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Local spin operators for fermion simulations
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Digital quantum simulation of fermionic systems is important in the context of chemistry and physics.
Simulating fermionic models on general purpose quantum computers requires imposing a fermionic algebra
on qubits. The previously studied Jordan-Wigner and Bravyi-Kitaev transformations are two techniques for
accomplishing this task. Here, we reexamine an auxiliary fermion construction which maps fermionic operators
to local operators on qubits. The local simulation is performed by relaxing the requirement that the number
of qubits should match the number of single-particle states. Instead, auxiliary sites are introduced to enable
nonconsecutive fermionic couplings to be simulated with constant low-rank tensor products on qubits. The
additional number of auxiliary qubits required per fermionic degree of freedom depends only on the degree of
connectivity of the Hamiltonian. We connect the auxiliary fermion construction to topological models and give
examples of the construction.
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Quantum simulations have been a driver of quantum
computing research since the earliest days of quantum com-
puting [1]. In particular, the electronic structure of interacting
fermions is often highlighted as a prime application area [2]
with implications for quantum chemistry [3–5] and condensed
matter [6,7]. Here, we contribute to this research direction with
an alternative encoding of fermions in qubits.

Quantum computing is usually done using distinguishable
two-level qubit systems. Thus, quantum computer simulations
of fermions require imposing the fermionic statistics on
the qubit system through an encoding. Examples of such
encodings include the first quantized encoding [8,9], the
Bravyi-Kitaev encoding [10–12], and the Jordan-Wigner en-
coding [4,13]. The manipulation and extraction of the physical
features of a fermionic model then depend directly on the
mapping employed.

In this Rapid Communication, we study an auxiliary
fermion encoding scheme for fermionic Hamiltonians that
introduces additional degrees of freedom, but is manipulated
with only local qubit operators [14–16]. The previously
introduced auxiliary fermion scheme [14–16] is elaborated
and generalized in the context of quantum simulation with
the previous constructions recovered as specific cases of the
framework.

Of particular relevance to understanding the present work is
the Jordan-Wigner (JW) mapping. This encoding [4,13,17,18]
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maps one-dimensional nearest-neighbor fermionic Hamilto-
nians to nearest-neighbor operators on qubits. On higher-
dimensional lattices, however, manipulation of the fermionic
state requires nonlocal qubit operators after the Jordan-
Wigner transform. The cost of simulating such nonlocal qubit
operators can be reduced using circuit optimization [19] or
teleportation techniques [20]. We may also reduce the locality
of the qubit simulation operators by changing the mapping
itself.

One example of such optimization is the Bravyi-Kitaev
(BK) encoding, which requires only a logarithmic overhead
in the number of qubit operators per fermionic operator
[10–12]. Both BK and JW require the same number of qubits
as fermionic sites to encode states. This contrasts with the
present method, which increases the number of qubits that
the fermionic system is mapped to. Nevertheless, trading the
increased dimension for reduction to a local qubit Hamiltonian
is still a desirable feature for quantum simulations in scenarios
with restricted quantum control.

Before giving the expression for the Jordan-Wigner
transformation, consider the occupation representation of a
fermionic state,

|n0,n1,n2, . . . ,nN−1〉 =
N−1∏
i=0

(a†
i )ni |�〉, (1)

where |�〉 is the fermionic vacuum. The linear indexing of the
sites is necessary to uniquely specify the vacuum and is not
reflective of physical considerations. Creation and annihilation
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FIG. 1. Auxiliary sites are introduced in order to cancel strings
of Z operators on nonlocal couplings. In the graph above, we add
auxiliary fermionic sites 1′ and 5′ for sites 1 and 5, as the fermionic
coupling (dashed line) would map into nonlocal coupling on qubits
with Jordan-Wigner transformation. The fermionic auxiliary sites are
ordered right after the sites of the original model—in the graph above,
the ordering changes as 12345 → 11′23455′ with the introduction of
the auxiliary sites. We assumed no knowledge about the excitation
parity sector of the model.

operators satisfy the fermionic algebra

[ai,aj ]+ = [a†
i ,a

†
j ]+ = 0, [ai,a

†
j ]+ = δij . (2)

Consequently, the action of the annihilation operator is

aj |n0, . . . nj , . . . ,nN−1〉
= δnj 1(−1)�jn |n0, . . . ,(nj − 1), . . . ,nN−1〉, (3)

with a nontrivial phase factor given by �jn = ∑j−1
i=0 ni . The

JW transform from N fermionic sites to N qubits preserves
the fermionic algebra with tensor products of qubit operators,

aj =
j−1⊗
i=0

Zi ⊗ Aj for some 0 � j < N, (4)

where Aj = (Xj + iYj )/2 is the single-qubit lowering oper-
ator acting on the j th qubit. The qubits store the fermionic
occupancies, thus the vacuum state for the Jordan-Wigner
transformed operators is |�〉 = |0 . . . 0〉 with Z|0〉 = |0〉. The
JW transformation of the fermionic nearest-neighbor hopping
term a

†
paq for p < q is given by

a†
paq = A†

p ⊗
⎛
⎝

q−1⊗
i=p+1

Zi

⎞
⎠ ⊗ Aq. (5)

This operator contains |q − p| − 1 qubit Z operators in its
qubit representation. Thus, the qubit Hamiltonian is local only
when the fermionic Hamiltonian has consecutively ordered
couplings. Exemplary cases are one-dimensional nearest-
neighbor models, such as the one-dimensional Hubbard model.
In general, however, the Hamiltonian will have nonlocal qubit
terms, as we will illustrate by example later in the text.

Overview of simulation algorithm. Before delving into
technical details, we give a high level summary of the auxiliary
fermion simulation algorithm for systems with N single-
particle sites. The sites can be any single-particle wave func-
tion, e.g., plane waves, atomic orbitals, delta functions, etc.

(1) Consider a fermionic Hamiltonian with given coupling
strengths. For each site p, compute Dp as the number of
sites it couples to. Introduce ceil (Dp/2) additional (auxiliary)
fermionic sites indexed adjacent to p (Fig. 1).

(2) Construct an initial Nf fermion state with the correctly
initialized auxiliary sites.

(3) Convert the fermionic Hamiltonian to qubit representa-
tion. After the conversion, the one-body terms affect at most
2ceil(D/2) qubits with D = max Dp. Two-body terms affect
at most 4ceil(D/2) qubits.

(4) The same conversion can be applied to correlation
functions and other physically interesting observables.

For example, nearest-neighbor fermionic hopping on a
square lattice represented with qubits will be at most four-local,
in contrast to JW, where it would have been up to (

√
N + 1)

local.
The auxiliary fermion method reduces the tensor locality

of the Hamiltonian terms as compared to the other methods.
However, this is irrespective of the spatial locality of the qubits.
Thus, the implementation on quantum hardware will depend
on the specific layout and capabilities of the experimental
system.

The remainder of this Rapid Communication is structured
as follows: First we derive the general form for the auxiliary
couplings. We then analyze the spatial requirements of the
model and illustrate the construction with two examples. This
is followed by discussion of state preparation.

Auxiliary coupling terms. The method for achieving qubit
locality for operators is to replace hold

pq = a
†
paq + a

†
qap �→

hpq = a
†
pMaux(pq)aq + a

†
qM

†
aux(pq)ap in the fermionic

model for sites p and q separated along the linear indexing. The
generalization to two-body four-point or higher coupling terms
follows naturally: a

†
paqa

†
r as �→ a

†
pMaux(pq)aqa

†
rMaux(rs)as .

Here, Maux(ij ) is an operator on auxiliary fermionic sites
introduced to cancel the JW nonlocal Z chains without
changing the physics of the original fermionic model. As
detailed below, the vacuum state |�〉 is also modified to achieve
the desired fermionic statistics.

We now define Maux(ij ) by imposing a set of algebraic
constrains. Since we increased the dimension of the Hilbert
space by introducing the auxiliary fermionic sites, not every
qubit state will correspond to a physical state of the fermionic
system. We therefore impose that the physical fermionic states
on qubits correspond to +1 eigenstates of all Maux(ij ). In other
words, Maux operators stabilize a physical subspace. It follows
that any two Maux will commute on this subspace. We also
insist for all p that [Maux, ap] = 0, implying a

†
pMauxaq |�〉 =

a
†
paqMaux|�〉 = a

†
paq |�〉. This condition allows us to simulate

the auxiliary fermions without any effect on the original
fermionic system. To allow state preparation in the encoding,
we require Maux to correspond to an observable with ±1
eigenvalues—hence all Maux are Hermitian and M2

aux = 1.
Suppose we take decomposition Maux(pq) = ibp′cq ′ , where
the primed indices label the auxiliary fermionic sites. The
following then defines Maux with the above properties,

bp′ = (e−iθ ap′ + eiθ a
†
p′ ), cq ′ = (e−iφaq ′ + eiφ a

†
q ′ ),

for any real parameters θ,φ. Previous constructions of Maux

found in the literature [14–16] correspond to bj ′ and cj ′ as
(aj ′ + a

†
j ′ ) or −i(aj ′ − a

†
j ′ ), i.e., θ and φ are 0 or π/2. Note

that these choices coincide with the definition of Majorana
fermions. In general, we can represent these operators on
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qubits through a JW transform as

bp′ =
⎛
⎝

p′−1⊗
i=0

Zi

⎞
⎠ ⊗ Bp′ , cq ′ =

⎛
⎝

q ′−1⊗
i=0

Zi

⎞
⎠ ⊗ Cq ′ ,

with Bp′ = [cos θ X + sin θ Y ]p′ and Cq ′ = [cos φ X +
sin φ Y ]q ′ being single-qubit operators acting on auxiliary sites
p′ and q ′.

The eigenstates of Bp′ are

|±θ 〉 = |0〉 ± eiθ |1〉√
2

. (6)

The specific relationship between choices for θ and φ will be
detailed below.

Before proceeding further, we give further intuition behind
the operator locality reduction achieved by the scheme.
The fermionic phase factor gives rise to the nonlocality
of the JW transform. In the occupation number basis, Eq.
(1), the fermionic sites are in a fixed ordering. All other site
orderings map back to this state with either a +1 or −1 phase
factor. The JW operator chains compute this reordering factor.
In this model, the reordering factor is computed using the code
space of {Maux(pq)}. Consider the action of K̂ = ∏Nf

i a
†
ki

on
the vacuum state. With the JW representation [Eq. (4)] of
K̂ , the auxiliary site j ′ will store parity pj = ∑N

k=j+1 nk .
This follows from Eq. (6) since Z|±θ 〉 = |∓θ 〉. Thus, the
information about the parity is stored locally in the correlation
of the i ′ and j ′ qubits with values of si,sj ∈ {+,−}. The
product sisj hence gives the phase factor associated with the
reordering needed to implement a

†
i aj + a

†
j ai .

Spatial requirements. The number of additional auxiliary
fermionic sites will depend on how the coupling graph differs
from the linear indexing graph. In the linear graph all fermionic
sites have only two neighbors. Whenever a fermion participates
in nonlocal couplings involving D > 2 other fermionic sites,
then the present model requires ceil(D/2) auxiliary fermions to
be introduced for completely local simulation. As the number
of auxiliary fermionic sites increases, the operator locality
must also increase. The creation or annihilation of a fermion
at a site requires that all auxiliary sites affiliated with that site
also be updated. Next, we show that each auxiliary site can
couple up to two nonlocal neighbors.

We let B⊥ be the orthogonal partner to Z and B, such
that Tr (ZB) = Tr (ZB⊥) = Tr (BB⊥) = 0. It follows from
anticommutation that ±iBZ = B⊥. Since the qubit operators
B and Z have only one mutually orthogonal partner, at most
two nonlocal couplings can be connected to a single auxiliary
mode.

We divide the analysis into two cases (assume that p <

q < r), first with Maux(pq) and Maux(pr) and second with
Maux(pq) and Maux(qr). These are the only two relevant cases
because the indexing is linear. Then Maux(pq) is given by

Maux(pq) p p′ q q ′

ibp′ Z iB⊥
cq ′ Z Z Z . . . Z Z C

ibp′cq ′ 1 B Z . . . Z Z C

(7)

3 4

21

FIG. 2. The K4 graph is the completely connected graph with
four sites. The solid lines indicate the linear indexing and the dashed
edges indicate nonlocal couplings.

In the first case, the auxiliary couplings share a common node
p. One can therefore write the qubit operators as

p′ q ′ r ′

Maux(pq) B Z . . . Z C

Maux(pr) B ′ Z . . . Z Z Z . . . Z C ′
(8)

The operators B ′,C ′ can differ from B,C. Since C and Z

anticommute, for Maux(pq) and Maux(pr) to commute, B and
B ′ must also anticommute. Since Tr ([B,B ′]+) = 2 Tr(BB ′) =
0, it follows that B ′ must be orthogonal to B in the Hilbert-
Schmidt norm. However, we have already shown that (B⊥)⊥ =
±B, and therefore B ′ = ±B⊥. In the second case, where the
nonlocal links share a common site q, the operator acting on
q must be the same for both of the auxiliary couplings since
the two couplings will only overlap at q.

Examples. As a simple example, let us consider the
simulation of the completely connected four-site fermionic
system depicted in Fig. 2. First, we must choose a basis for
the Maux operators, construct the invariant vacuum state, and
finally we can give expressions for one-body and two-body
couplings.

Without loss of generality, we fix the α parameter for the
auxiliary couplings such that

1 1′ 2 2′ 3 3′ 4 4′

M13 X Z Z Z X

M14 Y Z Z Z Z Z Y

M24 X Z Z Z X

(9)

Note that the choice of M13 and M14 fix M24 by the
commutation requirements.

Nonlocal one-body terms for the K4 graph follow from Eqs.
(4) and (9):

1 1′ 2 2′ 3 3′ 4 4′

a
†
1M13a3 A† −iY A X

a
†
2M24a4 A† −iY A X

a
†
1M14a4 A† iX A Y

(10)

The remaining local hopping terms are of the form
a
†
pap+1 = A

†
p ⊗ Zp′ ⊗ Ap+1. The one-local number operator

is given by a
†
kak = (1 − Zk)/2. The two-body terms consisting

of two-point couplings, e.g., a
†
i a

†
j ajai , are straightforward

products of the qubit representations of a
†
i ai and a

†
j aj .
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FIG. 3. The two-dimensional (2D) Hubbard model provides an
illustration of the advantage of the auxiliary fermion simulations over
Jordan-Wigner and Bravyi-Kitaev transformed operators. On the left,
the L = 3 model is depicted with linear indexing graph G1 in curved
bold lines and with dotted lines indicating the Hubbard coupling
graph G. On the right, D = deg(G) is the degree of the sites in G,
similarly D1 = deg(G1). Their difference gives the nonlocal degree
Dnl. This translates into the number of auxiliary fermions needed at
each site following Naux = ceil(Dnl/2).

Similarly, three-point interactions, e.g., a
†
i aka

†
j aj , are also

products of the qubit representation of a
†
j aj and a

†
i Maux(ik)ak ,

when i and k have nonconsecutive indices. The four-point
interactions do not require the auxiliary coupling due to
anticommutation relations.

Consider the term a
†
1a

†
4a2a3 which occurs in the quantum

simulation of molecular hydrogen using a minimal basis [4].
Here, we can avoid the use of auxiliary qubits by rearranging
the term as a

†
1a2a

†
4a3. Now the term is a product of linearly local

hopping terms, each of which can be simulated without appeal
to the auxiliary couplings. This points out the importance of
exercising the commutation relations to minimize the tensor
weight of the simulated term.

While this example illustrates the model, it is not chosen to
highlight the decisive advantages of the scheme. In fact, the
Jordan-Wigner and Bravyi-Kitaev Hamiltonian on four sites
also only has fourth-order tensor products, but requires half
as many qubits. When more nonlocal couplings are present,
the auxiliary fermion model will offer decisive advantages, as
illustrated with the next example.

The second example is square lattices with N = Ld in
d = 2 and d = 3 dimensions. In our analysis, we only consider
L → ∞ bulk terms, but see Fig. 3 for an L = 3 example. Each
bulk site has 2d neighbors. Subtracting the linear degree of 2,
each site participates in 2d − 2 nonlocal couplings. By the
arguments given earlier, d − 1 auxiliary sites are needed for
each site in the bulk. The maximum tensor product needed for
the local simulation of hopping terms involves 2d − 2 qubit
operators. Note that this is independent of L as the simulation
now only depends on the local properties of the coupling
graph.

State preparation. The model is closely connected to
topological models found in error correction codes [21].
To have robust error correction, topological structures
are used to store information as nonlocally as possible.

However, here we are attempting to store information strictly
locally.

To highlight this overlap, a simple expression for the
projected vacuum state can be borrowed from topologically
nontrivial models [22]:

|�〉 =
∏

(pq)∈E

1 + Maux(pq)√
2

|0 . . . 0〉. (11)

Because we imposed Maux(pq)2 = 1 and Maux = M
†
aux, this is

a product of projectors. We begin by creating the state |00 . . . 0〉
and proceed to projectively measure each auxiliary coupling.

If the measurement outcome for an auxiliary coupling, say,
Maux(pq), is −1, then changing its sign is a matter of applying
Zp′ or applying Zq ′ to the measured state. When the site
participates in two nonlocal couplings, the error will propagate
to the other nonlocal coupling. Therefore, it is simplest if
an auxiliary site with only one nonlocal nearest neighbor is
chosen. Otherwise, one should follow the linked chain of
nonlocal sites applying the Z operator at each end point until
the linked chain ends. This is possible as long as no closed
loops of auxiliary couplings are present.

In the previous auxiliary fermion method introduced in Ref.
[15], additional terms must be included to ensure that the
phase around the closed loops of coupled auxiliary fermions
is correct. This is an additional complication we need not
consider by limiting our attention to encodings with no closed
loops. Note that the no closed-loop restriction is not a serious
limitation. For any closed loop of nonlocal couplings, e.g.,
{Maux(pq),Maux(qr), . . . ,Maux(sp)}, we can take M ′

aux(p +
1,q) instead of Maux(pq). The coupling from p to p + 1 can
be done locally, allowing nearly the same connectivity to be
achieved. Thus, we may now ignore nontrivial Wilson loops
considered in Ref. [15].

It is interesting to note that both the vacuum state in Eq. (11)
and the completely filled states are invariant under Mij . Note
that this must be true as b

†
m = am is the hole creation operator

with respect to the filled vacuum state. Hence, the action of
{b†m,bk} must also be antisymmetric.

Lastly, consider the preparation of Fock states with Nf

fermions. This is accomplished most straightforwardly by
applying the JW representation of K̂ = ∏Nf

i a
†
ki

on the vacuum
state. The action on the state can be simplified when both
the desired state and auxiliary sites are known beforehand. In
this case, the occupied sites can be acted upon with X. The
auxiliary site k′ is acted upon with Zp, where p is the parity
of occupied sites to the right of k′.

Concluding remarks. In this work, we have studied the
auxiliary fermion scheme for encoding fermionic states which
enables highly localized manipulation. This encoding is
designed to make information as accessible as possible.

Future work will consider the possibility of a trade-off
between robustness against noise and the locality of encoding.
The auxiliary fermionic system may be easier for both experi-
mentalists and noise sources to modify the information. While
the Jordan-Wigner encoding requires nonlocal manipulation
of the state, a recent numerical analysis suggests that it is
more robust against noise than the Bravyi-Kitaev encoding
[23]. The present Rapid Communication has not considered
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the effects of noise akin to a fault-tolerant setting [20]. Within
this framework, the auxiliary fermion scheme represents an
important improvement over the Jordan-Wigner and Bravyi-
Kitaev schemes.

Other direction of this work are the comparison against
related ideas for reducing the tensor product rank of fermionic
simulations [10,24,25] and applications to adiabatic computa-
tion [26,27].
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