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Center-of-mass interpretation for bipartite purity analysis of N-party entanglement
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We provide a graphical description of the entanglement of pure-state multiparty systems based on an analogy
between a bipartite purity analysis and the centroid of a collection of point masses. This description applies to
quantum systems with N parties, each with an arbitrary number of (discrete) states. The case of N qubits is
highlighted for simplicity. This geometric description illustrates some of the restrictions in the form of inequalities
that apply to entanglement in multiparty systems.
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Introduction. In tandem with widespread experimental
efforts to create entanglement in many-party systems, an
ongoing theoretical effort has been aimed at quantifying many-
party entanglement. The entanglement existing collectively
between all parties of an N -party system, called genuinely
multipartite entanglement (GME), is of particular importance
since it plays a central role in many applications. Entanglement
is best identified via its opposite, biseparability. A pure state
|�〉 is biseparable if it can be written as |�〉 = |ψA〉 ⊗ |ψB〉,
where |ψA〉 and |ψB〉 are pure states. A mixed state is
biseparable if it can be written as a sum of pure separable
states in any bipartition; otherwise, the state is genuinely
multipartite entangled [1,2]. Quantifying GME has proved
to be a challenging task. Previous studies have produced
witnesses and/or lower bounds (see [3]). Areas of open N -party
entanglement issues include multielectron atomic ionization
[4], multilevel coding for quantum key distribution [5], and
multiparty teleportation [6,7].

In order to gain further insight into entanglement, new
techniques must be considered, especially if they offer useful
physical and/or geometrical analogies. Several geometrically
inspired treatments have been proposed, including descrip-
tions by way of Pauli operator expectation values [8], and
Bloch sphere state representations [9], amongst others. In
this Rapid Communication we approach entanglement in
multiparty systems through its connection with each party’s
purity. We show that this leads to a geometric representation
arising from a direct link to point-particle center-of-mass
theorems. This new step has valuable visualization advantages,
carrying insights from few-party examples to arbitrary N -party
entanglements.

Measures of purity. For a pure N -party system, the
entanglement of one party with the remaining N − 1 parties
determines the purity of that party’s quantum state when the
rest of the system is traced out. In fact, when a system has a
quantum state that is mixed, it is so because of its entanglement
with parties not explicitly considered [10,11]. The purities of
each party following the tracing out of the remaining ones
can then serve as the basis for characterizing entanglement
in multiparty systems. We follow this approach by using a
particular measure of purity for the individual parties that
we show has an intuitive geometric interpretation, and lends
itself for the description not only of each party but also of the
complete system. We start by describing this measure for an

individual party, and then we extend these ideas to the full
system.

Consider an M-state single party, which (following the
tracing out of the other parties) is described by a M × M

density matrix ρ. The standard definition of purity for this
party is tr(ρ2). Its inverse, the Schmidt weight [12], is an
entanglement monotone that gives a measure of the effective
number of significant eigenvalues the matrix has. The purity
takes values in the interval [1/M,1], so the Schmidt weight is
between 1 and M . These measures are invariant to local unitary
transformations. Several other measures of purity have been
defined that are monotonic functions of tr(ρ2). In particular,
we use

Q =
√

M tr(ρ2) − 1

M − 1
. (1)

This measure has the desirable property of varying between 0
and 1, with 0 corresponding to a maximally mixed state and 1
to a pure state. More importantly, its geometric interpretation
described below makes it useful for visualizing entanglement
between many parties. It is worth mentioning that both
the Schmidt weight and this measure are also used in the
classical study of polarization of light and other vector wave
phenomena, where instead of states one has two [13] or three
[14–17] Cartesian field components.

Geometric interpretation for one party. We now propose
a geometric construction for interpreting Q for an indi-
vidual party in terms of a simple mechanical analogy. As
discussed later, this construction provides insight into the
characterization of entanglement in multiparty systems and the
relations that constrain it. By using an appropriate local unitary
transformation, the party’s density matrix can be diagonalized:

ρ̄ = U†ρU = diag(λ1,λ2,...,λM ), (2)

where, without loss of generality, we order the states so that
λ1 � λ2 � · · · � λM � 0, with

∑M
m=1 λm = 1. We henceforth

refer to this diagonalized representation as the Schmidt
representation [18,19], and denote it with an overbar. Since
tr(ρ2) = tr(ρ̄2), we can write

Q =
√

M
∑M

m=1 λ2
m − 1

M − 1
. (3)
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FIG. 1. Definition of Q as the distance between the origin and the
center of mass of M point masses of magnitudes λm at unit distances
to the origin and mutually equidistant, within a Euclidean space of
dimension M − 1. (a) For M = 2 the space is a line, which also
contains the center of mass. (b) For M = 3 the space is a plane, and
the center of mass is constrained to the interior of a triangle (gray),
whose corners are the three masses. In fact, since λ1 � λ2 � λ3 � 0,
the center of mass is within the darker region. (c) For M = 4, the
space is a volume, and the center of mass is constrained to the interior
of a tetrahedron whose corners are the four masses.

Clearly, Q = 1 holds only when λ1 = 1 and λm>1 = 0, while
Q = 0 is true only when all eigenvalues are equal, λm = 1/M .

The geometric construction is the following: Consider a
Euclidean space of dimension M − 1 and imagine a set of
M point masses in this space, all at a unit distance from
the origin (and hence over a unit hypersphere), and each
equidistant to all the others, the distance being

√
2M/(M − 1).

Let the magnitudes of these masses be the eigenvalues λm.
The measure Q is then the distance between the center of the
sphere (the origin) and the center of mass of the system. This
idea is illustrated in Fig. 1 for the simplest cases of M = 2,
3, and 4. For M = 2, shown in Fig. 1(a), the two masses are
at the points ±1 along a line, and Q = λ1 − λ2. (This case is
unique in that Q is linear in the eigenvalues.) For M = 3, the
three masses are equidistantly distributed along a unit circle, at
the corners of an equilateral triangle, as shown in Fig. 1(b).
For M = 4 shown in Fig. 1(c), the four masses are over the
surface of a unit sphere, at the corners of a regular tetrahedron.
For M � 5, they are at the surface of a unit hypersphere, at the
corners of a regular simplex inscribed in this hypersphere.

Geometric interpretation for multiple parties. We now
discuss how this center-of-mass picture can be used to char-
acterize entanglement in multiparty systems. For simplicity
we start by assuming that all parties are qubits (M = 2), and
show that the geometric interpretation proposed allows us to
understand the limitations in entanglement in such systems.
Following the standard practice when describing qubits, we
label the two states of each party not by integers from 1 to
M = 2, but by 0 and 1. A general pure state consisting of N

qubit parties has a wave function that can be written as

|ψ〉 =
∑

i1,...,iN=0,1

ci1,...,iN |i1, . . . ,iN 〉 =
∑

i

ci|i〉, (4)

where ci1,...,iN are complex coefficients normalized to unity. In
the second step we introduced the shorthand i = i1, . . . ,iN , and∑

i to indicate the sum for all qubits over the two values 0 and
1. While the global state is pure, the description of a specific
party n is in terms of a 2 × 2 density matrix ρn resulting from

FIG. 2. (a) For N qubits, the N -vector Q corresponds to the center
of mass of a set of 2N point masses of magnitude |c̄i |2, placed at the
corners of a hypercube of side 2 centered at the origin. For the N = 2
case shown here, the hypercube reduces to a square. (b) The same
construction for a two-party system composed of a qubit and a qutrit,
whose interpretation requires three dimensions. In both cases, the
entanglement measures Yn = 1 − Qn are also shown.

tracing out all parties but the nth one:

(ρn)j,k =
∑
i�=in

c∗
i|in=j

ci|in=k
, (5)

where
∑

i�=in
indicates summation over all indices except in.

We choose a Schmidt representation for all parties, so that the
density matrices are diagonal:

(ρ̄n)0,1 = (ρ̄n)∗1,0 =
∑
i�=in

c̄∗
i|in=0

c̄i|in=1 = 0. (6)

The measures Qn for each party can be written as

Qn =
√

2tr
(
ρ̄2

n

) − 1 =
∑

i

(−1)in |c̄i|2. (7)

Equation (7) suggests an N -dimensional space in which the
vector Q = (Q1, . . . ,QN ) is defined, as well as a geometric
interpretation for this vector. Consider an N -dimensional
hypercube of side 2, centered at the origin. Let a collection
of point masses be placed at the points with coordinates
[(−1)i1 , . . . ,(−1)iN ], i.e., the corners of the hypercube, where
the magnitude of each mass is the modulus squared of the
corresponding coefficient, |c̄i|2. The center of mass of all these
point masses (given that their sum is unity) is then Q. This is
illustrated in Fig. 2(a) for N = 2. For N = 3 the point masses
would be the corners of a cube of side 2 centered at the origin.

Entanglement vector and restrictions. In general, measures
of entanglement are restricted by inequalities referred to as
monogamy relations. This includes relations limiting measures
of entanglement such as the so-called tangle [20–24], or related
to Bell nonlocality [25,26]. While not equivalent to those just
mentioned, relations of this type also hold for the measures of
entanglement discussed here, whose geometric interpretation
we discuss in what follows. For the case of qubits, Higuchi
et al. [27] derived a form of these inequalities in terms of the
eigenvalues of the density matrices for the bipartitions, and
Walter et al. [28] proposed a graphic representation in terms of
polytopes over the space of the eigenvalues. For completeness,
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we present in the Supplemental Material [29] a concise proof
of these inequalities in terms of Q, which take the form

N − 2 + Qn �
∑
n′ �=n

Qn′ , n ∈ [1,N ]. (8)

(An alternative, more geometric proof for the case N = 3 is
discussed in the next section.) These restrictions mean that not
all the hypercube is accessible to Q. They take a particularly
simple form if we define a measure of entanglement of party
n with the rest of the parties as

Yn = 1 − Qn, (9)

where Yn = 0 indicates that party n is completely separable
from the rest, while Yn = 1 indicates complete entanglement
with the remaining parties. For qubits, the measure Yn is
a valid entanglement measure, since it is simply twice the
entanglement monotone E2(ρn) given in Ref. [30], which
determines the conversion between different entanglement-
valued states with certainty under local operations and classical
communication (LOCC) [31]. Also, it is easy to show that the
von Neumann entropy is a monotonically increasing function
of Yn, i.e.,

Sn = −tr(ρn log2 ρn)

= 1 − (2 − Yn) log2(2 − Yn) + Yn log2(Yn)

2
. (10)

Not only is this expression monotonic, but the limiting values
Sn = 0,1 correspond exactly to Yn = 0,1. It remains to be
shown whether for M � 3 the measure Yn remains monotonic
under LOCC, although it is easy to show that the limits Sn =
0,1 still correspond exactly to Yn = 0,1.

The restrictions in Eq. (8) reduce to a simple polygon
inequality when written in terms of Yn [32]:

Yn �
∑
n′ �=n

Yn′ . (11)

Relations (11) can be visualized by defining an N -dimensional
entanglement vector Y whose components are Yn. As shown
in Fig. 2(a), the space occupied by this vector is just a flipped
version of the space occupied by Q. The restrictions in Eq. (11)
mean that the N -dimensional hypervolume inhabitable by Y
is not the unit hypercube but a simplex of hypervolume 1 −
1/(N − 1)!. For example, for N = 1, only the point Y1 = 0
is inhabitable out of the whole unit line segment, while for
N = 2, Y must be along the diagonal Y1 = Y2 joining the
points of minimal and maximal entanglement, (0,0) and (1,1).
For N = 3 the vector Y resides within a unit cube, but relation
(11) implies that only half of the cube’s volume is accessible,
the bounds being shown in Fig. 3(a).

The inequalities in Eq. (11) state that the entanglement
of one party with the rest cannot be more than the sum of
the entanglements of the remaining parties. One can think of
an analogy with classical shared resources, say, real estate
ownership: the parties are property owners, and Yn represents
the total joint property of party n with other parties (where
each party of a jointly owned property owns equal parts; see
Supplemental Material [29]). Clearly, party n cannot have
more joint property with others than all the others have with
party n and with each other. This inequality among the

FIG. 3. Boundaries between the allowed and forbidden regions
for three-party systems, dictated by (a) relation (11) for three qubits,
and (b) relations (13) for two qubits and a qutetrit. The allowed
regions are those on the side of the concavity formed by the three
surfaces. The movie associated with (b) shows how these bounds are
respected for one million randomly generated states.

measures Yn is tight for qubits, meaning that the equality is
achievable.

Example: Three-qubit pure state. To gain geometric insight
into the constraints in Eq. (11), consider the case of three
entangled qubits. For simplicity, we rename the coefficients c̄i
according to

|ψ〉 = a|000〉 + C|001〉 + D|010〉 + b|011〉
+B|100〉 + d|101〉 + c|110〉 + A|111〉, (12)

where lowercase (uppercase) letters are used for terms whose
indices add up to an even (odd) number. These coefficients are
assumed to satisfy the Schmidt representation conditions (6).
Q corresponds to the center of mass of eight point masses at
the corners of a cube of side 2 centered at the origin, as shown
in Fig. 4. It can be calculated in terms of two partial centers of
mass: v, corresponding to masses |a|2,|b|2,|c|2,|d|2 (blue), and
V, corresponding to masses |A|2,|B|2,|C|2,|D|2 (green). Each
of these partial centers of mass is constrained to a tetrahedron
(blue and green) whose corners are the masses in question. In

Q1

Q2

Q3

−1
−1

−1

1
1

1

0

0

0

|D|2

|C| 2

|A| 2

|B| 2

|a|2

|c|2

|b|
2

|d|2

Q v

V
O

FIG. 4. The partial centers of mass v and V are each constrained
to a tetrahedral volume whose corners are the masses in question.
Since v and V are collinear with the origin, Q is contained in the
union of the tetrahedra.
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principle, the global center of mass Q (necessarily along the
line segment joining v and V) could be anywhere in the cube
(although the ordering convention for the eigenvalues means
that the center of mass is within the positive octant). However,
it is shown [29] that the Schmidt representation conditions (6)
imply that the two partial centers of mass are collinear with
the origin. That is, v and V are parallel, and so is then Q,
which is then constrained to the union of the two tetrahedra.
The exclusion of Q from the regions not occupied by the two
tetrahedra is equivalent to the constraint (11), given the relation
between Q and Y. Given that, for qubits, Qn is just a linear
combination (the difference) of the eigenvalues for the density
matrix of party n, the colored region in the positive octant
of Fig. 4 is a scaled version of the allowed region given in
Ref. [28] for the three-qubit case.

Relations for parties with more than two states. The proof
of the restrictions in Eq. (11) is only for parties with two states
(qubits). Numerical tests suggest that these restrictions also
hold for parties with more states, as long as the number of
states of all parties is the same. If the different parties do not
have the same number of states, these inequalities change, as
we now discuss.

Consider first the simplest such case, a qubit and a qutrit,
shown in Fig. 2(b). This case is trivial, since in the Schmidt
representation only two of the six coefficients can differ from
zero, so the center of mass is constrained to the (dashed)
line joining the corresponding two point masses. However, it
illustrates the validity of the construction for general states
and the insights that this geometric description gives: the
center of mass is restricted by geometry to the interior of
the simplex (in this case, a triangular prism) whose corners
are the point masses, but the Schmidt representation imposes
extra constraints in the combination of values that the masses
can take, further reducing the region inhabitable by the center
of mass (in this case, to a line). The boundaries of the region
inhabitable by the center of mass are flat, but when one or more
of the parties have three or more states, the space in which the
entanglement vector is defined is of smaller dimensionality
than the one where the center-of-mass interpretation holds
because Yn = 1 − Qn only uses the radial distance of the
center of mass in the corresponding subspace. This reduction
in dimensionality causes the corresponding boundaries of the
region inhabitable by Y to be curved. For example, for the
qubit-qutrit case in Fig. 2(b), the center of mass is restricted
to a straight line within the three-dimensional space, while the
entanglement vector Y = (Y1,Y2) lives in a two-dimensional
space and is restricted to the curve [(1 − Y1)2 + 1]/2 = [2(1 −
Y2)2 + 1]/3.

Let us now consider a more complicated case with three
parties: two qubits and a qutetrit (four states). This case can

be thought of as the result of starting with four qubits and then
merging qubits 3 and 4 into a qutetrit “party 34.” It is shown
in the Supplemental Material [29] through the center-of-mass
picture that the tight inequalities for these three parties are

|Y1 − Y2| � 1 −
√

H [3(1 − Y34)2 − 1]

2
, (13a)

Y34 � 1−
√

(1 − Y1)2 + (1−Y2)2 + H 2(1−Y1 − Y2)

3
,

(13b)

where H (x) = Max(0,x). The resulting inhabitable region
allowed by relations (13) is shown in Fig. 3(b), and it has
curved boundaries for the reasons discussed earlier. The
volume of this region is only 0.3457, while for the case of three
qubits shown in Fig. 3(a) the volume allowed by relations (11)
is 0.5.

Bipartitions of more than one party. The inequalities in
Eq. (13) can also be interpreted as giving a more complete
picture of the entanglement constraints of a four-qubit state.
In addition to the four measures Y1,Y2,Y3,Y4, corresponding
to bipartition of each party versus the rest, and restricted
by relations (11), one can construct the measures Y12 =
Y34, Y13 = Y24, Y14 = Y23, corresponding to bipartitions of
two versus two parties. This second set of measures is
restricted by relations (13) and their analogs. It is shown
in the Supplemental Material [29] that these inequalities
disagree only slightly with the corresponding relations for
shared classical resources (which do have flat boundaries); the
difference in the regions allowed by the quantum and classical
relations is of the order of 10% of the regions allowed by either.

Concluding remarks. We proposed an analytic approach
that we believe to be new and that exploits familiar mechanical
intuition allowing new results to appear. Viewed as coming
from a step in an unexplored direction, while centered on
such a conventional measure as multiparty system purities, the
results of this first step are attractive. A key to this geometric
description is the Schmidt representation, which ensures that
the density matrix is diagonal for any party following tracing
out of the others. The modulus squared of each coefficient can
then be thought of as the magnitude of a point mass in a space
whose dimensionality is the sum of all the states for all parties
minus the number of parties. The coordinates of the center of
mass of all these point masses provides a description of the
entanglement amongst the different parties.
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