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We explore the coherent control of nonlinear absorption of intense laser fields in four-level atomic systems.
For instance, in a four-level ladder system, a coupling field creates electromagnetically induced transparency
(EIT) with an Aulter-Townes doublet for the probe field while the control field is absent. A large absorption peak
appears at resonance as the control field is switched on. We show how such a large absorption leads to optical
switching. Further, this large absorption diminishes and a transparency window appears due to the saturation
effects as the strength of the probe field is increased. We further demonstrate that the threshold of the optical
bistability can be modified by suitable choices of the coupling and the control fields. In a four-level Y-type
configuration, the effect of the control field on saturable absorption (SA) and reverse saturable absorption (RSA)
is highlighted in the context of nonlinear absorption of the probe field. We achieve RSA and SA in a simple
atomic system just by applying a control field.
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I. INTRODUCTION

Since the invention of the laser, quantum coherence
has played a vital role in controlling the nonlinear optical
properties of an atomic medium [1,2]. The linear optical
effect is attributed to the linear relationship between the input
and output intensities. When the incident irradiance becomes
large enough, a nonlinear optical effect comes into play [3].
Quantum coherence helps in enhancing the efficiencies of
nonlinear optical processes (characterized by a complex third-
order susceptibility), thereby eliminating the linear absorption
even at low light powers [4–8]. While the real part of the
third-order susceptibility (the Kerr nonlinearity) can produce
significant cross-phase modulation [9,10], the imaginary part
may lead to photon switching [11,12]. Further, quantum
coherence can produce coherent population oscillations and
sublinewidth transmission resonances in two-level [13] as
well as in multilevel systems [14]. This happens as an
effect of temporal modulation of the population difference
between the ground and excited states. Besides transparency,
electromagnetically induced absorption (EIA) may occur due
to transfer of two-photon coherence between the degenerate
excited levels to the degenerate ground levels [15–17]. For
observation of the EIA, the multilevel systems, especially
the four-level N-type systems [18,19], are the promising
candidates, because they require a control field with low power.
Further, two-photon coherence in a ladder-type energy-level
configuration [20–22] exhibits electromagnetically induced
transparency (EIT) and two-photon absorption (TPA) for
a weak probe laser, in the presence of a strong coupling
laser. This TPA phenomenon in the ladder systems can be
dramatically modified by quantum coherence and it can make
an absorptive medium transparent to the probe field [23].
Such possibility was originally proposed by Agarwal and
coworkers [24] and demonstrated in [25]. Besides TPA, a large
absorption at resonance can also arise due to three-photon
coherence, called three-photon electromagnetically induced
absorption [26,27].
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All the above nonlinear phenomena assume a probe field
whose strength is such that it is enough to consider the
coherence only up to a finite order of the probe field (i.e.,
only a finite order of susceptibility, say, up to third order).
However, when the intensity of the probe field is increased,
one needs to investigate the response of the medium for all
orders of the probe field, which gives rise to several interesting
optical effects, namely, optical bistability (OB). This refers to
the possibility of two stable output fields for the same input
field in an optical feedback network. The nonlinear interaction
between a collection of atoms and the field mode along with the
feedback inside an optical cavity leads to such a bistable behav-
ior. Based on the response of the optical feedback, the bistable
device can be used as an optoelectronic component, viz., an
optical differential amplifier [28–30]. The optical bistability
has been extensively studied in two-level [31–33] as well as in
multilevel systems [34–36] due to its application in ultrafast
all-optical switches [37]. Harshawardhan and Agarwal [34]
have proposed that by using quantum interference induced
by control fields, one can decrease the threshold of bistability.
This suggests that the nonlinear effect becomes dominant even
at a low input intensity.

We further investigate the role of coherence into other
nonlinear optical phenomena, namely, saturable absorption
(SA) and reverse saturable absorption (RSA) [38]. The SA
corresponds to the decrease of the ground-state absorption
of light as the input intensity increases. On the contrary, the
RSA is associated with the excited-state absorption and as a
consequence, the absorption inside the medium increases with
the intensity of the input field. The RSA has been demonstrated
in various compounds [39–43] and has found application in
optical limiting, viz., protection of electro-optical sensors or
human eyes from intense laser pulses [44].

In this paper, we explore the effect of a control field on the
nonlinear absorption characteristics of a probe field in four-
level atomic systems. We consider all orders of the probe field
in our analysis. The effect of atomic coherence as a function of
all the fields is investigated. We show that while in the absence
of the control field, the system exhibits transparency for the
probe field, the nonlinear excitation is enhanced as the control
field is introduced in the uppermost transition of a four-level
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ladder system. This enhancement of the nonlinear absorption
leads to the absorptive optical switching [11,12] in which probe
absorption can be switched on and off by a control field. We
present numerical results to describe the optical switching in
terms of a Gaussian intensity profile of the probe field. We also
describe the absorption characteristics of the atomic medium
in a unidirectional ring cavity, leading to optical bistability. In
our model, the threshold of the OB can be controlled by both
the control and the coupling field. Further, by coupling the first
excited state with a metastable state by a control field (so as to
form a Y-type configuration), we show how the SA and RSA
can be coherently manipulated when both the coupling field
and the probe field are of the same polarization and the same
intensity. Note that here we demonstrate the RSA effect in a
simple atomic system thanks to the coherent control field.

The structure of the paper is as follows. In Sec. II, we
discuss the four-level ladder model configuration along with
its relevant equations. In Sec. III, we describe how nonlinear
absorption and optical bistability can be coherently controlled
in such a system. Further, in Sec. IV, the SA and RSA effects
are highlighted in a four-level Y-type system. We conclude the
paper in Sec. V.

II. MODEL

To explore the nonlinear absorption characteristics of the
probe field and optical bistability, we consider a four-level
ladder scheme [45], as shown in Fig. 1, that comprises a ground
state |1〉 and three excited states |2〉, |3〉, and |4〉, in increasing
order of frequency. The coupling field �E1 = π̂ε1e

−iωG1 t +
c.c. (the probe field �E2 = σ̂+ε2e

−iωG2 t + c.c.) with a Rabi

frequency 2G1 = 2 �d21·π̂ε1
�

(2G2 = 2 �d32·σ̂+ε2

�
) drives the |1〉 ↔

|2〉 (|2〉 ↔ |3〉) transition, where εi(i = 1,2) represents the
amplitude of the field and �dij is the electric dipole moment
matrix element between the levels |i〉 and |j 〉. Here, ωG1

(ωG2 ) denotes the frequency of the coupling (probe) field.

FIG. 1. Schematic of energy-level structure of a four-level ladder
system. The coupling field of Rabi frequency 2G1 and the control field
of Rabi frequency 2G induce the transitions |1〉 ↔ |2〉 and |3〉 ↔ |4〉,
respectively, while a probe field of Rabi frequency 2G2 interacts with
|2〉 ↔ |3〉.

We apply a control field �Ec = σ̂−εce
−iωct + c.c. of frequency

ωc and amplitude εc on the transition |3〉 ↔ |4〉. Let 2G =
2(

�d43·σ̂−εc

�
) be the Rabi frequency of the control field �Ec. The

transitions |1〉 ↔ |3〉, |2〉 ↔ |4〉, and |1〉 ↔ |4〉 are electric
dipole forbidden.

The Hamiltonian for the system under consideration in the
dipole approximation can be written as

Ĥ = �[ω21|2〉〈2| + ω31|3〉〈3| + ω41|4〉〈4|]
− [( �d21|2〉〈1| + H.c.) · �E1]

− [( �d32|3〉〈2| + H.c.) · �E2]

− [( �d43|4〉〈3| + H.c.) · �Ec]. (1)

Here �ωαβ is the energy difference between the levels |α〉
and |β〉 and zero of energy is defined at the level |1〉. The
dynamical evolution of the system can be described by a
Markovian master equation, and the relevant density matrix
equations obtained for the four-level ladder system are given in
the Appendix [see Eqs. (A1)]. Note that Eqs. (A1) consider the
mutual effect of atomic coherence and all the relevant fields.

The induced polarization at a frequency ωG2 on the
transition |2〉 ↔ |3〉 will be obtained from the off-diagonal
matrix element ρ̃32:

P
(
ωG2

) = N �d23ρ̃32 , (2)

where, N is the number density of the medium. Below,
we study the propagation of the field through the medium
using Maxwell’s equations. Using the slowly varying envelope
approximation, the equations for field propagation can be
expressed as(

∂

∂z
+ 1

c

∂

∂t

)
G1 = iη12ρ̃21, η12 = 3λ2

12Nγ12/4π,

(
∂

∂z
+ 1

c

∂

∂t

)
G2 = iη23ρ̃32, η23 = 3λ2

23Nγ23/4π, (3)

(
∂

∂z
+ 1

c

∂

∂t

)
G = iη34ρ̃43, η34 = 3λ2

34Nγ34/4π,

where ηij and λij are the coupling constant and wavelength
for the |i〉 ↔ |j 〉 transition, respectively.

III. RESULTS

For the numerical studies, we consider relevant transitions
in 23Na atoms [46], where |1〉 = 3S1/2, |2〉 = 3P1/2, |3〉 =
3D3/2, and |4〉 = 8P1/2. The respective transition wavelengths
and decay rates are λ12 = 594 nm and γ12 ≈ 9 MHz (for |1〉 ↔
|2〉 transition), λ23 = 821 nm and γ23 ≈ 6 MHz (for |2〉 ↔ |3〉
transition), λ34 = 986 nm and γ34 ≈ 0.005 MHz (for |3〉 ↔ |4〉
transition). Further, for numerical results, we set γ12 ≈ γ23 ≈
γ , unless stated otherwise.

A. Control of transmission

To describe the transmission of the field �E2, the field
equations [Eq. (3)] are solved in the steady-state limit, i.e.,
(∂Gi/∂t) = (∂ρ̃ij /∂t) = 0. We do not make any approxima-
tion of the strength of the fields, so we resort to solving the set
of simultaneous coupled equations numerically to all orders
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FIG. 2. Variation of transmission (T2) with detuning (2/γ ) for
(a) G1 = 10γ , G = 0 and (b) G1 = 10γ , G = 10γ . The common
parameters of the above graphs are G2 = γ (solid line), G2 = 3γ

(dashed line), G2 = 5γ (dot-dashed line), and G2 = 10γ (dotted
line), 1 = 0,  = 0, N = 1010 cm−3, η12 = 12, η23 = 16, η34 =
0.2, and γcoll = 0.

of these fields. To obtain the polarization, we solve Eqs. (A1)
(in Appendix) in steady state and then integrate Eq. (3) over
the length of the medium. The absorption spectrum of the
probe field is shown in Fig. 2. In the absence of the control
field (G = 0), clearly, a transparency window appears around
the resonance [Fig. 2(a)] that pertains to EIT in a three-level
system in ladder configuration. For a lower strength of the
field �E2 (viz., G2 = γ ), the Aulter-Townes absorption doublet
also arises at 2 = ±G1, which can be attributed to single-
photon absorption from dressed states |±〉12 to |3〉, where
|±〉12 = 1√

2
(|1〉 ± |2〉) are the partial dressed states created

by the resonant coupling field. The destructive interference
between the transitions |3〉 ↔ |+〉12 and |3〉 ↔ |−〉12 gives rise
to this transparency at resonance. (Note that this transparency
window does not correspond to zero absorption, due to the
decay channel |3〉 → |2〉).

For larger values of G2, the transparency becomes promi-
nent at resonance as the coherent absorption dominates the
decay of the level |3〉. It is to be emphasized that the increase
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FIG. 3. Variation of transmission (T2) with intensity of control
field (|G|2) for G1 = 3γ (dotted line), G1 = 5γ (dashed line),
G1 = 7γ (dot-dashed line), and G1 = 10γ (solid line). Here, we
have chosen G2 = 0.01γ and 2 = 0 and the other parameters are
the same as in Fig. 2.

in transparency with the increase of the probe field is a
consequence of the incoherent population distribution among
various levels at the steady state.

When the control field is introduced on the |3〉 ↔ |4〉
transition (viz. G = G1), the system becomes highly ab-
sorptive. While the new absorption peak appears at reso-
nance [at 2 = ±(G − G1)] for smaller values of G2 = γ

[Fig. 2(b)], the control field also shifts the absorption doublet
to 2 = ±(G + G1). These absorption characteristics can be
understood in terms of different partial dressed states [47].
The highest central absorption peak at 2 = ±(G − G1),
i.e., at resonance, arises due to the quantum interference
between the transitions |+〉34 ↔ |+〉12 and |−〉34 ↔ |−〉12,
where |±〉34 = 1√

2
(|3〉 ± |4〉) are the dressed states produced

by the control field G. On the other hand, the lower absorption
peaks at 2 = ±(G + G1) are the consequences of the tran-
sitions |+〉34 ↔ |−〉12 and |−〉34 ↔ |+〉12, respectively. For
larger values of G2, the resonant absorption in the |2〉 → |3〉
transition becomes less again due to the incoherent population
distribution (leading to saturation).

As discussed above, for G = G1 and smaller values of
G2, the probe field G2 gets fully absorbed at resonance.
In support of this, we display in Fig. 3 the transmission
of the resonant probe field as a function of the intensity
of the control field. It immediately becomes obvious that
transmission vanishes at G = G1. For G < G1 the absorption
dominates with an increase in the control-field intensity,
while in the region G > G1, the transmission increases with
increase of the control field. Thus, the condition G = G1 is
suitable to produce nonlinear absorptive switching because
the probe absorption can be turned on and off by the control
field. It should be borne in mind that such a large absorption
at resonance for a weaker probe field occurs due to quantum-
interference-enhanced nonlinear absorption with the inhibition
of linear absorption.

We now demonstrate the above analysis in terms of the
absorptive photon switching with reference to a Gaussian

023851-3



PARDEEP KUMAR AND SHUBHRANGSHU DASGUPTA PHYSICAL REVIEW A 94, 023851 (2016)

−5000 −2500 0 2500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

In
te

ns
it
y

γτ

 

 

Vacuum
Medium

(b)

−5000 −2500 0 2500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N

or
m

al
iz

ed
In

te
ns

it
y

γτ

 

 

Vacuum
Medium

(a)

FIG. 4. Time dependence of the normalized Gaussian pulse after
traveling through vacuum (solid line) and the atomic medium (dashed
line) of length L = 1 cm for (a) G = 0 and (b) G = 10γ . The
parameters chosen are G1 = 10γ , G2 = 0.1γ , σ = 2π × 5 kHz, and
τ = t − L/c; other parameters are the same as in Fig. 2.

probe pulse with a normalized envelope given by [48]

ε(ω) = ε0
1

σ
√

π
exp(−ω2/σ 2),

ε(t) = ε0
1√
2π

exp
(−σ 2

t t2/4
)
, (4)

where σ (σt = 2/σ ) denotes the width of the pulse in the
frequency (time) domain and ε0 is the pulse amplitude.
For numerical calculation, we choose σ = 2π × 5 kHz
(σt = 64 μs). In Fig. 4, we display the effect of the control field
on the absorption of a Gaussian-shaped probe pulse, Eq. (4).
In the absence of the control field, the output pulse remains
equally intense as that of the input pulse thanks to the EIT
created by the coupling field of Rabi frequency G1 = 10γ

as shown in Fig. 4(a). However, a significant decrease in the
output intensity occurs in the presence of the control field of
Rabi frequency G = G1 as depicted in Fig. 4(b). Thus, the
probe pulse can be turned on and off by the control field which
demonstrates realization of the nonlinear absorptive photon
switching [11,12].

FIG. 5. Unidirectional ring cavity with mirrors 3 and 4 as perfect
reflectors, while mirrors 1 and 2 obey R + T = 1. The atomic
medium of length L is inserted in the cavity. EI

2 and ET
2 are the

incident and transmitted fields and �E and �E1 are the control and
coupling fields, respectively.

B. Control of optical bistability

Now, we consider an optical feedback scenario, in which,
an ensemble of N atoms in four-level ladder configuration
(Fig. 1) is placed in a unidirectional cavity of total length
LT as depicted in Fig. 5. Here, mirrors 3 and 4 are perfect
reflectors, while R and T (=1 − R) are the reflection and
transmission coefficients of the semi-silvered mirrors 1 and 2.
The total electric field experienced by the atoms placed in the
cavity can be written as

�E = �ε1e
−iωG1 t + �ε2e

−iωG2 t + �εce
−iωGt + c.c. (5)

The coherent field EI
2 enters the cavity through the semi-

silvered mirror 1 and induces polarization [Eq. (2)] in the
medium. This field comes out of the cavity and gets partially
transmitted from mirror 2 as ET

2 . Fields �E1 and �E do not
circulate in the cavity; but these fields control the induced
polarization. For a perfectly tuned cavity, the boundary
conditions between the incident field EI

2 and the transmitted
field ET

2 are given by [49,50]

ET
2 (t) =

√
T E2(L,t),

E2(0,t) =
√

T EI
2 (t) + R exp(−iδ0)E2(L,t − t), (6)

where E2(0,t) is the field at the start of the sample, E2(L,t)
is the field after traversing the sample of length L, t =
(2l + L)/c is the time taken to travel from mirror 2 to mirror
1, δ0 = (ωc − ω0)LT /c is the detuning with the cavity with
frequency ωc, and LT = 2(l + L) is the total length of the
cavity. In the steady state, the above boundary conditions
reduce to

ET
2 =

√
T E2(L),

E2(0) =
√

T EI
2 + R exp(−iδ0)E2(L). (7)

We define a cooperation parameter C = αL/2T [29,30],

where α = 4πNωG2 | �d32|2
�γ32c

is the absorption coefficient on the
transition |2〉 ↔ |3〉.

Figure 6(a) shows the dependence of the optical bistability
on the input laser intensity G2 in the absence of the control
field (G = 0) for different values of G1 without mean-field
approximation [34]. In absence of the control field, the system
acts as a three-level ladder system, in which the increase of
G1 leads to transparency of G2, analogous to EIT. As seen
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FIG. 6. Variation of output fields with input fields for (a) G = 0
and (b) G = 5γ . The common parameters for these graphs are G1 =
3γ (dashed line), G1 = 5γ (solid line), G1 = 10γ (dot-dashed line),
and G1 = 20γ (dotted line). The parameters are chosen as 2 = 0
and C = 400; the other parameters are the same as in Fig. 2.

in Fig. 6(a), the threshold of the optical bistability decreases
with increase of the input field G1. For much larger values of
G1 = 20γ , the system actually shows the features of an optical
transistor.

When the control field is switched on, absorption dominates
at resonance for G = G1. Despite this, the region for G ≶ G1

corresponds to transparency. As depicted in Fig. 6(b), G = G1

leads to significant increase of the threshold. On the other hand,
for G 	= G1, the threshold for bistability remains quite small.
Thus, by working in the region G ≶ G1, the nonlinearity of
the atomic medium can be greatly enhanced and hence it is
easier to achieve saturation for the cavity field than in the case
when the control field is not applied. In fact, in the absence of
the control field, one needs to apply a very large coupling field
to achieve a smaller threshold [see Fig. 6(a)].

IV. CONTROL OF RSA AND SA: EFFECT
OF DECAY RATES

Next, to model the SA and RSA effects, we couple the first
excited state of the three-level ladder system with a metastable
state by a control field, so as to form a Y-type system as shown

FIG. 7. Level scheme for the SA and RSA effects. The two dipole
allowed transitions |1〉 ↔ |2〉 and |2〉 ↔ |3〉 are coupled to the fields
having the same polarization and Rabi frequency 2g. The control field
drives the transition |2〉 ↔ |4〉.

in Fig. 7. For the purpose of SA and RSA effects, we choose
the fields �E1 and �E2 to be of the same polarization and of equal
Rabi frequency 2g. From now on we call this field a probe field
which is interacting with transitions |1〉 ↔ |2〉 and |2〉 ↔ |3〉.
Here, the control field of Rabi frequency 2G is coupled to
transition |2〉 ↔ |4〉. The relevant density matrix equations for
Y-type system which describe the dynamical evolution of the
system by using a Markovian master equation are given in
Appendix B [see Eqs. (B1)].

Thus, the polarization induced in the medium can be written
as

P (ω) = N �d(ρ̃21 + ρ̃32), (8)

where we have assumed that �d = �d12 = �d23. Further,
Maxwell’s equations in a slowly varying envelope
approximation can be written as(

∂

∂z
+ 1

c

∂

∂t

)
g = i(η12ρ̃21 + η23ρ̃32),

(
∂

∂z
+ 1

c

∂

∂t

)
G = iη24ρ̃43, (9)

where ηij represents the coupling constant for the |i〉 ↔ |j 〉
transition. To obtain transmission at the output of the medium,
we integrate Eq. (9) over the length of the medium in steady
state.

We first consider that level |3〉 has a decay rate larger than
level |2〉. We show in Fig. 8(a) how the net transmission of the
input field varies as a function of the input intensity. We find
that as the input intensity increases up to a certain threshold,
the system remains absorptive, in absence of the control field.
This is because level |3〉 decays much faster. At a certain
input threshold, when the input intensity dominates over this
decay rate, the system undergoes saturation and exhibits more
transmission with larger input intensity, as in the case of SA.
Next when a control field is introduced, we find that the system
becomes transparent for weak probe field, due to the EIT-like
effect. This phenomenon can be understood as a manifestation
of the partial dressed states that are comprised of levels |2〉 and
|4〉. As the input intensity is increased until the input threshold,
the system exhibits more absorption, leading to the RSA effect.
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FIG. 8. Variation of transmission (T ) with the intensity of the
probe field for (a) γ12/2π = 5 MHz, γ23/2π = 11 MHz, γ24/2π =
0.97 MHz, η12 = 88, η23 = 1.5, and η24 = 8.8; (b) γ12/2π = 6 MHz,
γ23/2π = 0.97 MHz, γ24/2π = 1.1 MHz, η12 = 87, η23 = 14, and
η24 = 10. Here the fields are resonant, i.e., 1 = 0, 2 = 0, and
 = 0, and we have chosen γ = 1 MHz.

This is because the control field assists in further absorption by
Rabi cycling the population in the (|2〉,|4〉) manifold. Clearly,
just by applying a control field, one can achieve the RSA
effect in a system that exhibits SA otherwise. We illustrate the
RSA effect by considering the example of the relevant energy
levels of 85Rb as |1〉 = 5S1/2, |2〉 = 5P1/2, |3〉 = 7S1/2, and
|4〉 = 5D3/2. The respective transition wavelengths and decay
rates are [51,52] λ12 = 795 nm and γ12 = 2π × 5 MHz (for
|1〉 ↔ |2〉 transition), λ23 = 762 nm and γ23 = 2π × 11 MHz

(for |2〉 ↔ |3〉 transition), λ24 = 741 nm and γ24 = 2π × 0.67
MHz (for |2〉 ↔ |4〉 transition). For the RSA effect, the
π̂ -polarized field is interacting with |1〉 ↔ |2〉 and |2〉 ↔ |3〉
transitions, whereas the control field is σ̂+ polarized on the
|2〉 ↔ |4〉 transition.

Next we consider a situation in which level |3〉 is slowly
decaying compared to the level |2〉. In this case, as the
population resides in the level |3〉 for a much longer time, the
system achieves saturation quickly and exhibits transparency
(and SA). When a control field is introduced, this advances
the saturation. This is because level |4〉 gets populated through
coherent coupling to level |2〉 and thus assists in transmission.
In Fig. 8(b), we display this effect of the control field on
SA. For the possible realization of SA, we consider the
relevant energy levels of 87Rb. The designated states can
be chosen as follows: |1〉 = 5S1/2, |2〉 = 5P3/2, |3〉 = 5D5/2,
and |4〉 = 8S1/2. The respective transition wavelengths and
decay rates are [53–55] λ12 = 780 nm and γ12 = 2π × 6
MHz (for |1〉 ↔ |2〉 transition), λ23 = 776 nm and γ23 =
2π × 0.97 MHz (for |2〉 ↔ |3〉 transition), λ24 = 616 nm and
γ24 = 2π × 1.1 MHz (for |2〉 ↔ |4〉 transition). For the SA
effect, a σ̂+-polarized field is interacting with |1〉 ↔ |2〉 and
|2〉 ↔ |3〉 transitions while the polarization of the control field
is σ̂− on the |2〉 ↔ |4〉 transition.

V. CONCLUSIONS

In conclusion, we have demonstrated the possibility of
coherent control of nonlinear absorption of a probe field in
four-level atomic systems. We have shown that in a four-level
ladder system, the medium which otherwise is transmissive
for a weaker probe field becomes absorptive as the control
field is introduced. Such a large nonlinear absorption leads
to the absorptive optical switching. Further, as the strength
of the probe field is increased, a saturation effect gives
rise to large transparency. We further have shown that the
threshold for optical bistability can be manipulated by both
the coupling field and the control field. Further, in a four-level
Y configuration, we have discussed how the control field can
work as a knob to switch from RSA to SA.

APPENDIX A: DENSITY MATRIX EQUATIONS FOR
FOUR-LEVEL LADDER SYSTEM

To describe the dynamics of the four-level ladder system,
we use the Markovian master equation and obtain the following
density matrix equations:

˙̃ρ22 = γ23ρ̃33 − γ12ρ̃22 + i(G1ρ̃12 − G∗
1ρ̃21) − i(G2ρ̃23 − G∗

2ρ̃32),

˙̃ρ33 = γ34ρ̃44 − γ23ρ̃33 + i(G2ρ̃23 − G∗
2ρ̃32) − i(Gρ̃34 − G∗ρ̃43),

˙̃ρ44 = −γ34ρ̃44 + i(Gρ̃34 − G∗ρ̃43),

˙̃ρ21 = (i1 − �21)ρ̃21 + iG1(1 − 2ρ̃22 − ρ̃33 − ρ̃44) + iG∗
2ρ̃31,

˙̃ρ32 = (i2 − �32)ρ̃32 + iG2(ρ̃22 − ρ̃33) + iG∗ρ̃42 − iG∗
1ρ̃31, (A1)

˙̃ρ43 = (i − �43)ρ̃43 + iG(ρ̃33 − ρ̃44) − iG∗
2ρ̃42,

˙̃ρ31 = [i(1 + 2) − �31]ρ̃31 + iG∗ρ̃41 + iG2ρ̃21 − iG1ρ̃32,

˙̃ρ42 = [i(2 + ) − �42]ρ̃42 + iGρ̃32 − iG2ρ̃43 − iG∗
1ρ̃41,

˙̃ρ41 = [i(1 + 2 + ) − �41]ρ̃41 + iGρ̃31 − iG1ρ̃42,
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together with the condition
∑4

i=1 ρ̃ii = 1. Here, 1 = ωG1 −
ω21 (2 = ωG2 − ω32) is the detuning of the field �E1 ( �E2) from
the transition |1〉 ↔ |2〉 (|2〉 ↔ |3〉) and  = ωc − ω43 is the
detuning of the control field from the transition |3〉 ↔ |4〉. The
spontaneous emission rate from level |j 〉 to |i〉 is represented
by γij , and �ij = 1

2

∑
k (γki + γkj ) + γcoll describes the de-

phasing rate of coherence between the levels |j 〉 and |i〉, γcoll

being the collisional decay rate. The highly oscillating terms in
Eq. (A1) are neglected with rotating-wave approximations by
choosing the transformations for the density matrix elements
as ρ̃21 = ρ21e

iωG1 t , ρ̃32 = ρ32e
iωG2 t , ρ̃43 = ρ43e

iωct , ρ̃31 =
ρ31e

i(ωG1 +ωG2 )t , ρ̃42 = ρ42e
i(ωc+ωG2 )t , ρ̃41 = ρ41e

i(ωc+ωG1 +ωG2 )t ,
and ρ̃ii = ρii .

APPENDIX B: DENSITY MATRIX EQUATIONS
FOR Y-TYPE SYSTEM

The equations of evolution of density matrix by using the
Markovian master equation for Y-type systems are as follows:

˙̃ρ11 = γ12ρ̃22 − i(gρ̃12 − g∗ρ̃21),

˙̃ρ22 = −γ12ρ̃22 + γ23ρ̃33 + γ24ρ̃44 + i(gρ̃12 − g∗ρ̃21),

− i(gρ̃23 − g∗ρ̃32) − i(Gρ̃24 − G∗ρ̃42),

˙̃ρ33 = −γ23ρ̃33 + i(gρ̃23 − g∗ρ̃32),

˙̃ρ44 = −γ24ρ̃44 − i(Gρ̃24 − G∗ρ̃42),

˙̃ρ21 = (i1 − �21)ρ̃21 + ig(1 − 2ρ̃22 − ρ̃33 − ρ̃44),

+ ig∗ρ̃31 + iG∗ρ̃41,

˙̃ρ32 = (i2 − �32)ρ̃32 + ig(ρ̃22 − ρ̃33) − ig∗ρ̃31 + iGρ̃34,

˙̃ρ42 = (i − �42)ρ̃42 + iG(ρ̃22 − ρ̃44) − ig∗ρ̃43 − ig∗ρ̃41,

˙̃ρ31 = [i(1 + 2) − �31]ρ̃31 − igρ̃32 + igρ̃21,

˙̃ρ43 = [i( − 2) − �43]ρ̃43 + iGρ̃23 − ig∗ρ̃42,

˙̃ρ41 = [i(1 + ) − �41]ρ̃41 + iGρ̃21 − igρ̃42. (B1)

Here we have used
∑4

i=1 ρ̃ii = 1. The detunings of the fields
from respective transitions are given by 1 = ωG1 − ω12,
2 = ωG2 − ω23, and  = ωc − ω24. Further, the transfor-
mations used to remove the the rapidly oscillating terms
in Eqs. (B1) are ρ̃21 = ρ21e

iωG1 t , ρ̃32 = ρ32e
iωG2 t , ρ̃42 =

ρ42e
iωct , ρ̃31 = ρ31e

i(ωG1 +ωG2 )t , ρ̃41 = ρ41e
i(ωG1 +ωc)t , ρ̃43 =

ρ43e
i(ωc−ωG2 )t , and ρ̃ii = ρii .
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