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Equivalence classes of Fibonacci lattices and their similarity properties
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We investigate, theoretically and experimentally, the properties of Fibonacci lattices with arbitrary spacings.
Different from periodic structures, the reciprocal lattice and the dynamical properties of Fibonacci lattices depend
strongly on the lengths of their lattice parameters, even if the sequence of long and short segment, the Fibonacci
string, is the same. In this work we show that by exploiting a self-similarity property of Fibonacci strings under
a suitable composition rule, it is possible to define equivalence classes of Fibonacci lattices. We show that the
diffraction patterns generated by Fibonacci lattices belonging to the same equivalence class can be rescaled to a
common pattern of strong diffraction peaks thus giving to this classification a precise meaning. Furthermore we
show that, through the gap labeling theorem, gaps in the energy spectra of Fibonacci crystals belonging to the
same class can be labeled by the same momenta (up to a proper rescaling) and that the larger gaps correspond to the
strong peaks of the diffraction spectra. This observation makes the definition of equivalence classes meaningful
also for the spectral and therefore dynamical and thermodynamical properties of quasicrystals. Our results apply
to the more general class of quasiperiodic lattices for which similarity under a suitable deflation rule is in order.
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I. INTRODUCTION

Since the first experimental proof of the existence of solids
lacking of translational invariance, but exhibiting a discrete
Bragg diffraction spectrum [1], the study of quasicrystals
has attracted quite a lot of attention. The impact of this
discovery on the scientific community was such that in 1992
the former definition of crystal had to be modified in order
to include those structures whose diffraction patterns witness
long-range order yet lack translational invariance [2–4]. More
generally, the study of quasiperiodic geometries has been
recently the subject of different fields all devoted to the
propagation of waves through quasiperiodic potentials. The
spectral properties of quasicrystals have been recently used to
engineer topological pumping in optical waveguides [5–7] and
in ultracold gases [8,9]. Engineering of quasiperiodic struc-
tures has also been employed in optical dielectric multilayers
for resonant transmission [10], solar energy harvesting [11],
plasmonics [12,13], and nonlinear optics [14,15].

Dynamical and transport phenomena in this kind of struc-
ture are also radically different compared to periodic me-
dia [16–20]. For the usual periodic arrangements, dynamical
and thermodynamical properties are directly related, via the
Bloch theorem, to the geometry of the system. Quasiperiodic
geometries, instead, lack translational invariance so that a
direct relation between their structures and their dynamical
properties is not generally known. It would be therefore
very interesting to find a sort of classification enabling one
to group together different aperiodic systems on the basis
of some similarity between their geometric arrangements.
In this paper we attempt to define such a classification,
showing that quasiperiodic structures whose geometry is
related by a suitable mathematical transformation share the
main characteristics of their reciprocal lattice and of their
pseudo-band structure.

II. GENERALIZED FIBONACCI LATTICES

In one dimension (1D) the paradigm of a quasicrystal is the
Fibonacci lattice (FL). The FL is a 1D lattice whose adjacent

points have distances belonging to the set {L,S}, standing for
long and short, respectively, which are arranged according to
a given sequence. Such a lattice can be constructed by means
of the cut and project technique [3,4,21] thus obtaining for the
coordinates of points on the real line [2] (in units of S)

xη
n = n − 1 + 1

η

⌊
n

τ

⌋
, (1)

where n is a natural positive number,�x� is the integer
part of x, and η = S/(L − S). The most common instance
found in literature is obtained for η = τ = (

√
5 + 1)/2, the

golden ratio. In this case the canonical FL (CFL) is ob-
tained, such that the lengths are (up to a simple rescaling)
L = 1 + 1/τ = τ , and S = 1. Nevertheless it is possible to
construct Fibonacci lattices with η �= τ (see Appendix A). The
distances �n = x

η

n+1 − x
η
n are either L = 1 + 1/η or S = 1

and they are arranged according to the Fibonacci string (FS)
LSLLSLSLLSLLSLSLLSLSL . . . . The latter is any word
made of two letters, L and S, obtained by means of the
substitution rule S → L and L → LS starting from the letter
L. We notice that the position of L and S in a FS itself is
independent of the parameter η and it only depends on the
factor 1/τ .

Conversely, given an infinite FS, a composition rule (LS →
L′ and L → S ′) can be defined such that the old and the
new strings are the same due to the peculiar properties of the
Fibonacci strings, as shown in Fig. 1. For the special case η =
τ k , with k a nonvanishing integer, i.e., for the CFL, this leads to
a peculiar property: the new FL can be rescaled to the original
one. This case is the most commonly encountered in literature,
accompanied by the statement that the CFL is self-similar. It
should be stressed, however, that this is not true for the general
case η �= τ k . In this case, a noncanonical Fibonacci lattice
and the one obtained by applying the composition rule are
characterized by two different length ratios η1 and η2 because
L′/L �= S ′/S. Therefore the new lattice cannot be transformed
into the old one by a simple rescaling.
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FIG. 1. The composition rules (LS → L′, L → S ′) on a semi-
infinite Fibonacci lattice reproduce another Fibonacci lattice with
different lattice parameters.

We call C the operator corresponding to the effect of the
composition rule on the FL x

η
n . It is not difficult to show

that C(xη
n ) = η1x

η1
n , where η1 = 1 + 1/η: the composition rule

maps a FL x
η
n into another FL, characterized by a new ratio η1

and rescaled by η1 (see Fig. 1). If η = τ then η1 = τ (recall that
τ 2 − τ − 1 = 0) and therefore the CFL is self-similar. If the
composition rule is applied k times, the initial FL is mapped
into

C(k)
(
xη

n

) =
(

k∏
i=1

ηi

)
xηk

n =
(

Fk+1 + Fk

η

)
xηk

n , (2)

where ηi = 1 + 1/ηi−1 (η0 = η) and Fk are the Fibonacci
numbers. With the help of this concept we define equivalence
classes for FLs by means of the following equivalence relation:

Definition. Two Fibonacci lattices x
ηa
n and x

ηb
n are equivalent

(xηa
n ∼ x

ηb
n ) if they are linked, up to a proper rescaling, by

means of the composition rule C. The lattice with the minimum
η0 such that 1/(η0 − 1) is finite and positive is called the
generator of the equivalence class which is denoted by [η0].

A simple way of labeling the elements of a given equiva-
lence class is by means of the continued fraction representation
for the {ηi}.

For quasiperiodic structures it is of limited practical
utility to talk about the support of the diffraction pattern.
It is more meaningful to describe the diffraction spectrum
(and the reciprocal lattice) in terms of the peaks which
are significantly close to unity, which will be referred to
as the brightest peaks. By means of the cut and project
method outlined in Appendix A it is possible to show (see
Appendix B) that the intensity I (q,η) at points q = Q(h,h′) is
given by sinc2(Q⊥(h,h′)�), where Q⊥(h,h′) = 2πd−1[h(1 +
1/η)−1 − h′] and � = τ [η/(η + 1)]/2. Therefore the brightest
peaks are found for pairs (h,h′) such that Q⊥(h,h′) ≈ 0 and
thus for (see Appendix C)

h

h′ = 1 + 1

η
. (3)

Since h and h′ are integers, the above condition can be
satisfied exactly only if η is a rational number. On the other
hand for irrational η we can resort to its continued fraction
representation in order to set the wanted precision to the above
condition.

Let us now consider two FLs belonging to the same
equivalence class x

η0
n and x

η1
n , with η1 = 1 + 1/η0. By defining

hn (kn) and h′
n (k′

n) as the numerator and denominator of the nth
rational approximants of 1 + 1/η0(1 + 1/η1), the following
relations hold: kn = hn + h′

n and k′
n = hn. The position of the

brightest peaks of the FL x
η1
n are then related to those of the

FL x
η0
n by

Q1(kn,k
′
n) = η1Q0(hn,h

′
n). (4)

In other word, although the two Fibonacci lattices x
η0
n and

C(xη0
n ) = η1x

η1
n cannot be rescaled one over the other (for the

general case η �= τ ), their brightest peak pattern can, as a
consequence of the fact that they are related by the composition
rule. Also the intensities of the brightest peaks can be related
as I (η1q,η1) ≈ I (q,η0) + 1

τ
[1 − I (q,η0)] [for q such that

I (q,η0) > 0.5] showing that the peaks of the scaled lattice
are even brighter than those of the original lattice. This drives
one to the important conclusion that FLs belonging to the same
equivalence class have diffraction spectra characterized by the
same pattern of brightest peaks, and are, in this sense, similar.

III. SIMILARITY OF DIFFRACTION PATTERNS

To quantify the degree of similarity between the two
spectra, we use the Kullback-Leibler divergence (KLD), a
quantity useful to comparing two distributions (normalized
to unity over a common support). Let us consider the
diffraction spectra I (q,ηα) and I (q,ηβ) of two arbitrary FLs
characterized by ηα �= ηβ . We define the normalized spectrum
as P (νq,η) = I (νq,η)/

∫ ∞
0 dkI (νk,η) where we introduced a

scaling parameter ν.
The KLD is defined as

D(ηα,ηβ,ν) =
∫ ∞

0
dkP (k,ηα) log10

(
P (k,ηα)

P (νk,ηβ )

)
. (5)

By definition, one has that the more similar the two diffraction
spectra, the smaller the value of the KLD. We will use it to
measure if, for given ηα and ηβ , there exists a scaling parameter
ν for which the two spectra look similar.

In Figs. 2(a) and 2(b) we plot 1/D(ηα
0 ,η,ν) comparing two

generators corresponding to ηa
0 = 6/11 and ηb

0 = 1/6 with
FLs obtained from them by applying the composition rule
C(nα ) respectively na = 1 and nb = 3 times. The intensities
I (q,η) are evaluated by means of Eq. (B15) for lattices with
N = 300 points. The maxima (minima of D) in the two fig-
ures correspond to (η,ν) = (ηa

1 ,η
a
1) and (η,ν) = (ηb

1,η
b
1η

b
2η

b
3)

respectively, in agreement with Eq. (4). This shows that two
FLs produce a similar diffraction pattern if and only if they
can be related via Eq. (2) and therefore only if they belong to
the same equivalence class.

In order to test our results on a real case, we performed
a diffraction experiment on two quasiperiodic diffraction
gratings prepared using a photorefractive direct laser writing
(DLW) technique [22,23]. We used three gratings made up
of N = 300 lines all written in the same substrate: (a) a
periodic grating with spacing L = 23 μm; two Fibonacci
gratings with (b) L = 23 μm and S = 17 μm (ηa

1 = 17/6) and
(c) L = 23 μm and S = 15 μm (ηb

3 = 15/8) (For a detailed
description of the experimental set up see Appendix D). So far
we considered point lattices, but real structures are constituted
by some physical entity (basis) arranged on the points of our
quasiperiodic Fibonacci lattice. For these cases, the diffraction
pattern is given by the sum in Eq. (B15) multiplied by the
square modulus of a structure factor. The latter, in general, does
not posses any scaling property and therefore it is necessary
to correct for it when comparing different lattices. We did
this experimentally by using the data of the periodic grating
to extract a phenomenological expression for the structure
factor as a function of q (see Appendix E). In Fig. 3(a)
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FIG. 2. Inverse of KL divergence 1/D(ηa
0 ,η,ν) comparing the

diffraction spectra of the generator of a given class xη0
n with another

Fibonacci lattice, for two choices of η0: (a) ηa
0 = 6/11 and (b) ηb

0 =
1/6. Here �ηa = η − ηa

1 , �νa = ν − ηa
1 and �ηb = η − ηb

1 , �νb =
ν − ηb

1η
b
2η

b
3 . The maxima [minima of D(ηα,ηβ,ν)] are obtained at

�ηa,b = 0 and �νa,b = 0, indicating that the two spectra with the

highest degree of similarity correspond to lattices ηa
1x

ηa
1

n = C(x
ηa

0
n )

and ηb
1η

b
2η

b
3x

ηb
3

n = C(3)(x
ηb

0
n ) respectively, i.e., the first and the third

elements of the respective equivalence classes. (c) Direct comparison

of the two diffraction spectra for two FLs x
ηa

0
n and ηa

1x
ηa

1
n . The most

prominent peaks of the diffraction pattern I (q,ηa
0 ) correspond to those

of the (rescaled) spectrum I (ηa
1q,ηa

1 ).

we compare the experimental data relative to the grating
ηb

1 with the theoretical diffraction pattern obtained from the
generator of the corresponding equivalence class, ηb

0 = 1/6.
We observe that once the spectra have been rescaled in q

following Eq. (4) and corrected in order to take into account
the structure factor contribution to the intensity of the peaks,
the most prominent diffraction features of the generator can

D

FIG. 3. (a) Comparison between the theoretical diffraction pat-

tern for the FL x
ηa

0
n (ηa

0 = 0.5454, solid blue curve) and the

experimental one produced by a FL C(x
ηa

0
n ) (solid red curve,

N = 300 lines and L = 23 μm and S = 17 μm, ηa
1 = 2.83). The

theoretical spectrum has been rescaled in accordance with Eq. (4)
and corrected for the structure factor contribution. (b) The inverse
of KL divergence [D−1(ηa

1 ,η,ν)] between the (normalized over
the interval) experimental diffraction pattern and the theoretical
diffraction patterns for different generators and different scaling. Here
�ηa = η − ηa

0 and �ν = ν − 1/ηa
0 . The maximum (minima of D) is

at (η,ν) = (ηa
0 ,1/ηa

0 ).

be found in the experimental data at the correct q positions.
The degree of similarity between the spectrum of the generator
and the experimental one is confirmed by the KL divergence
D between the experimental data points and the theoretical
diffraction spectrum (with the inclusion of the structure factor)
calculated for a range of η0 and scaling factor ν. In Fig. 3(b)
we show it explicitly for the grating with ηa

1 and it is clear that
the maximum of D−1 (minimum of D) is found at η0 = ηα

0

and ν = η−1
1 . Similar results are obtained for the grating ηb.

IV. ENERGY SPECTRA COMPARISON

We have therefore shown that all the FLs belonging to the
same equivalence class have diffraction spectra that, although
not equal, are characterized by a similar pattern of bright
peaks. This finding is of crucial importance not only in
scattering phenomena but also in transport ones. In fact in
a recent work [24] a method to unambiguously link the gaps
in the integrated density of states to the brightest peaks in
the diffraction pattern of the underlying potential has been
proposed. This was first observed and reported by Luck in
his seminal paper [25] and is known under the name of gap
labeling theorem. Let us consider for example the Hamiltonian
for a particle in a 1D lattice:

Ĥ = −�
2

2

d2

dx2
+ V (x), (6)

V (x) = −V0

∫
dyf (x − y)

∑
n

δ(y − xn), (7)

where xn are the local minima of the potential and f (x) is
introduced to account for the detailed shape of the potential
minima (V0 > 0). We will consider the case xn = x

η
n according

to the quasiperiodic sequence of Eq. (1). In Ref. [24] it has
been shown that it is possible to label the energy gaps by
means of the brightest peaks of the diffraction spectrum. In
particular one has to consider the pseudomomenta q at which
the square of the Fourier transform of V (x) acquires values
greater than a given threshold. This effectively corresponds
to choosing which free states are effectively coupled by the
potential and, therefore, where wider gaps open in the single-
particle spectrum. One of the results presented in Ref. [24]
is that this is equivalent to setting a threshold to the intensity
of the peaks in the Bragg spectrum of the lattice. This can
be easily seen by considering the Fourier transform of the
potential V (x), namely, V (q) = ∫

eıxqV (x)dx whose square
modulus is given by

|V (q)|2 = S(q)I (q,η), (8)

where S(q) is the square of the Fourier transform of f (x)
and I (q,η) is given by Eq. (B15). It is clear from what
was shown above and confirmed by the experiment on the
diffraction patterns, that apart from the contribution of the
actual form of the potential (which plays a role analogous
to the structure factor in diffraction experiments), the energy
pseudoband structure in reciprocal space has the same shape
(up to a rescaling) for the lattices belonging to a given class.
As an example, we computed the spectra of Eq. (7) in the case
of Gaussian wells, namely, f (x) = e−x2/2σ 2

for a system with
N = 100 minima and xn = x

η
n with η = ηa

0 ,η
a
1 and η = ηb

0,η
b
3.
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I

0.

FIG. 4. Plot of the energy level spacings of the Hamiltonian in
Eq. (7) for a potential V (x) having minima at the points of FLs xη

n

with (blue dots) η = ηa
0 and (red crosses) ηa

1 . Below we compare the
gaps with the brightest peaks of I (q/ηa

1 ,η
a
1 ).

We choose V0 = 12 and σ = 0.1. In Fig. 4 we plot the energy
level spacing for lattices characterized by ηa

0 = 6/11 (blue
dots) and ηa

0 = 17/6 (red crosses) both belonging to the
equivalence class [ηa

0]. The momenta on the x axis serve as a
reference with respect to the free particle dispersion relation
[εk = k2/2,V (x) = 0] to show where the potential V (x) opens
the gaps. After rescaling the momenta for the lattices with
η = ηa

1 by νa = ηa
1 we can clearly see that the gaps appear at

the same points. On the other hand these points correspond to
the brightest peaks, where I (q/ηa

1 ,η
a
1) calculated by Eq. (B15)

is sizable. Similar results are obtained (not shown) for the
equivalence class [ηb

0] with ηb
0 = 1/6 by considering the two

lattices characterized by ηb
0 and ηb

3 = 15/8, under the scaling
νb = ηb

1η
b
2η

b
3.

V. CONCLUSIONS

In conclusion, we investigated the diffraction spectra of
FLs in the general case η = S/(L − S) �= τ . We have shown
that it is possible to group different Fibonacci lattices into
equivalence classes whose elements share the main structural
and dynamical properties as witnessed by their diffraction
spectra and the energy gaps. These results show that the
concept of equivalence classes for FLs has not only a geo-
metrical meaning but also an important role in the scattering,
dynamical, and thermodynamical properties of the system,
contained in the energy spectrum. It is worth stressing once
again that this is a consequence of the self-similarity of FSs
under the composition rule and that FLs belonging to different
equivalence classes cannot be rescaled one over the other. The
generator of a class is, in this sense, the simplest structure
giving a diffraction pattern which contains the main features
common to all of the other elements of the class. Although
we focused on the Fibonacci lattices, our arguments apply to
the more general class of quasicrystals for which deflation or
inflation rules can map the initial lattices into similar ones.
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di Padova, for providing access to the direct laser writing setup.
The authors also thank J. Settino for providing the energy

spectra of a particle in a Fibonacci-like lattice. N.L. and L.D.
acknowledge financial support from MIUR, through FIRB
Project No. RBFR12NLNA_02. L.V. and M.B. acknowledge
financial support from Universit degli studi di Padova through
Chip & CIOP Project No. CPDA120359.

APPENDIX A: GENERALIZED FIBONACCI LATTICES
FROM CUT AND PROJECT METHOD

The Fibonacci lattices we considered in the main text can
be constructed by means of the cut and project technique.
One possible construction has been presented in Ref. [21]. We
prefer to resort to a more standard one and in what follows we
will generalize the one given in Ref. [3].

Let us introduce a two-dimensional periodic lattice Ip

2
and its lattice vectors e1 and e2 such that any point of the
lattice can be written as p = n1e1 + n2e2 with n1,n2 ∈ Z.
Furthermore we introduce the line lτ whose unit vector is
l̂τ = [cos(θτ ), sin(θτ )] and the unit vector orthogonal to it
l̂⊥τ = [sin(θτ ),−cos(θτ )] such that tan(θτ ) = τ−1 where τ =
(1 + √

5)/2. The canonical Fibonacci lattice is constructed by
projecting on the line lτ the points of a square lattice (e1 · e2 =
0, |e1| = |e2|) the points whose Vonroı̈ cell is cut by the line
itself. Let us notice that with this procedure the different points
are unambiguously numbered on the line lτ once an origin
and a direction have been chosen. We are going to construct
our Fibonacci lattices using this definition but allowing the
two-dimensional lattice to be generic as in Fig. 5. Nevertheless
we will see that in order to obtain a Fibonacci lattice, namely, a
one-dimensional set of points whose distances are distributed
according to the Fibonacci strings and with the wanted ratio
between long and short segments, we will have to restrict
the set of the allowed 2D lattices. Following the discussion
in Ref. [3], in order for the line γ l̂τ to cut the Vonroı̈ cell
centered at point p it has to intersect the secondary diagonal
of the cell (joining the northwest to southeast point of the
cell). The diagonals lie on lines parallel to δ(e1 − e2) and
whose points are given by δ(e1 − e2) + ne1 with m ∈ Z. Their

FIG. 5. Construction of a generalized Fibonacci lattice from a 2D
periodic lattice by means of the cut and project method. Blue dots are
the projection of points of the 2D lattice whose Vonröi cells are cut
by the line lτ .
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intersection with the line γ l̂τ occurs at points ( n
τ
, n
τ 2 )a where

a = (τ 2/
√

1 + τ 2)Au.c./(e1 − e2) · l̂⊥τ and Au.c. = (e1 ∧ e2) · ẑ

is the (oriented) area of the unit cell of the lattice.
This intersection points are inside the Vonroı̈ cell centered

at point (u,v) if and only if

u − |(e1 − e2) · x̂|
2

< n a τ−1 < u + |(e1 − e2) · x̂|
2

, (A1)

v − |(e1 − e2) · ŷ|
2

< n a τ−2 < v + |(e1 − e2) · ŷ|
2

. (A2)

On the other hand each point of the lattice can be written as
n1e1 + n2e2 and n1 + n2 = n because it is the nth point to
be projected. Thus we can write u = n1(e1 − e2) · x̂ + ne2 · x̂

and v = n1(e1 − e2) · ŷ + ne2 · ŷ and the above inequalities
become(

n1 − sx

2

)
(e1 − e2) · x̂ < n (a τ−1 − e2 · x̂)

<

(
n1 + sx

2

)
(e1 − e2) · x̂, (A3)(

n1 − sy

2

)
(e1 − e2) · ŷ < n (a τ−2 − e2 · ŷ)

<

(
n1 + sy

2

)
(e1 − e2) · ŷ, (A4)

where sx = sgn[(e1 − e2) · x̂] and similarly for sy . By means
of the expression for a it is easy to prove that (a τ−1 − e2 ·
x̂)/(e1 − e2) · x̂ = (a τ−2 − e2 · ŷ)/(e1 − e2) · ŷ and thus the
two inequalities are equivalent to the inequality(

n1 − 1

2

)
<

n

β
<

(
n1 + 1

2

)
, (A5)

β = 1 − e1 · l̂⊥τ
e2 · l̂⊥τ

= 1 + r
1

τ sin(α) − cos(α)
, (A6)

where cos(α) = e1 · e2/(|e1||e2|) and r = |e1|/|e2|. With n1 an
integer number, the only possibility for the above inequalities
to be satisfied is that n1 = � n

β
� where �x� is the integer part

of x. After projecting onto lτ , the nth point has coordinates on
the the line lτ :

x ′
n = n e2 · l̂τ + (e1 − e2) · l̂τ

⌊
n

β

⌋
. (A7)

By normalizing with respect to e2 · l̂τ we eventually obtain the
one-dimensional lattice of points

xn = n + 1

η

⌊
n

β

⌋
, (A8)

η−1 =
(

e1 · l̂τ

e2 · l̂τ
− 1

)
. (A9)

For the above to be a Fibonacci lattice we require β = τ

which is the case for τr = [τ sin(α) − cos(α)] and thus
η = [τ + tan(α)]/[(τ − 1) tan(α) − τ 2]. Moreover we have
to require that r > 0 and η > 0 which is the case for
tan−1(2τ + 1) < α < tan−1(−τ ) + π . As can be seen from

FIG. 6. (a) Values of r = |e1|/|e2| as a function of η. The red
dot corresponds to the point (η,r) = (τ,1) for which the canonical
Fibonacci lattice is obtained. (b) Values of the angle α between e1

and e2 as a function of η. The red dot corresponds to the point
(η,α) = (τ,π/2) for which the canonical Fibonacci lattice is obtained.

Fig. 6, for any given η > 0 there corresponds a pair (r,α):

tan(α) = τ 2 ητ + 1

η − τ
, (A10)

r = (τ tan(α) − 1)

τ
√

1 + tan2(α)
, (A11)

and therefore a two-dimensional lattice whose projection on
the line lτ returns the wanted FL:

xη
n = n − 1 + 1

η

⌊
n

τ

⌋
, (A12)

η−1 =
(

e1 · l̂τ

e2 · l̂τ
− 1

)
, (A13)

where we shifted the whole lattice in order for the first point
to have coordinate x1 = 0 on the line lτ .

APPENDIX B: DIFFRACTION PATTERN

We are interested in the calculation of the quantity

A(q‖) = lim
N→∞

1

N

∑
n

eıx
η
nq‖ , (B1)

where x
η
n are given by Eq. (A13). Using the unit vectors l̂τ and

l̂⊥τ we can write any point in space as �r = x‖ l̂τ + x⊥ l̂⊥τ and
similarly for the variable �q = q‖ l̂τ + q⊥ l̂⊥τ . By introducing the
quantity

AX(q‖,q⊥) = lim
N→∞

1

N

∑
n

eı �pn·�q, (B2)

where we recall that �pn are points �rn1n2 of the 2D periodic
lattice which lie in a strip of width 2� = |(e1 − e2) · l̂⊥τ | around
the line γ l̂τ . It is easy to see that A(q‖) = AX(q‖,0). We
therefore turn to the calculation of the latter. By introducing
the mass density of the 2D lattice ρ(�r) = ∑

m1m2
δ(�r − �rm1m2 )

and its Fourier transform ρ(�r) = ∫
dk⊥ dk‖e−ı�r·�kρ̃(�k), we can

write

AX(q‖,q⊥) = lim
L→∞

1

L

1

2�

∫
dk⊥dk‖

×
∫ �

−�

dx⊥
∫ ∞

−∞
dx‖ eı�r·(�q−�k) ρ̃(�k). (B3)
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The above integrals can be calculated as

A(q‖) = AX(q‖,0)

=
∫

dk⊥
sin(k⊥�)

k⊥�

∫
dk‖ ρ̃(�k)δ(k‖ − q‖), (B4)

which expresses the fact that the diffraction pattern of an
infinite projected quasicrystal is the convolution of the Dirac
comb formed by the periodic higher dimensional periodic
lattice with the sinc function in the orthogonal space.

In particular ρ̃(�k) is a Dirac comb peaked at points khh′ =
hw1 + h′w2 where we introduced the reciprocal lattice vectors
for the dual of the 2D periodic lattice Ip

2 :

w1 = 2π

l1
(e1 − e1 · ê2ê2), (B5)

w2 = 2π

l2
(e2 − e2 · ê1ê1), (B6)

(B7)

where êi = ei/|ei | and l1 = |e1|2 − |e1 · ê2|2 and similarly for
l2. It is easy to check that wi · ej = 2πδij . In what follows we
assume that units are scaled such that e2 · l̂τ = 1. In order to
evaluate the parallel and perpendicular components of vectors
belonging to the reciprocal space we need to evaluate wi · l̂τ
and wi · l̂⊥τ . To do so it is useful to rewrite the vectors ei as
linear combinations of l̂τ and l̂⊥τ by means of the expressions
for η and β and the relation between tan α and η. We thus
obtain

e1 =
(

1 + 1

η

)
l̂τ + 1

τ

(
1 + 1

η

)
l̂⊥τ , (B8)

e2 = l̂τ −
(

1 + 1

η

)
l̂⊥τ . (B9)

It is now easy to check that

w1 · l̂τ = 2π

d
, w2 · l̂τ = 2π

τd
, (B10)

w1 · l̂⊥τ = 2π

d

(
1 + 1

η

) , w2 · l̂⊥τ = −2π

d
, (B11)

where d = (τ + 1/η). Therefore we can define

Q(h,h′) = khh′ · l̂τ = 2π

d

(
h + h′

τ

)
, (B12)

Q⊥(h,h′) = khh′ · l̂⊥τ = 2π

d

(
η h

η + 1
− h′

)
. (B13)

By means of Eq. (B4) we can thus write the intensities of
the diffracted points as

I (q‖,η) = |A(q‖)|2

=
∑
h,h′

sin2[Q⊥(h,h′)�]

[Q⊥(h,h′)�]2
δ(q‖ − Q(h,h′)), (B14)

where � = τ (1 + 1/η)/2 and we introduce the explicit depen-
dence of the intensity on the parameter η which characterizes
the FL. As it can be seen, the diffraction spectrum consists of a
set of sharp peaks centered on a dense set of reciprocal lattice

10 20 30 40 50 60
q

0.2

0.4

0.6

0.8

1.0
I q

FIG. 7. Comparison between the values of I (q‖) using the cut and
project method and the direct evaluation in Eq. (B1) for a lattice of
N = 300 points and η = 17/6. Blue dots are points corresponding to
the value in Eq. (B14) whereas red crosses are given by Eq. (B1).

points, as by choosing the appropriate values of h and h′, any
q can be approximated with arbitrary precision. However, not
all these peaks have the same intensity.

In Fig. 7 we plot I (q‖) as given by expression in Eq. (B14)
and its expression calculated explicitly by its definition
Eq. (B1) for a lattice of N = 300 points and η = 17/6. We
can see that as expected the peak intensities are well captured
by Eq. (B14) even for finite systems especially for peaks
characterized by a significant intensity (>0.2).

We now consider the (Fraunhofer) diffraction pattern of a
FL x

η
n :

I (q,η) = lim
N→∞

1

N2

∣∣∣∣∣∑
n

eıx
η
n q

∣∣∣∣∣
2

. (B15)

This quantity is important because it gives a direct experimen-
tal access to the reciprocal lattice of our structure. We shall see
that this quantity is also encountered in the determination of
a (pseudo) energy dispersion relation [24]. In the case of FLs
the values of q at which a nonvanishing intensity is expected
are given by

Q(h,h′) = 2π

d

(
h + h′

τ

)
, (B16)

where d = (τ + 1/η). By properly choosing the integers h

and h′, any real number can be arbitrarily well approximated,
showing that the reciprocal lattice of a FL is dense in R,
contrary to periodic lattices which exhibit a discrete reciprocal
lattice. Moreover it can be shown [3] that the diffraction
pattern has only pure point support, lacking a continuous part
(according to the classification of positive measures in the
Lebesgue classification).

APPENDIX C: BRIGHTEST PEAKS

1. Condition for brightest peaks

To find the set of points in reciprocal space corresponding to
a strong diffracted intensity for a FL, the following condition
on the argument of the exponential in the expression for the
diffraction pattern has to hold:

Q⊥(h,h′) ≈ 0, (C1)
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which is satisfied for
h

h′ ≈ 1 + 1

η
. (C2)

Let us now consider the equivalence class [η0] and in
particular the sequence x

η0
n . We can write η0 in the continued

fraction representation

η0 = a0 + 1

a1 + 1
a2+ 1

a3+···

≡ [a0,a1,a2,a3, . . . ]. (C3)

For a rational number the sequence of numbers ai is finite,
namely, η0 = [a0,a1, . . . ,an]. On the other hand, if η0 is
irrational, it is possible to find a rational approximation
within the wanted error by increasing the number of terms
in its continued fraction representation. It is easy to see that
η1 = 1 + 1/η0 = [1,a0,a1, . . . ] and in general

ηk = [1,1, . . . ,1︸ ︷︷ ︸
k

,a0,a1, . . . ]. (C4)

With this notation is straightforward to see that regardless of
the value of the generator η0, the sequences of an equivalence
class will tend to a Fibonacci sequence since limk→∞ ηk =
[1,1,1,1, . . . ] = τ [26]. Using the continued fraction notation
we can write a sequence of rational approximants to η0 as
a0, a1a0+1

a1
, a2(a1a0+1)+a0

a2a1+1 , . . . . Since both h and h′ have to be
integers, the above condition (C2) is satisfied if we choose h =
sn + tn and h′ = sn where sn and tn are the nth approximants
of η0, namely, η0 ≈ sn/tn and can easily be derived from the
continued fraction representation of η0.

It is worth stressing that if η0 is a rational number (η0 = a/b,
with a,b ∈ N) h and h′ can be chosen such that h/h′ = (a +
b)/a. Thus, at points qm = Q(m(a + b),mb) = 2mπ (m ∈ Z)
we have that I (qm,η0) = 1. On the other hand, for irrational η0

the condition is never satisfied exactly but we can resort to the
rational approximants of η0 to estimate the positions at which
the brightest peaks appear.

2. Relation between positions of brightest peaks

Let x
η0
n and x

η1
n be two Fibonacci lattices belonging

to the same equivalence class and their associated recip-
rocal lattices Q0(h,h′) = 2πd−1

0 (h + h′/τ ) and Q1(h,h′) =
2πd−1

1 (k + k′/τ ), respectively, where di = τ + 1/ηi . By
defining hn (kn) and h′

n (k′
n) as the numerator and denominator

of the nth rational approximants of 1 + 1/η0 (1 + 1/η1), the
following relations hold true: kn = hn + h′

n and k′
n = hn. By

inserting these relations into the expression for Q1(k,k′) we
get

Q1(kn,k
′
n) = 2π

d1

(
kn + k′

n

τ

)
= 2π

d1

(
hn + h′

n + hn

τ

)

= 2πτ

d1

(
hn + h′

n

τ

)
= d0τ

d1

2π

d0

(
hn + h′

n

τ

)

= d0τ

d1
Q0(hn,h

′
n) = η1Q0(hn,h

′
n),

where in the last line we used the fact that d0τ/d1 = η1. This
means that the lattice obtained by applying the composition
rule C(xη0

n ) = η1x
η1
n has the brightest peaks at the same

positions of the original lattice only rescaled by a factor η1.

10 20 30 40 50 60 70
q

0.05

0.10

0.15

0.20

0.25
δI q

FIG. 8. Plot of (blue dots) τ−1[1 − I (q,η0)] and (red crosses)
[I (η1q,η1) − I (q,η0)] for those q for which I (q,η0) > 0.5 showing
that the intensities of the brightest peaks of the diffraction pattern of
a FL xη1

n generated from a FL xη0
n by means of the composition rule

are more intense than those of the original lattice by a factor of τ .

3. Relation between intensities of brightest peaks

From Eq. (B14) we can also estimate the relation between
the intensities of the brightest peaks in the diffraction spec-
trum of two FLs belonging to the same class. Using the
expression in Eq. (B14) and assuming k⊥� ≈ 0 we can write
sin2(k⊥�)/(k⊥�)2 − 1 ≈ (k⊥�)2/9. Using the condition for
k⊥ ≈ 0 and following a calculation similar to that to de-
termine the relation between the positions of the brightest
peaks we find that (k1

⊥�1)2 = (k0
⊥�0)2/τ 2. Therefore we

have

I (η1q,η1) ≈ I (q,η0) + 1

τ
[1 − I (q,η0)], (C5)

meaning that the intensities of the brightest peaks of the scaled
lattice are more intense than those of the original lattice by
a term proportional to the difference between the maximum
attainable intensity and the intensity of the original lattice
intensities.

In Fig. 8 we plot the quantities (blue dots) τ−1[1 − I (q,η0)]
and (red crosses) [I (η1q,η1) − I (q,η0)] for q such that
I (q,η0) > 0.5 and for lattices of N = 300 sites and η0 = 6/11
and η1 = 1 + 1/η0 respectively.

APPENDIX D: EXPERIMENTAL SETUP

To test experimentally the diffraction from FLs, a series
of quasiperiodic diffraction gratings were prepared using a
photorefractive direct laser writing (DLW) technique [22].
This technique consists of scanning with a focused laser
beam a photorefractive sample, and engraving on it a series
of lines with a modified refractive index with respect to the
rest of the sample. The scanning movement is performed by
translating the sample with the aid of a computer-controlled
XY stage at constant speed of 50 μm/s. The nominal precision
of the translation stage is 0.5 μm for the conditions used
in this experiment. A frequency doubled diode pumped
Nd:YWO4 solid-state laser (Coherent Verdi V5) emitting a
cw beam at 532 nm was used as the light source for DLW.
The beam was suitably attenuated by a series of neutral
density filters and sent to a focusing microscope objective
(Olympus 100X/0.80) so that the power after the objective
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was set at 17 mW. The substrate used to engrave the optical
structures is a slab of photorefractive lithium niobate doped
with iron at the nominal concentration of 0.1 mol% in the
melt. The sample was X-cut with dimensions (X × Y × Z)
1 × 8 × 13 mm3 and the lines were written on the X face, by
scanning along the Y direction with an ordinarily polarized
beam.

This process can induce extraordinary refractive index
changes as large as 10−3 in the written lines and therefore
can be used to produce arbitrary diffraction structures. The
diffraction pattern of these structures was measured with
the help of a computer-controlled optical diffractometer in
which the sample and the detector were mounted on two
coaxial goniometers that were independently controlled by
a computer [23]. An optical beam produced by a He-Ne
laser at 632.8 nm with a power of 4 mW was expanded,
polarized along the extraordinary direction, and finally trans-
mitted through the sample surface, resulting in a clearly
visible diffraction pattern. This pattern was measured by
a Si photodiode and a lockin amplifier and recorded on
the computer as a function of the detector and the sample
angle.

APPENDIX E: EXPERIMENTAL DIFFRACTION
PATTERNS

1. Structure factor

To compare the experimental data with the theoretical
calculation we need to take into account that our gratings
are made up of a (quasi) periodic repetition of a region
with a modified refractive index, �n(x). This leads to the
fact, well known from standard diffraction theory, that the
diffracted intensity in reciprocal space is proportional to the
product of two terms: a first one, S(q) = | ∫ �n(x)eıxqdx|2
which depends on the detailed structure of the repeated
unit of the grating (structure factor) and a second term
related to lattice geometry, which is the true object of this
study:

IR(q,η) = S(q)
1

N2

∣∣∣∣∣∑
n

eıx
η
nq

∣∣∣∣∣
2

= S(q)I (q,η). (E1)

The structure factor modulates the intensity of the lattice
diffraction pattern, complicating the comparison between
experiments and theory. In principle S(q) could be calculated
by knowing the details of the refractive index profile changes
produced by our technique. Here we used another approach
which exploits the fact that our samples differ only for the
line position sequence xn. We can use therefore the periodic
grating (Fig. 9) to measure the function S(q) directly at the
reciprocal lattice points {qi

M} of the periodic grating, where
I (qi

M ) has local maxima.
We found that the following phenomenological functional

form for S(q) describes adequately the peak intensity in the
whole range of measured values (see Fig. 9):

S(q) = S0e
−λq− q0

q , (E2)

where the parameters S0,λ,q0 are determined by a least-
squares fit in the range q ∈ [0.5,3] μm−1 excluding the last

2 0 2 4
q

10 10

10 8

10 6

10 4
I q

FIG. 9. Experimental diffraction pattern of the periodic grating
with spacing L = 23 μm (blue, solid curve) and fit of the satellite
peak intensities using function (E2) (red, dashed curve).

peaks, because the corresponding momenta were comparable
with a length scale of the order of the optical waveguide width.
We also notice that all measured diffraction patterns drop
almost to zero outside the interval q ∈ [−4,4] μm−1; this is
because our lines have a width determined by the laser writing
optics which is not smaller than 2 μm, so our diffraction pattern
cannot probe |q| > 3 μm−1.

2. Comparison with theoretical patterns

In Fig. 10 we compare the theoretical diffraction pattern
I (q,η) with the experimental data points for the grating ηb

3.
The intensity of the experimental points has been rescaled
to take into account the contribution of the structure factor
of the grating, and the q axis of the experimental plot has
been rescaled in order to compare it with the simulation,
which considers FLs with S = 1. A similar figure is obtained
for the case ηa

1 = 17/6. The agreement is very satisfactory:
not only the position but also the intensity of the diffraction
peaks are correctly obtained, confirming that our approach is
reliable.

bI(q,  )

q

FIG. 10. Experimental diffraction pattern (solid red top curve)
compared with the theoretical diffraction pattern with the inclusion
of the structure factor (solid blue bottom curve) for a Fibonacci grating
with N = 300 lines and L = 23 μm and S = 15 μm, ηb

3 = 1.875.
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