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Controllable hybrid shape of correlation and squeezing
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Two- and three-mode correlation and squeezing of spontaneous parametric four-wave mixing (SPFWM)
and fourth-order fluorescence (FL) composite signals are investigated theoretically and experimentally in both
homonuclear (two-level) and heteronuclearlike (V-type level) molecular systems of Pr3+:YSO. By selecting
different time positions, changing the power, and changing the frequency detuning of the laser field, the
competition between the composite signals is demonstrated. It is found that as the laser parameters change,
the signal evolves from a nonlinear χ (4) process resulting in a FL signal to a SPFWM signal (χ (3) process). In
addition, the competition effect between the signals determines the evolution of the shape of the correlation from
a pure sharp to a two-stage (mixed) shape and finally to a pure broad peak amplitude. Furthermore, the signal
evolution determines the magnitude of squeezing, which can control the noise level. Such progress may find
potential applications in optical hybrid communication and information processing.
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I. INTRODUCTION

The peculiarity of quantum correlations was shown by
Einstein, Podolsky, and Rosen in their pioneering work in
1935 [1], which was later found to be important in quantum
information processing [2]. The first experiment on the
correlation between the intensity fluctuations recorded by two
different detectors using a thermal light source was conducted
by Hanbury-Brown and Twiss [3]. The late 1980s theoretical
foundations [4,5] and recent works [6,7] thoroughly analyzed
the impact of spectral properties of fields such as conservation
of the commutation relation, generation of free fields, and
impact on detected quantum correlations. The experimental
manipulation of correlated photon pairs is of great interest for
research in the emerging field of quantum information pro-
cessing and long distance communication [8]. The correlated
biphotons produced from the spontaneous parametric four-
wave mixing (SPFWM) in Pr3+ : Y2SiO5 crystal demonstrates
an “atomlike” property [9,10] with long coherence times
(0.1–1 s) and narrow spectral width (∼MHz) as compared
to the traditional spontaneous parametric downconversion
process (∼THz). Thus the generation and control of Stokes
(S) and anti-Stokes (aS) photon pairs using the SPFWM
process has been achieved [11]. Moreover, the competition
between SPFWM and fourth-order fluorescence (FL) [12]
interference between two dressed multiwave mixing processes
[13] and an electromagnetically induced lattice state [14] has
been studied. Recently, entanglement between classical and
nonclassical photons was identified as a useful resource for
optical quantum information processing [15–17]. A hybrid
entanglement (entanglement between two different types of
states) has been demonstrated using the quantum mechanical
single-photon state and the classical coherent state for efficient
quantum information processing using the hybrid state as a
new type of qubit [18].
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In this paper, we study two-mode and three-mode
intensity-noise correlation and intensity-difference squeezing
of SPFWM and fourth-order FL composite signals. Manipula-
tion of the broad and sharp peak amplitude of correlation and
the magnitude of squeezing induced by dressed competition
between the composite signals are investigated. A theoretical
model is developed to explain the phenomena in homonuclear
(two-level) and heteronuclearlike (V-type) three-level atomic
systems. We showed that the shape of correlation and the
magnitude of squeezing are determined by the dressed compe-
tition between the composite signals. The details are presented
in the subsequent sections as follows: In Sec. II we show the
experimental setup, in Sec. III, development of the theoretical
model; in Sec. IV, experimental results and discussion; and
finally in Sec. V we conclude the paper.

II. EXPERIMENTAL SETUP

A sample of 3-mm rare-earth-doped (0.05%Pr3+)Y2SiO5

(Pr:YSO) crystal is used in this experiment. In YSO crystal,
dipole-dipole interaction enables the coupling between Pr3+
ions to be localized at different cation vacancies [19], which
are labeled as δ0 and γ0 with and without an asterisk (*) for sites
I and II, respectively, as shown in Fig. 1(a). The excited (triplet
3H4) and ground (singlet 1D2) states are split into nine and five
Stark components, respectively, under the action of the crystal
field of YSO. Since the two ion sites act as a heteronuclearlike
molecule, we can construct two-level and V-type three-level
atomic systems as shown in Fig. 1(a). Figure 1(b) shows the
schematic diagram of the experimental setup. Two dye lasers
(narrow scan with a 0.04-cm−1 linewidth) pumped by an injec-
tion locked single-mode Nd:YAG laser (Continuum Powerlite
DLS 9010, 10-Hz repetition rate, 5-ns pulse width) are used
to generate the pumping fields E1(ω1,�1) and E2(ω2,�2)
with frequency detuning �i = �mn−ωi , where �mn is the
corresponding atomic transition frequency between levels |m〉
and |n〉. ωi(i = 1,2) is the laser frequency. The pumping
fields E1(�1,ω1) and E2(�2,ω2) satisfy the phase-matching
condition k1 + k2 = kSi + kaSi , where i = 1,2 and k are the
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FIG. 1. (a) Two-level atomic system [δ0(|0〉) ↔ γ0(|1〉)] and
three-level (V-type) atomic system (|0〉(δ0) ↔ |1〉(γ0) and [|0〉(δ0) ↔
|2〉(γ ∗

0 )] in Pr3+:YSO crystal and laser coupling configuration (b)
experimental setup, where �1,�2 are frequency detunings of E1

and E2 fields, respectively (�1 = ω01–ω1,�2 = ω02–ω2); PMT:
photomultiplier tube; L: lens; PBS: polarizing beam splitter; ES:
Stokes signal; EaS: anti-Stokes signal; FL: fluorescence signal; δ:
ground-state energy levels; γ : excited-state energy levels (δ0–γ0 =
602 nm,δ0–γ ∗

0 = 609.24 nm).

wave vectors of the pumping fields and the generated photon
pairs. E1 and E2 are coupled to the transition δ0(|0〉) ↔ γ0(|1〉)
and δ0(|0〉) ↔ γ ∗

0 (|2〉), respectively. The laser beams are in the

same plane, x-o-y, as shown in Fig. 1(b). Arrangements of
three photomultiplier tubes (PMT1-3) are used to detect the
generated ES,EaS, and FL composite signals [Fig. 1(b)]. The
spectral signals are obtained by scanning laser frequency, while
time domain signals are obtained by fixing laser frequency.

III. THEORETICAL MODEL

A. SPFWM and fourth-order FL in two-level and V-type
three-level systems

Density-matrix elements of Stokes and anti-Stokes are
derived using the Liouville equation ∂ρ̂(t)

∂t
= 1

i�
[Ĥ ,ρ̂(t)] − 
ρ̂,

where Ĥ = Ĥ0 + Ĥ1(t); Ĥ0 is the Hamiltonian of the free
atom; and H1 = −E

⇀

μ, where
⇀

μ is the transition dipole
moment. H is the Hamiltonian; 
 is the population decay rate.
By adopting the perturbation theory to obtain the Stokes and
anti-Stokes signals under the weak-field approximation (see
the Appendix) and the strong pump field as a dressing field for

the two-level system via ρ
(0)
00

E1−→ ρ
(1)
10

(EaS2 )∗−−−→ ρ
(2)
00

E2−→ ρ
(3)
10(S2)

and ρ
(0)
00

E2−→ ρ
(1)
10

(ES2 )∗−−−→ ρ
(2)
00

E1−→ ρ
(3)
10(aS2) perturbation chains,

and considering the dressing terms, one can write

ρ
(3)
S2

= −iG∗
aS2

G1G2[

10 + i�1 + |G1|2


00
+ |G2|2


00+i(�1−�2)

]
[
00 + i(�1 − �2)]

1[

10 + i�1 + |G1|2


00
+ |G2|2


00+i(�1−�2)

] , (1)

ρ
(3)
aS2

= −iG∗
S2

G1G2[

10 + i�2 + |G1|2


00+i(�2−�1) + |G2|2

00

]2
[
00 + i(�2 − �1)]

, (2)

where Gi = −μijEi/� is the Rabi frequency, μij is the electric dipole moment between levels |i〉 and |j 〉, and 
ij is the transverse
decay rate. The FL signal is generated accompanying the SPFWM process and its intensity in the two-level system is proportional
to the square of the diagonal elements of the density matrix. When E1 and E2 are open simultaneously, the fourth-order FL ρ

(4)
FL ,

which can be generated via the pathway ρ
(0)
00

E2−→ ρ
(1)
10

−E2−−→ ρ
(2)
00

E1−→ ρ
(3)
10

−E1−−→ ρ
(4)
00 , is given as

ρ
(4)
FL = |G2|2

(d ′
1 + |G1|2/d01 + |G2|2/
00)(
00 + |G1|2/d1 + |G2|2/d ′

1)

|G1|2
(d1 + |G1|2/
00 + |G2|2/d ′

01)(
11 + |G1|2/d1)
, (3)

where d ′
1 = 
10 + i
2, d01 = 
00 + i(
2 − 
1), d1 = 
10 + i
1, and d ′

01 = 
00 + i(
1 − 
2). Similarly, with the dressing
perturbation theory, for a V-type three-level system with two strong pumping fields E1 and E2, taking the self-dressing effect
of E1 and the external dressing effect of E2 into account, the third-order nonlinear density-matrix elements of ES1 and EaS1

obtained via the perturbation chain ρ
(0)
00

E2−→ ρ
(1)
20

−E2−−→ ρ
(2)
00

E1−→ ρ
(3)
10(S1) and ρ

(0)
00

E1−→ ρ
(1)
10

−E1−−→ ρ
(2)
00

E2−→ ρ
(3)
20(aS1) are given by

ρ
(3)
S1

= −iG2
2G1(

d2 + |G2|2

00

+ |G1|2
d21

)

00

(
d1 + |G2|2

d12
+ |G1|2


00

) , (4)

ρ
(3)
aS1

= −iG2G
2
1(

d1 + |G1|2

00

+ |G2|2
d12

)

00

(
d2 + |G1|2

d21
+ |G2|2


00

) , (5)

where d2 = 
20 + i�2, d21 = 
21 + i(�2 − �1), d1 = 
10 + i�1, and d12 = 
12 + i(�1 − �2). The fluorescence signals FL1
from |1〉 to |0〉 and FL2 from |2〉 to |0〉 are generated simultaneously. The intensity of the total fluorescence signals is the sum

of two signals described by the fourth-order coherence process via the pathways ρ
(0)
00

E2−→ ρ
(1)
20

−E2−−→ ρ
(2)
00

E1−→ ρ
(3)
10

−E1−−→ ρ
(4)
11 and

ρ
(0)
00

E1−→ ρ
(1)
10

−E1−−→ ρ
(2)
00

E2−→ ρ
(3)
20

−E2−−→ ρ
(4)
22 , respectively.

ρ
(4)
FL1

= |G2|2
(d2 + |G2|2/
00 + |G1|2/d21)(
11 + |G1|2/d1)

× |G1|2
(d1 + |G1|2/
00 + |G2|2/d12)(
00 + |G1|2/d1 + |G2|2/d2)

, (6)

ρ
(4)
FL2

= −|G1|2
(d1 + |G1|2/
00 + |G2|2/d12)(
22 + |G2|2/d2)

× −|G2|2
(d2 + |G2|2/
00 + |G1|2/d21)(
00 + |G1|2/d1 + |G2|2/d2)

, (7)
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where d1 = 
10 + i
1, d2 = 
20 + i
2, d12 = 
12 + i(
1 − 
2), and d21 = 
21 + i(
2 − 
1). Equations (1)–(7) show that FL
and SPFWM signals can be controlled by dressing fields. The intensity of temporal multi peaks [Eqs. (3), (6), and (7)] FL signals
are determined by

I (t) = a0 exp
(−G2

at
2) + ρ exp(−
FLt) + a1 exp

[−(t − t0)2/2t2
p

] + a2 exp[−
(t − t0)], (8)

where a0 exp(−G2
at

2) is the FL signal intensity at the pho-
toexcitation stage and G2

a is the Rabi frequency of the fields;
ρ exp(−
FLt) is the FL signal intensity at zero delay stage,
and 
FL is the decoherence rate; a1 exp[−(t − t0)2/2t2

p] is the
FL signal intensity at the adiabatic population transition stage;
and a2 exp[−
(t − t0)] is the FL signal at the spontaneous
radiation stage. ρ in Eq. (8) can be ρ

(4)
FL in Eq. (3) or ρ

(4)
FL1

or

ρ
(4)
FL2

in Eqs. (6) and (7).

B. Two-mode and three-mode correlation and squeezing

The coupling Hamiltonian for the SPFWM process is H =
(â†

Sâ
†
aS + âSâaS)g/v, where â

†
S(âS) and â

†
aS(âaS) are creation

and annihilation operators acting on Stokes and anti-Stokes
signals, respectively, while v is the group velocity of the
field in the nonlinear medium. The nonlinear gain g =
|(−iωSi,aSiχ

(3)
Si,aSiE1E2/2c|, where (i = 1,2), depends on the

nonlinear susceptibility χ
(3)
Si,aSi and the pumping field am-

plitude, where χ
(3)
Si,aSi = (NμS,aSρ

(3)
Si,aSi)/(ε0E1E2ESi,aSi). The

output photon number at each channel is given by Nj = 〈â+
j âj 〉

and the corresponding intensity Ij (tj ) = Nj exp(−
j tj ) (j =
S1,2,aS1,2). Thus the respective intensity of the output Stokes
and anti-Stokes signals proportional to the photon number is
given by [12]

〈â+
S âS〉 = 1

2

[
cos

(
2t

√
AB sin

ϕ1 + ϕ2

2

)

+ cosh

(
2t

√
AB cos

ϕ1 + ϕ2

2

)]
A

B
, (9)

〈â+
aSâaS〉 = 1

2

[
cos

(
2t

√
AB sin

ϕ1 + ϕ2

2

)

+ cosh

(
2t

√
AB cos

ϕ1 + ϕ2

2

)]
B

A
. (10)

We have substituted ρ
(3)
S1

= Aeiϕ1 , ρ
(3)
aS1

= Beiϕ2 from
Eqs. (4) and (5) where A, B and ϕ1,ϕ2 are the moduli and
phase angles of ρ

(3)
S1

and ρ
(3)
aS1

, respectively. When Stokes and
anti-Stokes signals propagate through the Pr:YSO crystal, a
phenomenon of Kerr nonlinear phase shift results in cross-
phase modulation (XPM). Based on the above Hamiltonian,
the propagation dynamics is given as

daS/dt = γSaS + χ
(3)
S a+

aS exp(iϕS), (11)

daaS/dt = γaSaaS + χ
(3)
aS a+

S exp(iϕaS), (12)

where ϕ is the induced nonlinear phase (ϕi) through XPM
given by ϕi = 2(kin

i
2|E1|2e−r2

z)/n1, n1 is the linear refractive
index, and ni

2 = Reχ (3)
i /ε0cn1 is the cross-Kerr nonlinear

coefficient.

The second-order correlation function G(2)(τ ) between
intensity fluctuations of two optical beams i, j , i 
= j , as a
function of time delay τ is given by [20]

G
(2)
ij (τ ) = 〈δIi(t)δIj (t + τ )〉√

〈[δIi(t)]2〉〈[δIj (t + τ )]2〉
. (13)

The correlation function expressed using Eq. (13) may have
pure sharp, pure broad, or a combination of sharp and broad
peaks (two-stage shape). In two-mode correlation the shape
of the correlation function for pure SPFWM (S-aS channel) is
determined by [21]

AS-aS = R1|A1|2{exp(−2
−
S-aS|τ |) + exp(−2
−

S-aS|τ |)
− 2 cos(�e|τ |) exp[−(
+

S-aS + 
−
S-aS)|τ |]}, (14)

and for the composite (FL+SPFWM) signal as

Ac = R1|A1|2{exp[−2(
+
S-aS + 
+

FL)|τ |]
+ exp[−2(
−

S-aS + 
−
FL)|τ |]

− 2 cos(�e|τ |) exp[−(
+
S-aS + 
+

FL + 
−
S-aS + 
−

FL)|τ |]}.
(15)

The shape is primarily affected by the decay rate 
. The
degree of two-mode intensity-difference squeezing of signals
i and j is given by [22]

Sq(2) = log10
〈δ2(Îi − Îj )〉
〈δ2(Îi + Îj )〉 , (16)

where 〈δ2(Îi − Îj )〉 is the mean square deviation of the
intensity difference and 〈δ2(Îi + Îj )〉 is the mean square
deviation of the intensity sum. For a medium with cross-Kerr
effect, considering the relative nonlinear phase difference �ϕ

between output Stokes and anti-Stokes signals, the intensity-
difference squeezing function [Eq. (16)] can be calculated as

G
(2)
S-aS(τ ) = 〈δÎS(tS)δÎaS(taS)〉√

〈δÎS(tS)2〉〈δÎaS(taS)2〉
cos(�ϕ), (17)

Sq(2) = log10

[
〈δ2(ÎS − ÎaS)〉
〈δ2(ÎS + ÎaS)〉

]
cos(�ϕ). (18)

The output field is not a free field as it is generated by a
nonlinear crystal (source). Hence the source field does not
hold a commutation relation because the commutation is an
incorrect physical description of a quantum mechanical filtered
field [4]. The field transmitted by the filter used in the detector
uses a timely order frequency filtered autocorrelation function
[5], which contains no commutation terms [4]. However, in
quantum optics the normal time-ordered product appears,
which can describe the commutation relation.
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FIG. 2. In two-level atomic system (a1)–(a3) show the evolution
of the intensity of the composite (FL+SPFWM) signal in time
domain as power increases. (b1),(b2) show the spectral domain
signals of (a2),(a3), respectively. (c1)–(c3) show the intensity of a
pure SPFWM signal in time domain as power increases. (d1),(d2)
show the spectral domain signals of (c2),(c3), respectively. The power
of E1(P1) changes from medium (8 mW) to high (9 mW) and to very
high power (10 mW) while the power of E2(P2) is fixed.

The generalized extension of Eq. (13) for the three-mode
correlation function, G(3)(τi,τj ,τk), is given as

G(3)(τi,τj ,τk) = 〈[δÎi(τi)][δÎj (τj )][δÎk(τk)]〉√
〈[δÎi(τi)]

2〉〈[δÎj (τj )]
2〉〈[δÎk(τk)]

2〉
, (19)

where i,j,k = 1,2,3; i 
= j 
= k). The shape of the three-mode
correlation function is determined as

A = B

∫
dω2

∣∣∣∣e−iω2τ3
κ1κ2sinh2(�L) cosh(�t)

�2

∣∣∣∣
2

−C

∫
dω2

[
e−iω2(τ2−τ1) κ1 sinh(�L) cosh(�L)

�

]
, (20)

where B and C are parameters that affect the magnitude of
correlation. � is the Rabi frequency, L is the length of the
medium, and κ is the nonlinear coefficient. The function in
Eq. (20) is related to τ and as a result determines the shape of
the three-mode correlation function G(3)(τ1,τ2,τ3). In the three-
mode case, the corresponding intensity-difference squeezing
defined in Eq. (16) can be given by [23]

Sq(3) = log10
〈δ2(Îi − Îj − Îk)〉
〈δ2(Îi + Îj + Îk)〉 , (21)

where 〈δ2(Îi + Îj + Îk)〉= 〈(Îi + Îj + Îk)
2〉 − 〈Îi + Îj + Îk〉2

and δ2(Îi − Îj − Îk) = 〈(Îi − Îj − Îk)
2〉 − 〈Îi − Îj − Îk〉2.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The time domain intensity evolution of a SPFWM+FL
composite signal and a pure SPFWM signal are shown in
Figs. 2(a1)–2(a3) and 2(c1)–2(c3), respectively. The power
of P1 changed from medium (8 mW) to high (9 mW) and
then to very high power (10 mW) in Figs. 2(a1)–2(a3) and
2(c1)–2(c3). Figures 2(b1), 2(b2), 2(d1), and 2(d2) show

the corresponding spectral signal intensities of Figs. 2(a2),
2(a3), 2(c2), and 2(c3), respectively. Figures 2(a1)–2(a3) show
Autler-Townes (AT) splitting in a fourth-order FL composite
signal due to the dressing effect of E1 with increasing splitting
distance from left to right peaks with increased power as
indicated by the oblique dashed line across Figs. 2(a1)–2(a3).
With such time position differences at larger powers, we can
neglect interference effects. Figures 2(b1) and 2(b2) show the
suppression dip of FL at �1 = �2 = 0 and the emergence of a
small emission peak of impure SPFWM (Stokes), respectively.
The emission peak [Fig. 2(b2)] of SPFWM evolves out of the
suppression dip of the FL signal, which shows the existence
of competition between FL and SPFWM.

This phenomenon is consistent with the self-dressing effect
of field E1(G1|2/d1) as predicted in Eq. (3). To explain further,
the total intensity of the composite signals (SPFWM+FL)
can be written as ρ = ρ

(4)
FL + ρ

(3)
SPFWM, where ρ

(3)
SPFWM = ρ

(3)
S2

or ρ
(3)
SPFWM = ρ

(3)
aS2

. Due to a dressing-induced completion
effect the delay time between the composite signals increases
with power as shown in Figs. 2(a1)–2(a3). This is explained
as adiabatic residual particle transfer from |G1+〉 to |G1−〉
through phonon-assisted nonradiative transition which is
mainly determined by acoustic phonons at low temperature
[12]. In the left peak of the composite signal (along t1 to t2)
the intensity term of SPFWM (ρ(3)

SPFWM) increases linearly due
to the gain effect of the generating field E1 as predicted by
Eqs. (1) and (2). The same effect is observed in pure SPFWM
in which the signal intensity is highly enhanced at very high
power as shown in Figs. 2(c1)–2(c3). The smooth curve (less
noise) in the spectral domain in Fig. 2(d2) agrees with the
enhancement of SPFWM at increased power. However, in the
composite signal, the term ρ

(4)
FL first increases with |G1|2 and

gradually decreases due to the dressing effects of |G1|2/
00

and |G1|2/d1 in Eq. (3) as we can observe in Figs. 2(a1)–2(a3).
The right peaks at time positions t4 and t5 correspond to FL
signals. The intensity of the measured multipeak FL signal
is expressed using Eq. (8). These two FL peaks at t4 and
t5 correspond to the dressed states |G1+〉 and |G1−〉, which
indicates that the FL signal is more sensitive for dressing
than SPFWM [14] as shown in Fig. 2(a3). Consequently, at
very high power, FL intensity is suppressed and SPFWM
intensity is enhanced as shown in Fig. 2(a3). To further
investigate, we set |1〉 as the frequency reference point and the
Hamiltonian can be written as H = −�[ 0 G1

G∗
1 (−1)i�1

]. From the
equation H |G1±〉 = λ±|G1±〉, we can obtain the eigenvalues

λ± = [(−1)i�1 ±
√

�2
1 + 4|G1|2]/2. The splitting distance

�± = λ+ − λ− between |G1+〉 and |G1−〉 is given as �± =
λ+ − λ− =

√
�2

1 + 4|G1|2, where G1 = μ(2P1/εocA)1/2/�.
Thus, with P1 increasing, the splitting distance increases due
to the term (|G1|2) as shown in Fig. 2(a).

A. Two-mode correlation and squeezing

Figure 3 shows correlation and squeezing of SPFWM and
FL signals for selected time positions in the time delay curve
in Fig. 2(a) in a two-level system. First intensity fluctuations
δIS-aS and δIFL(t + τ ) are measured at each selected time
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FIG. 3. (a1)–(a5) show two-mode intensity-noise correlation of composite signal (FL+SPFWM) at different selected time positions for a
two-level system as shown in Fig. 2(a). (b1)–(b5) show the corresponding intensity-difference squeezing. (c) shows the correlation amplitude
dependence of (a1)–(a5). The broad, sharp, and total amplitude dependences are shown by the circle connector curve (middle curve in red),
square connector curve (lower curve in black), and star connector curve (upper curve in blue), respectively. (d) shows total squeezing dependence
of (b1)–(b5).

position and plotted as a function of time delay (τ ) using
(i = S-aS,j = FL) from Eq. (13).

Correlation curves in Figs. 3(a1)–3(a5) and the correspond-
ing squeezing curves in Figs. 3(b1)–3(b5) are for different
time positions t1–t5 labeled in Fig. 2(a). The sharp peak, broad
peak, and total amplitude dependence of correlation values at
τ = 0 for Figs. 3(a1)–3(a5) are shown in Fig. 3(a6) as square,
circle, and star connector curves, respectively. The role of
such lines is consistent for the remaining figures described
subsequently. The corresponding magnitude of squeezing is
shown in the trend line shown in Fig. 3(b6). We observe that the
magnitude of correlation follows the intensity of the composite
signal and the competition between SPFWM and FL signals
as shown in Fig. 2(a). The black and the red lines represent
the intensity-difference signal δ2(Îi − Îj ) and the noise signal
δ2(Îi + Îj ), respectively. The competition between SPFWM
and FL composite signals determines the two-stage shape of
the correlation function [Figs. 3(a1)–3(a5)] given by Eq. (15)
which is determined by the decay rate 
 of the signals involved.
Due to the interaction of coupling fields, the homogeneous
linewidth broadening of the measured fluorescence signal
is given as 
pop + 
ion-spin + 
ion-ion + 
phonon [19], where

pop = (2πT1)−1

1 is the population decay time which depends
on the location of the energy level in phase space, 
ion-spin is the
ion-spin coupling effect of the individual ion, 
ion-ion is due to
the ion-ion interaction among the rare-earth ions, and 
phonon

is decay related to the thermal effect. The last three terms are
components of (2πT ∗

2 )−1
1 [the dephasing or coherence time

T ∗
2 )]. The linewidth of the coherence process of a two-level

system between two energy levels |i〉 and |j 〉 can be described
as 
ij = (
i + 
j )/2,(i,j = 0,1, · · · ). We can express the
population decay time (T1) and the coherence time (T ∗

2 ) by
setting the relation (
m)n = (2πT1)−1

mn + (2πT ∗
2 )−1

mn, where m

is the level state and n is the order of perturbation chain in the
density matrix. The intensity of the measured fluorescence
signal in two levels is IFL(t) = ρ

(4)
FL exp(−
FLt), where


FL = 
11 + 
10 in which 
10 = (2πT1)−1
1 is the transverse

dephasing rate of ground state |0〉. Considering the controlling
terms we can write (2πT1)−1

1 = 6π (υ + �υ)3β2η3/εhc3,

(2πT1)−1
0 = 0, (2πT ∗

2 )−1
1 = P1(t) + γ0, (2πT ∗

2 )−1
0 = P0(t) +

γ0, where γ0 is the total effect of 
phonon and 
ion-spin, and

P0(t) = exp

⎡
⎢⎣−cH

∑
n=6,8,10,

12,13,14

(
AnH

/
Rn

H

)
⎤
⎥⎦, (22)

P1(t) = exp

⎡
⎣−cD

∑
n=5,6,7

(
AnD

/
Rn

D

)⎤⎦. (23)

The term (υ + �υ) represents the dressed state location of
the energy level. cH and cD represent the population densities
at the triplet energy level 3H4 and singlet energy level 1D2,
respectively, controlled by the pump power.

∑
(AnH/Rn

H ) and∑
(AnD/Rn

D) are the induced dipole-dipole interactions of
states H -H and D-D, respectively. Similarly for the SPFWM
signals (ES and EaS) we can describe them as IS2 (t) =
I0(S2) exp(−
S2 t), IaS2 (t) = I0(aS2) exp(−
aS2 t), where I0(S2) ∝
|ρ(3)

10(S2)|2 and I0(aS2) ∝ |ρ(3)
10(aS2)|2, and 
±

S = 
±
aS = 2
10 + 
00.

For the total composite signal in a two-level system, 
± =

1 + 
2 = 4
10 + 3
00. The shape of the correlation function
for the SPFWM and FL composite signals is given by

Ac = R1|A1|2{exp[−2(
+
1 +
+

2 + ζ )|τ |]
+ exp[−2(
−

1 +
−
2 + ζ )(|τ |)]}

− 2cos(�e|τ |)exp[−(
+
1 +
+

2 +
−
1 +
−

2 + ζ )|τ |],
where 
1 = 
S-aS and 
2 = 
FL. The parameter ζ represents
the bandwidth of the source laser and is constant. Thus
the broadness and sharpness of the correlation peaks are
determined by decay rate 
. Unlike FL signals, SPFWM
signals are generated via coherent processes whose linewidths
are determined by atomic coherence time and are thus much
narrower. Thus SPFWM decays faster (larger 
) than the
FL signal (smaller 
) corresponding to broad to sharp peak
transition with decreasing power as shown in Fig. 3(a).
With similar argument, the magnitude of intensity-difference
squeezing in Figs. 3(b1)–3(b5), which is described as the
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FIG. 4. (a1)–(a3) show two-mode intensity-noise correlation and
intensity-difference squeezing of Stokes and anti-Stokes SPFWM
from PMT1 and PMT2; (c1)–(c3) Stokes–anti-Stokes and fourth-
order FL from PMT1 and PMT3 in two-level system by changing
power of E1 from high (left) to low (right) from 5 to 0 mW while P2

is kept constant. (b1)–(b3) and (d1)–(d3) show the corresponding two-
mode squeezing. (e),(g) show the trend of corresponding broad peak
(red dotted line curve), sharp peak (black dash line curve), and total
correlation amplitude (blue curve). (f),(h) show the corresponding
magnitude of squeezing.

gap between the black and red curves as shown in Fig. 3(d),
changes comparably with total correlation values in Fig. 3(c).

Figure 4 shows two-mode correlation and squeezing of
Stokes–anti-Stokes and FL composite signals when power
decreases from high (left) to low (right). The SPFWM (ES

and EaS) are generated by opening both E1(�1,ω1) and
E2(�2,ω2) fields satisfying the phase-matching condition
k1 + k2 = kS1 + kaS1. The generated twin photons propagate
in the opposite directions and are reflected by the PBS and
are detected by PMT1 and PMT2 as shown in Fig. 1(b).
The FL signal generated accompanying SPFWM is detected
by PMT3 [Fig. 1(b)]. Two-mode correlation and squeezing
of S+aS and S-aS+FL composite signals are shown in
Figs. 4(a)–4(d), respectively. The correlation function of the
Stokes and anti-Stokes pair is calculated by time-dependent
intensity fluctuation described by Eq. (13). The intensity
fluctuations dÎS(tS)dÎaS(taS) are recoded and plotted as shown
in Fig. 4(a). Figures 4(a1)–4(a3) shows that the total correlation
peak values of pure SPFWM decrease as power decreases.
A maximum correlation value of 1.3 is obtained as given
in Fig. 4(a1). The corresponding measured squeezing values
also decrease as clearly shown in the total squeezing trend
in Fig. 4(f). Similarly, the trend of both total correlation and
squeezing values as power decreases is shown in Figs. 4(g)
and 4(h), respectively. A squeezing value of −1.75 dB was
measured for SPFWM+FL composite signals as shown in
Fig. 4(d3). The result is explained by the total phase difference
between the composite signals induced by SPM due to
the dressing effect of field E1[|G1|2/(
00 + i(�2 − �1) and

|G1|2/
00] in Eqs. (1) and (2) and initial phase induced by
XPM. From the evolution of SPFWM and FL signals, as power
changes one can determine the total phase characteristics
�ϕT = �ϕI + �ϕN of the composite signal by considering
the phase of output Stokes and anti-Stokes �ϕN , and initial
phase �ϕI = ϕFL − ϕaS due to the signals’ source difference.
For pure SPFWM in Figs. 4(a) and 4(b), the total phase
is determined by �ϕN between Stokes and anti-Stokes sig-
nals �ϕT = �ϕN = 2(kSn

S
2 − kaSn

aS
2 )|E1|2e−r2

z/n1 induced
by SPM. With the nonlinear phase change, the intensity-noise
correlation function G

(2)
S-aS(τ ) between Stokes and anti-Stokes

signals can be calculated by Eq. (17). The corresponding
intensity-difference squeezing associated with relative non-
linear phase is obtained using Eq. (18). When the power of P1

is set to change from 5 to 1 mW, the corresponding nonlinear
phase change due to SPM is from �ϕ = 0 to �ϕ = π/4.
However, for the composite signal in Figs. 4(c) and 4(d) the
total phase �ϕT is affected by both nonlinear phase change
�ϕN and the initial phase change �ϕI . The magnitude of
total phase change �ϕT = �ϕI + �ϕN is determined by the
nature of the composite signals involved. For the composite
signal, the phase difference is larger due to the incoherent
nature of the FL signal as compared to the coherent S-aS
signals. When the power of P1 changes from 5 to 1 mW, the
corresponding total phase �ϕT = �ϕI + �ϕN changes from
�ϕ = 0 to �ϕ = π . Specifically, at �ϕT = π , we observe
anticorrelation and antisqueezing in Figs. 4(c3) and 4(d3),
respectively. Figures 4(b1), 4(b3), 4(d1), and 4(d3) show that
the magnitude of intensity-difference squeezing decreases with
power change in the same way as correlation decreases.

Now let us focus on the shape of correlation curves in
Fig. 4. For a pure S+aS signal, we observe from Fig. 2(c) that
the signal intensity increases with power leading to decrease
in decay rate 
± = 2
10 + 
00. The shape of the correlation
function for pure SPFWM as a function of decay rate 
 is
given by

AS2-aS2 = R1|A1|2{exp[−(2
− + ζ )|τ |]
+ exp[−(2
− + ζ )|τ |].
− 2 cos(�e|τ |) exp[−(
+ + 
− + ζ )|τ |]},

where 
± = 
S2-aS2 . Thus as power decreases the shape of
the correlation function changes from a broad to a sharp
peak as shown in Fig. 4(a). Similarly, the shape of the
correlation function for composite (SPFWM+FL) signals
shown in Fig. 4(c) is given by

Ac = R1|A1|2{exp[−2(
+
1 +
+

2 + ζ )|τ |]
+ exp[−2(
−

1 +
−
2 + ζ )|τ |].

− 2cos(�e|τ |) exp[−(
+
1 +
+

2 +
−
1 +
−

2 + ζ )|τ |]},
where 
±

1 = 
±
S2-aS2

and 
2 = 
FL. The total decay rate
is 
±

1 + 
±
2 = 
S2-aS2 + 
FL where 
S2-aS2 = 2
10 + 
00,


FL = 2(
00 + 
10). Therefore, the total decay rate of the
composite signal is 
 = 4
10 + 3
00. That is, the SPFWM
signal has a faster decay rate than the FL signal. As discussed
in Fig. 3, the linewidth of SPFWM is narrower than that of
the FL signal due to its coherence property, which agrees with
the broad to sharp peak transition we observe in Figs. 4(a) and
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FIG. 5. (a1)–(a3) show two-mode intensity-noise correlation and
intensity-difference squeezing of Stokes and anti-Stokes SPFWM
from PMT1 and PMT2; (c1)–(c3) Stokes–anti-Stokes and fourth-
order FL from PMT1 and PMT3 in three-level V-type system by
scanning detuning �1 from –200 to + 200 GHz and setting �2 = 0.
(b1)–(b3) and (d1)–(d3) show the corresponding two-mode squeez-
ing. (e),(g) show the trend of corresponding broad peak (middle circle
connector curve in red), sharp peak (lower square connector curve in
black), and total correlation amplitude (upper star connector curve
in blue) for (a1)–(a3) and (c1)–(c3), respectively. (f),(h) show the
corresponding magnitude of squeezing for (b1)–(b3) and (d1)–(d3),
respectively.

4(c). Thus the broad peak amplitude decreases with power as
seen from Fig. 4(e). Similarly, in the composite SPFWM+FL
signal, since SPFWM dominates at larger power and FL
signal dominates at low power, there is a broad to sharp peak
transition as power decreases as depicted in Fig. 4(g).

Finally, in Fig. 5 we present the dependence of three-
mode intensity-noise correlation and squeezing on frequency
detuning (�1). The intensities of the Stokes, anti-Stokes,
and the fourth-order FL signals are obtained by scanning
�1 from −200 to 200 GHz and keeping �2 = 0. The
intensity-noise traces δÎS(tS) and δÎaS(taS) are measured and
two- and three-mode intensity-noise correlation and intensity-
difference squeezing versus τ are plotted using Eqs. (14)–(18)
as shown in Figs. 5 and 7, respectively. We first investigate the
intensity-noise correlation between Stokes, anti-Stokes, and
FL signals in the V-type three-level system. Figures 5(a1),
5(a3), 5(c1), and 5(c3) show two-mode intensity-noise cor-
relation versus τ at different detunings of �1 between the
S+aS and the SPFWM+FL composite signal, respectively.
The corresponding two-mode intensity-difference squeezing
is shown in Figs. 5(b1), 5(b3), 5(d1), and 5(d3), respectively.

It is found that in both pure SPFWM and the composite
signal, correlation attains a maximum value at resonance
(�1 = 0) and decreases at off resonance (|�1| > 0). This is
explained as dressing-induced modulation of χ

(3)
S-aS of Eqs. (4)

and (5). When �1 is tuned near the resonance (0 GHz),

the higher-order nonlinear process becomes stronger and
increases the nonlinear gain due to nonlinear susceptibility
κ overcoming the dominance of the SPFWM process; hence
the correlation is increased. The gain of Stokes and anti-Stokes
signal expressed in Eqs. (9) and (10) determined by nonlinear
susceptibility χ

(3)
S1,aS1

= (NμS,aSρ
(3)
S1,aS1

)/(ε0E1E2ES1,aS1 ) for
the V-type system is shown in Fig. 1(a) and the intensity is
proportional to photon number [Ii(ti) = Ni exp(−
iti) (i =
S1,aS1)]. G(2)(τ ) depends on the nonlinear susceptibility
χ

(3)
Si,aSi which is expressed in terms of density-matrix elements

in Eqs. (4) and (5). χ
(3)
Si,aSi is determined by the dressing terms

in Eqs. (4) and (5). The intensity of the composite signal is
determined by the dressing terms in Eqs. (6) and (7).

The shape of such correlation function is determined by
Eq. (14). For pure SPFWM the total decay rate can be
written as 
 = 
S1 + 
aS1 = 2(
00 + 
10 + 
20). The value
of decoherence rate Г decreases with decreasing detuning
�1, and attains a minimum value at �1 = 0 due to strong
interaction among ions as a result of the dressing effect
[14]. Thus smaller 
 at resonance corresponds to broad peak
correlation and longer 
 at off resonance corresponds to
sharp peak correlation. Similarly, for the composite signal
the total decay rate is given as 
 = 
S1−aS1 + 
FL1 + 
FL2 ,
where 
S1 = 
aS1 = 
20 + 
00 + 
10. In both pure SPFWM
[Figs. 5(a) and 5(b)] and composite signals [Figs. 5(c) and
5(d)], correlation and squeezing attain a maximum at reso-
nance and off resonance, respectively. This can be explained
as the enhancement and suppression of the signal intensity
due to bright and dark states induced by the dressing effect of
the field E1 [13]. When we compare squeezing at resonance
in Figs. 5(b) and 5(d) we observe that the squeezing for pure
SPFWM (S-aS channel) shown in Fig. 5(b) is larger than that of
the SPFWM and FL composite signals shown in Fig. 5(d). This
is due to the FL signal mixture which has a larger linewidth
and thus more classical noise. That is, in Fig. 5(d) at off
resonances the intensity-noise sum (red curve) rises higher
than at resonance, which is attributed to noise from the FL
signal. The nonclassicality of generated photons depends on
which component of the composite signals is dominant and
can be proved by checking whether the correlation between
the photon pairs violates the inequality or not from the exper-
imental result. Classical lights satisfy the Cauchy-Schwarz
inequality R = g

(2)
S1,S2

(τ )/gS1,S1gS2,S2 � 1 [16], where gS1,S1

and gS2,S2 are autocorrelations and g
(2)
S1,S2

(τ ) is cross-correlation
between signal 1 and signal 2. In the SPFWM+FL composite
signal, a total correlation value of R = 1.4 > 1 is obtained
at resonance, which clearly demonstrates the violation of
the Cauchy-Schwarz inequality as shown in the amplitude
dependence curves in Figs. 5(e) and 5(g). Thus it proves
that the correlation is a nonclassical effect, owing to the
dominance of SPFWM at resonance where the coupled fields
are used to reduce noise. Comparing the two-level system with
the three-level V-type atomic systems, larger correlation and
squeezing are obtained in the two-level atomic system.

B. Three-mode correlation and squeezing

In this section we continue to investigate the shape of
hybrid three-mode correlation and the magnitude of squeezing
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FIG. 6. (a1)–(a3) and (b1)–(b3) show the experimental result
of three-mode correlation G3(τ1,τ2,τ3) versus time delay (τ1,τ2,τ3)
and squeezing for same experiment conditions as in Figs. 4(c1)–
4(c3) and 4(d1)–4(d3) for SPFWM+FL composite signal. (c1)–(c3)
and (d1)–(d3) show the simulated theoretical prediction of three-
mode correlation and squeezing. In (d1)–(d3) the solid and dashed
lines show the intensity-difference and intensity-noise sum signals,
respectively. The trends of squeezing for experimental and theoretical
simulation results are shown in (e),(f), respectively.

through the dressing-induced competition effect. In this case,
all three signals (Stokes, anti-Stokes, and FL) are taken by
opening both pumping fields E1 and E2 simultaneously. Since
the same sample was used, both two and three modes share the
pumping field E1 and the dressing field E2 through nonlinear
gain g = |(−iωS,aSχ

(3)
S,aSE1E2)/2c|and FL signal intensity ρ

(4)
FL .

Thus three-mode correlation and squeezing are related to
nonlinear gain which is in turn determined by the nonlinear
susceptibility χ

(3)
S,aS = (NμS,aSρ

(3)
S,aS)/(ε0E1E2ES,aS) and FL

intensity.
Figures 6(a1)–6(a3) and 6(b1)–6(b3) show the experimen-

tal results of three-mode correlation and squeezing for the
same experimental conditions as in Fig. 4 for the SPFWM+FL
composite signal in a V-type atomic system. In a V-type
system the total intensity of the composite signal is ρ = ρFL +
ρSPFWM where ρFL = ρ

(4)
FL1

+ ρ
(4)
FL2

and ρSPFWM = ρ
(3)
S1

or ρ
(3)
aS1

.
The intensity fluctuations δÎ1(τ1), δÎ2(τ2), and δÎ3(τ3) are
recorded and the triple beam (S + aS + FL) intensity-noise
correlation is plotted using Eq. (19). Similarly, the three-mode
intensity-difference squeezing is plotted using Eq. (21) for
the triple beams. Figures 6(c1)–6(c3) and 6(d1)–6(d3) show
the simulated theoretical predictions of hybrid three-mode
correlation and squeezing, which are comparable with the
experimental results obtained. In Figs. 6(d1)–6(d3) the solid
and dashed lines show the intensity-difference and intensity-
noise sum signals, respectively. The shape of the correlation
curves in Figs. 6(a1)–6(a3) and 6(b1)–6(b3) is governed by
Eq. (20) in a similar way as in Eqs. (14) and (15) for
two-mode correlation. The decay rate 
 of the composite
signal is determined by the combined effect of both the
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FIG. 7. Three-mode intensity-noise correlation G3(τ1,τ2) versus
delay time (τ1,τ2) and intensity-difference squeezing of Stokes,
anti-Stokes, and fourth-order FL in three-level (V-type system) by
scanning detuning �1 from –200 to +200 GHz and setting �2 = 0.
(b1)–(b3) show the corresponding three-mode squeezing. (c) shows
the trend of magnitude of squeezing at resonance and off resonance.

source difference between the signals and the competitive
dominance effect of the SPFWM and FL signals which
dominate at high and low power, respectively. Total decay rate
of the composite signal can be written as 
 = 
S1 + 
aS1 +

FL1 + 
FL2 , where 
S1 = 
aS1 = 
00 + 
10 + 
20, 
FL1 =

20 + 
00 + 
10 + 
11, and 
FL2 = 
10 + 
00 + 
20 + 
22.
The decay rate 
 increases as power decreases which gives
rise to the change in shape of correlation determined by
Eq. (20) to change from broad to sharp as power decreases.
The result agrees with that of two-mode correlation described
in Fig. 4. Figures 6(b4) and 6(d4) show the trend of squeezing
as power decreases for the experimental result and theoretical
predictions, respectively. However, due to the signals’ source
difference the hybrid three-mode correlation and squeezing
fails to show the anticorrelation and antisqueezing obtained in
two-mode correlation shown in Figs. 4(c3) and 6(d3).

In Fig. 7 we further explain the dressing-induced competi-
tion effect between the composite signals which in turn affect
the shape of hybrid three-mode correlation and magnitude of
squeezing due to frequency detuning change. Figures 7(a1)–
7(a3) and 7(b1)–7(b3) show the three-mode counterpart of
correlation and squeezing for the same experiment condition
as in Figs. 5(c1)–5(c3) and 5(d1)–5(d3), respectively. Signals
from PMT1, PMT2, and PMT3 [Fig. 1(b)] are simultaneously
considered in three-mode correlation. The competition effect
is demonstrated in Figs. 7(a1)–7(a3) and 7(b1)–7(b3). Due
to increased dressing effect of field E2(|G2|2/
00, |G2|2/d21,
and |G2|2/d2) at resonance in Eqs. (4)–(7) on both S-aS and
FL channels, the dressing-induced dark state increases and the
decay rate 
 gets smaller than the values at off resonance. Thus
the shape of the hybrid intensity-noise correlation determined
by Eq. (20) gets broader at resonance. The result obtained in
Figs. 7(a) and 7(b) is comparably consistent with the results
obtained in the two-mode case under Fig. 5, where the highest
correlation is obtained at resonance and the largest classical
squeezing (with FL noise) is obtained at off resonances.

V. CONCLUSION

Two-mode and three-mode correlation and intensity-
difference squeezing of composite SPFWM and FL
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signals controlled by changing power and detuning have
been comprehensively analyzed in two-level and V-type
three-level atomic systems based on the SPFWM process
in a Pr3+ : Y2SiO5 crystal. It is found out that the dressing-
induced competition effect between SPFWM and FL signals
determines the two-stage shape of correlation and magnitude
of squeezing. In addition, the results show that correlation
and squeezing change to anticorrelation and antisqueezing,
respectively, when power decreases. The effect is explained
by induced cross-phase modulation due to the dressing field.
A larger magnitude of correlation and squeezing is observed
at high power which varies with power change proportionally.
However, in frequency detuning change, a larger magnitude
of correlation and squeezing is observed at resonance and
off resonance, respectively. The larger magnitude of classical
squeezing observed at off resonance is attributed to rising of
intensity-noise sum level due to the FL mixture. Furthermore,
a total correlation value of R = 1.4 > 1 is measured at
resonance where the SPFWM signal dominates, indicating
a violation of the Cauchy-Schwarz inequality. Correlation
properties of coupled fields can be used to reduce the noise
level. Such progress may find potential application in optical
hybrid communication and information processing.
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APPENDIX: DRESSING PERTURBATION

Here we will derive the steady-state density-matrix ele-
ments for the SPFWM and FL signals using the semiclassical
picture of laser radiation. The steady-state density-matrix
elements for the different setups were derived using Liouville
or von Neumann equations. We have adopted the perturbation
theory to obtain the Stokes and anti-Stokes signals under the
weak-field condition (weak-field approximation). Then, the
dressing terms of the strong pump field are incorporated. That
is, we have adopted the dressing perturbation theory instead
of pure perturbation theory under weak field to obtain the
density-matrix elements [see Eqs. (A1)–(A7)] for the SPFWM
fields (ES and EaS)and FL signals based on the strong-field
coupled equations.

The terms arising from collisional and vibrational interac-
tions among ions or atoms cannot be conveniently included
in a Hamiltonian description but, still, such interactions can
lead to a change in the state of the system. Thus the last term
in Eq. (A1) is added. The adiabatic residual particle transfer
between states |G1+〉 and |G1–〉 (as described in Sec. IV) is
attributed to phonon-assisted transition which is considered in
the phenomenological term of our von Neumann equation.

Using the Liouville dynamics equation of motion in
density-matrix form,

∂ρ̂(t)

∂t
= 1

i�
[Ĥ ,ρ̂(t)] − 
ρ̂, (A1)

where Ĥ = Ĥ0 + Ĥ1(t), H1 = −E
⇀

μ, and
⇀

μ is the transition
dipole moment. H is the Hamiltonian; 
 is the population
decay rate.

To obtain the density-matrix elements we may expand ρ̂(t)
as

ρ̂(t) = ρ̂(0)(t) + ρ̂(1)(t) + ρ̂(2) + · · · + ρ̂(r)(t) + · · · . (A2)

Substituting (A2) into (A1) we obtain

i�
∂

∂t
[ρ̂(0)(t) + ρ̂(1)(t) + ρ̂(2) + · · · + ρ̂(r)(t) + · · ·]

= [Ĥ0 + Ĥ1,ρ̂
(0)(t) + ρ̂(1)(t) + ρ̂(2) + · · · + ρ̂(r)(t) + · · ·]

−i�[ρ̂(0)(t) + · · · + ρ̂(r)(t) + · · ·]. (A3)

Thus the above equation we will take the form

i�
∂

∂t
ρ̂(0)(t) = [Ĥ0,ρ̂

(0)(t)] − i�
[ρ̂(0)(t)],

i�
∂

∂t
ρ̂(1)(t) = [Ĥ0,ρ̂

(1)(t)] + [Ĥ1,ρ̂
(0)(t)] − i�
ρ̂(1)(t),

i�
∂

∂t
ρ̂(r)(t) = [Ĥ0,ρ̂

(r)(t)] + [Ĥ1,ρ̂
(r−1)(t)] − i�
ρ̂(r)(t).

(A4)

Solving the above equations we get the density-matrix
elements ρ(0) · · · ρ(r).

After solving the density-matrix dynamics equation, we
obtain

μ =

⎡
⎢⎣

0 μ1 0 0
μ1 0 μ2 μ3

0 μ2 0 0
0 μ3 0 0

⎤
⎥⎦,

H0 =

⎡
⎢⎣

E0 0 0 0
0 E1 0 0
0 0 E2 0
0 0 0 E3

⎤
⎥⎦,

ρ̂(r) =

⎡
⎢⎢⎢⎢⎣

ρ
(r)
00 ρ

(r)
01 ρ

(r)
02 ρ

(r)
03

ρ
(r)
10 ρ

(r)
11 ρ

(r)
12 ρ

(r)
13

ρ
(r)
20 ρ

(r)
21 ρ

(r)
22 ρ

(r)
23

ρ
(r)
30 ρ

(r)
31 ρ

(r)
32 ρ

(r)
33

⎤
⎥⎥⎥⎥⎦,


ρ̂(r) =

⎡
⎢⎢⎢⎣


0ρ̂00 
10ρ̂01 
20ρ̂02 
30ρ̂03


10ρ̂10 
1ρ̂11 
21ρ̂12 
31ρ̂13


20ρ̂20 
21ρ̂21 
2ρ̂22 
32ρ̂23


30ρ̂30 
31ρ̂31 
32ρ̂32 
3ρ̂33

⎤
⎥⎥⎥⎦.

ρlm is the coherence between levels l and m.
To show the derivation as an example, let us consider the

V-type three-level system. When two beams (E1 and E2)
are turned on as in Fig. 1 (main text), a V-type three-level
system (|1〉 → |0〉 → |2〉) is formed. The Hamiltonian of this
system can be written as H = −�[�1|1〉〈1| + �2|2〉〈2|] −
�[G1|1〉〈0| + G2|2〉〈0| + H.c.]. Then the density-matrix
equations can be obtained by the Liouville equation:
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∂
∂t

ρ = − i
�

[H,ρ] − 
ρ.

∂ρ
(r)
00

∂t
= −
00ρ

(r)
00 + i

[−G2e
ik2·rρ̃(r−1)

02 + G∗
2e

−ik2·rρ(r−1)
20

−G1e
ik1·rρ(r−1)

01 + G∗
1e

−ik1·rρ(r−1)
10

]
, (A5)

∂ρ
(r)
10

∂t
= −(i�1 + 
10)ρ(r)

10 + i
[−G2e

ik2·rρ(r−1)
12

+G1e
ik1·r(ρ(r−1)

00 − ρ
(r−1)
11

)]
, (A6)

∂ρ
(r)
11

∂t
= −
11ρ

(r)
11 + i

[−G∗
1e

−ik1·rρ(r−1)
10 + G1e

ik1·rρ(r−1)
01

]
,

(A7)

∂ρ
(r)
20

∂t
= −(i�2 + 
20)ρ(r)

20

+ i
[
G2e

ik1·r(ρ(r−1)
00 − ρ̃

(r−1)
22

) − G1e
ik1·rρ(r−1)

21

]
,

(A8)

∂ρ
(r)
12

∂t
= −[i(�1 − �2) + 
12]ρ(r)

12

+ i
(
G2e

ik2·rρ(r−1)
10 − G∗

1e
−ik1·rρ(r−1)

20

)
. (A9)

Considering a V-type energy system, there is a simple

SPFWM process expressed as the perturbation chain ρ
(0)
00

E1−→
ρ

(1)
10

(ES1 )∗−−−→ ρ
(2)
00

E2−→ ρ
(3)
20(ES2 ) and ρ

(0)
00

E2−→ ρ
(1)
20

(ES)∗−−−→ ρ
(2)
00

E1−→
ρ

(3)
10(aS). We would like to deduce the density-matrix elements

of SPFWM (ES2) in detail:
(i) In the first step, a ground-state particle ρ

(0)
00 absorbs

a probe photon ε1 and transits to state ρ
(1)
10 , expressed as

ρ
(0)
00

ε1−→ ρ
(1)
10 in the perturbation chain. From Eq. (A5), and

under the weak-field (iG∗
2e

−ik2·rρ20 ≈ 0, −iG1e
ik1·rρ11 ≈ 0)

and the steady-state ( ∂ρ10

∂t
=0) approximations, we can obtain

0 = −[i�1 + 
10]ρ10 + iG1e
ik1·rρ00, namely,

ρ
(1)
10 = iG1e

ik1·r

i�1 + 
10
ρ

0)
00, (A10a)

where the term iG1e
ik1·rρ00 remains because according to the

perturbation chain ρ
(0)
00

ε1−→ ρ
(1)
10 , only iG1e

ik1·rρ00 contributes
to the process of generating FWM in the first step.

(ii) In the second step, the particle is stimulated back
to the state ρ00 and emits a pumping photon ε∗

1 , which

is expressed as ρ
(1)
10

(EaS)∗−−−→ ρ
(2)
00 . From Eq. (A5), and under

the approximations of weak field and steady state, we have
0 = −
00ρ

(r)
00 + iG∗

1e
−ik1·rρ(r−1)

10 , namely,

ρ
(2)
00 = iG∗

1e
−ikES1·r


00
ρ

(1)
10 . (A10b)

(iii) In the third step, the particle absorbs a pumping
photon ε2 and transits to the dressed state ρ

(3)
20(S), which can

be expressed as ρ
(2)
00

E2−→ ρ
(3)
20(S). From Eq. (A8), and under the

approximations of weak field and steady state, it becomes

0 = −(i�2 + 
20)ρ(3)
20 + iG2e

ik2·rρ(2)
00 , and then

ρ
(3)
20 = iG2e

ik2·r

i�2 + 
20
ρ

(2)
00 . (A10c)

Substituting Eq. (A10a) into Eq. (A10b), and then putting
the result into Eq. (A10c), under the approximation of ρ

(0)
00 ≈ 1,

we get

ρ
(3)
10 = iG1G

∗
ES1G2e

i(k1+k2−kES1)·r

(i�1 + 
10)
00(i�2 + 
20)
. (A11)

When a strong dressing field is added on the above state
|0〉, the dressed FWM signals are generated. The perturbation
chain can then be written as the dressed perturbation chain:

ρ
(0)
00

E1−→ ρ
(1)
1G2±

(ES1 )∗−−−→ ρ
(2)
G2±0

E2−→ ρ
(3)
20(EaS1 ). On the other hand,

the perturbation approach for such dressing cases can be well
described by the following coupled equations:

0 = −(i�1 + 
10)ρ(1)
10 − iG2e

ik2·rρ12 + iG1e
ik1·rρ(0)

00

0 = −[i(�1 − �2) + 
12]ρ12 + iG2e
−ik2·rρ(r−1)

10

}
, (coupling equations).

In the steady state, we have

ρ
(1)
10 = iG1e

ik1·r

i�1 + 
10 + |G2|2
i(�1−�2)+
12

ρ
(0)
00 .

Similarly,

ρ
(2)
00 = iG∗

1e
−ik1·r


00 + |G2|2
i�2+
20

ρ
(1)
10 .

We can finally obtain

ρ
(3)
20(EaS1) = iG1G

∗
aSG2e

i(k1+k2−kES1)·r[
i�1 + 
10 + |G2|2

i(�1−�2)+
12

][

00 + |G2|2

i�2+
20

] 1

(i�2 + 
20)
. (A12)
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By applying field E1 to modify such a process, the output signal can be given as

ρ
(3)
20(EaS1) = iG1G

∗
aSG2e

i(k1+k2−kES1)·r[
i�1 + 
10 + |G2|2

i(�1−�2)+
12
+ |G2|2


00

][

00 + |G2|2

i�2+
20

] 1

(i�2 + 
20)
. (A13)
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