.g., Bose-Hubbard model in
the superfluid phase) and spin chains (e.g., the gapless phase
of the XXZ model) in the scaling limit. The Hamiltonian
of the Luttinger model is HLL = 1

2v
∫

dx[K
π

(∂xθ )2 + π
K

n2]
where the density n(x) and the phase field θ (x) obey canonical
commutation relations and the parameters v and K are the
sound velocity and Luttinger parameter, respectively. The
above form is equivalent to (1) as can be seen by rescaling
the field and the space-time coordinates.

In this context our findings show that the GGE as interpreted
in the LL approximation, i.e., constructed out of the local
charges of the bosonic density-phase fields, does not describe

correctly the steady state corresponding to a general initial
state. We emphasize that LL theory is only a low-energy
approximation of the original models, while a quantum quench
may create arbitrarily high-energy excitations. Therefore in
this context our results do not necessarily mean that the
GGE conjecture itself is incorrect: it is possible that the
GGE constructed out of the exact conserved charges of the
original model is correct. In particular, in the case of an
instantaneous interaction quench in the Lieb-Liniger model,
the presence of high-energy excitations [31,33] makes the LL
approximation nonapplicable and at least the special cases
studied in the literature seem to suggest that the GGE expressed
in terms of the exact Lieb-Liniger conserved charges is cor-
rect [33,34,38,44,45,70]. Nevertheless the LL approach turns
out to describe correctly the quench dynamics in several other
cases [71–73]. Quantum quenches in LL have been studied
in [15–17,74,75] and a detailed comparison of our results with
earlier works is presented in the Supplemental Material [76].

Note that our method [34,61] for the derivation of quench
dynamics has certain advantages in comparison with others.
By exploiting the connection between initial and evolved
fields, we link the large-time asymptotics of correlations
directly to the long distance asymptotics of initial correlations,
which are correctly described by renormalization group theory.
Even though the applicability of this approach seems to be
restricted to models with Gaussian evolution, in fact it is based
on fundamental properties of quantum field theory that are
also valid in the presence of interactions, more precisely the
existence of a suitable set of local fields whose time evolution
can be expressed as a convolution of initial local fields.

In particular, the conclusion that the GGE fails in the case
of a genuinely interacting to free massless quench in 1D relies
on the ballistic form of the evolution (6) which is linked to
the gaplessness of the energy spectrum: if the postquench
Hamiltonian was gapped instead, the Green’s function in (7)
would decay with the distance inside the light cone and the
quench dynamics would lead to the GGE [34]. Therefore
our result is expected to be robust under the insertion of
irrelevant interactions to the postquench Hamiltonian, as long
as they do not affect the ballistic form of the evolution. Such
perturbations of the Luttinger model preserve the gaplessness
of the spectrum, even though they modify the dispersion
relation from linear to nonlinear [77]. The same is also
expected to be true for quenches in 1D CFT in which there
always exist local operators whose evolution is governed by
the wave equation (5) (e.g., the energy-momentum tensor).

Experimental implementation. Ironically, our findings
about the failure of the GGE can be experimentally checked
in the same way that the GGE was actually observed in [6],
simply by starting from a non-Gaussian initial state, i.e., the
ground state of a genuinely interacting Hamiltonian. We will
show that this is feasible using present technology in the same
experimental setup [78].

One-dimensional bosonic models can be realized in cold
atom systems [79] and quantum quenches can be implemented
by tuning the system’s parameters [80]. The most suitable
experimental setup for this purpose is a system of two
coupled 1D gases of interacting bosons prepared by condensate
splitting [81–85]. The low-energy physics of this system
can be derived through bosonization [68,81–84,86–89]. The
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density n and phase field θ of the antisymmetric modes are
described by the sine-Gordon model, with the interaction
a controlled by the tunneling coupling J between the two
Bose gases. For J = 0 the interaction vanishes and the sine-
Gordon model reduces to the Luttinger model, i.e., the system
corresponds to free gapless phonons. In the opposite limit of
large J , solitonic excitations between neighboring vacua are
suppressed and the system is described by essentially free
gapped excitations above one of the degenerate vacua. The
rapid tunability of the parameters of the experimental system
allows the implementation and efficient study of quantum
quenches. The subsequent evolution of correlation functions is
analyzed through time-resolved measurements of matter-wave
interference patterns after time-of-flight expansion of the gas,
averaged over many repetitions [90]. Such measurements
provide direct data for the multipoint correlations of the local
phase difference θ (x) between the two condensates.

These techniques made recently possible the celebrated
first experimental observation of a GGE [6]. More precisely, it
was demonstrated that more than one “effective temperature”
is required for the description of the long time steady state
of the system, which is a clear sign of the absence of
thermalization and equilibration to some type of GGE. In
the regime of parameters used in the experiment, the system
is well described both before and after the quench by the
Bogoliubov–de Gennes equations, which provide a mean-field
(that is, Gaussian) approximation [80,86,88,89]. In particular
the postquench Hamiltonian corresponds to the gapless
Luttinger model. According to our findings, equilibration in
this case is correctly described by the standard GGE since the
initial state is also Gaussian.

Deviations from the latter would, however, be manifested
if the initial state were non-Gaussian. In fact, measurements
of CCFs precise enough to reveal non-Gaussian features are
also feasible in the same experimental setup and have been
performed in the ground state of the system for a wide range

of parameter values [78]. This suggests that an experimental
realization of a quantum quench of J from an intermediate
value to zero would make the observation of such deviations
possible. Indeed, provided that the effective low-energy field
theory gives a faithful description of the experimental system
and quench protocol, in this case the initial state would be
the ground state of the genuinely interacting sine-Gordon
model and would exhibit non-Gaussian correlations. The
parameters λn of (13) can then be calculated using the methods
of integrable field theory [91,92]. Numerical checks can be
performed by means of the so-called truncated conformal
space approach [93,94] after a careful analysis of finite size
effects. Details will be given in a forthcoming publication.
Note, however, that Eqs. (13)–(15) are more suitable for an
experimental check: while it has been difficult to compare
experimental measurements to theoretical predictions for the
sine-Gordon model, it is quite easy to directly compare
measurements on the initial ground state and at large times
after the quench.

Conclusions. We studied a quantum quench from an
interacting to a free massless bosonic field theory in 1D,
deriving analytical results for the large-time correlations and
demonstrating that, in contrast to the massive case, the standard
Gaussian GGE fails: the system retains memory of all initial
correlations, which is accessible by local measurements.
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