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We study the emergence of a collective optical response of a cold and dense 87Rb atomic cloud to a near-resonant
low-intensity light when the atom number is gradually increased. Experimental observations are compared with
microscopic stochastic simulations of recurrent scattering processes between the atoms that incorporate the atomic
multilevel structure and the optical measurement setup. We analyze the optical response of an inhomogeneously
broadened gas and find that the experimental observations of the resonance line shifts and the total collected
scattered light intensity in cold atom clouds substantially deviate from those of thermal atomic ensembles,
indicating strong light-induced resonant dipole-dipole interactions between the atoms. At high densities, the
simulations also predict a significantly slower decay of light-induced excitations in cold than in thermal atom
clouds. The role of dipole-dipole interactions is discussed in terms of resonant coupling examples and the
collective radiative excitation eigenmodes of the system.
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I. INTRODUCTION

An improved experimental control of cold atoms and an
increase in computing power now allow both measurements
and many-body simulations of the optical response in small
atomic ensembles. These systems have proved to be important
since strong light-induced dipole-dipole (DD) interactions can
lead to collective light scattering phenomena. In particular,
it was recently pointed out [1] that a cold and dense atomic
medium can exhibit light-induced correlations and an optical
response that dramatically differ from those of a thermal,
inhomogeneously broadened medium.

Here we analyze in detail near-resonance light scattering
from small clouds of cold or thermal, trapped 87Rb atoms
that were recently experimentally measured or numerically
simulated in Refs. [2,3]. Large-scale numerical classical
electrodynamic simulations and experimental observations
indicate the emergence of collective effects in the optical
response of a cold-atom sample due to DD interactions, as the
number of atoms is gradually increased and the density of the
cloud increases. The experimentally observed light scattering
and classical electrodynamic simulations provide a detailed
side-by-side comparison between experiment and theory in
a gas of multilevel 87Rb atoms. By performing microscopic
numerical simulations of both cold and hot atomic ensembles,
in which the atoms are represented by linear point emitters
in the low excitation limit, we find that the experimental
observations of the resonance line shifts and the total collected
scattered light intensity substantially deviate from those
of thermal atomic ensembles. In particular, in both cases
the density-dependent resonance shift is absent. However,
introducing inhomogeneous broadening due to thermal atomic
motion restores the shift.

The experiments are performed in a microscopic elongated
dipole trap where we study the role of DD interactions between

87Rb atoms in the resonance fluorescence by varying the atom
number from one to ∼450. The sample is illuminated by near-
resonant low-intensity laser pulses. Before the illumination
the atoms are laser cooled to a temperature ∼110 μK, such
that the thermal Doppler broadening is negligible. The corre-
sponding stochastic simulations go beyond idealized models,
by incorporating a nonuniform atom density, the effects of
an anisotropic elongated trap, the multilevel structure of the
F = 2 ground-state manifold of 87Rb, imaging geometry, and
the optical components such as lenses and polarizers. In the
simulations the thermally induced broadening of hot atoms
is generated by stochastically sampling the inhomogeneous
broadening of the resonance frequencies of individual atoms.
The numerical simulations also incorporate the recurrent
(dependent) scattering processes between the atoms where the
light is scattered more than once by the same atom. These
are the source of light-induced correlations between the atoms
[1,4]. We find that the strong DD interactions in the system
lead to collective excitation eigenmodes of the system that
exhibit a broad range of collective radiative linewidths. The
role of collective eigenmodes is revealed in the temporal
profile of the decay of light-induced excitations after the
incident laser pulse is switched off. For large atom numbers in
stochastic simulations we find a significantly slower decay of
the excitations for cold than for thermal atom clouds.

The radiative interactions in ensembles of resonant emitters
constitute an active area of research that covers a variety of
systems, such as thin thermal atom cells [5], metamaterial
arrays of nanofabricated resonators [6–9], arrays of ions
[10], and nanoemitters [11,12]. Experiments in cold atomic
ensembles have dominantly addressed optically thick but
relatively dilute samples [13–22], whereas the setup described
here deals with small samples but at higher densities. It has
been used to study fluorescence [2,3] and forward scattering
[23,24], although the present paper concentrates on the case
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of fluorescence. Theoretically, ensembles of resonant emitters
provide a rich and challenging phenomenology whereby light-
induced correlation effects [1,2,4,25–55] due to recurrent scat-
tering can profoundly alter the optical response of sufficiently
dense samples.

Parallel to our work, the effects of motional dynamics of
atoms were observed in a cold Sr atom vapor by comparing the
optical response of narrow and broad linewidth transitions of
the atoms [18]. A qualitatively different behavior was observed
in the two cases. Unlike our experiment, Ref. [18] considered
a dilute gas ρ/k3 ∼ 10−3. Another important difference is that
the narrow Sr resonance is affected by the recoil shift of the
atom.

We begin with a brief overview of the experimental setup
in Sec. II. This is followed by a description of strong DD
interactions in cold and dense atomic ensembles in Sec. III.
We first cover the simple case of a two-level atom and how
to incorporate the effects of inhomogeneous broadening. The
discussion is then extended to the multilevel 87Rb case in
Sec. III B. We present the experimental and numerical results
in Sec. IV by first analyzing the collective modes and their
decay in Sec. IV A, then the experimental observations in
Sec. IV B, and the theoretical results in Sec. IV C. Finally,
some concluding remarks are made in Sec. V.

II. EXPERIMENTAL SETUP

As described in Ref. [2], our experimental setup enables
us to access densities and temperatures at which strong DD
interactions manifest themselves in the optical response. To
achieve this, we laser cool an ensemble of N 87Rb atoms in a
microscopic dipole trap obtained by focusing a laser beam with
a wavelength of 957 nm onto a spot size of 1.6 μm, as depicted
in Fig. 1(a). We obtain an elongated cloud at a temperature of
∼110 μK [56], with a thermal Gaussian distribution with root-
mean-square sizes of σx = σy = 0.3λ and σz = 2.4λ, where
λ � 780.2 nm is the resonant wavelength of the D2 transition
used in this work. Varying the number of atoms in the trap
from N = 1 to N = 450 allows us to study the increasing role
of interatomic interactions in the radiative response. For the
largest atom numbers the peak density at the center of the
trap is ρ � 0.9k3 (k ≡ 2π/λ), which, as we show in Sec. III,
results in DD interactions strong enough to heavily influence
the optical response of the atomic cloud. At the same time,
thermal motion within this cold atomic cloud produces only
a negligible Doppler broadening of 0.04γ , where γ = 2π ×
3 MHz is the half width half maximum (HWHM) radiative
linewidth of the D2 transition

γ = D2k3

6π�ε0
, (1)

where D denotes the reduced dipole matrix element. The
number of atoms N is experimentally controlled with a
10% uncertainty. The uncertainties in the temperature, atom
number, and the waist size lead to an uncertainty on the peak
atom density of a factor of two.

We observe the light scattered by the cloud when it is
illuminated by an incident laser field tuned near the resonance
of the transition between ground and excited hyperfine levels
|g〉 = (5S1/2,F = 2) and |e〉 = (5P3/2,F

′ = 3), respectively;
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FIG. 1. (a) Experimental setup. The atoms are initially confined
in a microscopic single-beam dipole trap (not shown) (wavelength
957 nm, depth 1 mK, and waist 1.6 μm; oscillation frequencies
ωx = ωy = 2π × 62 kHz and ωz = 2π × 8 kHz). The excitation laser
propagates antiparallel to the quantization axis x, set by a magnetic
field B ∼ 1 G. We collect light scattered in the negative z direction,
after a polarizer P oriented at an angle of 55◦ with respect to x, using
a lens L with a large numerical aperture (NA = 0.5) and an image
intensifier followed by a CCD camera (I-CCD). (b) Structure of 87Rb
atoms relevant to this work. The excitation light at frequency ω is
near resonant with the transition at λ = 2π/ω0 = 780 nm.

see Fig. 1(b). The incident field is sent along the small axis
of the cloud and has a σ+ polarization, where we use the
unconventional unit vectors,

ê±1 = ∓ 1√
2

(êy ± iêz), ê0 = êx, (2)

corresponding to the labeling of the directions in the experi-
ment, shown in Fig. 1(a), with the x axis as the quantization
axis set by a 1 G magnetic field.

Prior to the illumination by the excitation laser, we prepare
the atoms in the hyperfine ground level |g〉 with 95% efficiency
using a σ+-polarized beam tuned on the (5S1/2,F = 1) to
(5P3/2,F

′ = 2) transition. The atoms are thus prepared in
an incoherent mixture of Zeeman states |g,m〉 (|m| � 2)
with relative populations pm, estimated by solving rate
equations:

p−2 = p−1 � 0, p0 = p1 = p2 � 1/3. (3)

In the experiments reported in Sec. IV B we use flat-top light
pulses to excite the prepared atoms, with durations ranging
from T = 125 ns (rise time ∼7 ns, using an electro-optical
modulator) to T = 2 μs (rise time ∼50 ns, using an acousto-
optical modulator). We employ pulses with low intensity I <

0.1Isat (Isat = 1.6 mW/cm2) in order to operate in the limit
where the response of the atoms to light is linear. The probe
frequency is ω = ω0 + 	, where ω0 is the resonance frequency
of the |g〉 ↔ |e〉 transition in the absence of a magnetic field.

III. INFLUENCE OF DD INTERACTIONS ON THE
OPTICAL RESPONSE

An incident field nearly resonant with the |g〉 ↔ |e〉
transition induces electric dipoles in each of the atoms. In
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this section, we will see how interactions between the dipoles
bring about a collective response of the gas in response to the
incident field. The key here is that each atom is driven not only
by the incident field, but also by the fields emitted by all other
atoms in the gas. The resulting DD interactions profoundly
alter the cloud’s scattering properties at atom densities attained
in our experiments.

Generally, in the limit of low light intensity, recurrent scat-
tering, in which a photon repeatedly scatters between the same
atoms, results in dynamics where a cloud’s polarization density
depends on two-body correlations involving the polarization
density and the atomic number density [4]. These two-body
correlations depend on three-body correlations, which depend
on four-body correlations, and so on. To exactly account for the
DD interactions in the optical response of an N -body system,
one would ultimately need to solve the dynamics of N -body
correlation functions.

Fortunately, in the limit of low light intensity one can avoid
the coupled equations of the correlation functions by carrying
out a stochastic simulation instead [34,47]. We first sample
stochastically N atomic positions {X1, . . . ,XN } from the joint
probability distribution of the positions. In our experiment, at
temperatures of 110 μK, the de Broglie wavelength is much
smaller than the interatomic separation. We therefore treat
the atomic positions in our harmonic trap as independent
identically distributed Gaussian random variables with the
experimentally observed root-mean-square widths σx = σy =
0.3λ and σz = 2.4λ. The atom at each position Xj is taken to be
a linear dipole driven by the electric field falling on it. We next
solve the optical response for such a collection of dipoles and
compute the relevant observable(s). To model an experiment,
real or hypothetical, we finally average the result(s) over a large
number of samples of atomic positions. In the simulations we
consider both the steady-state and time-dependent cases.

For each atomic sample, the optical response may be
analyzed in terms of collective dipole excitations, each with a
distinct resonance frequency and decay rate. The cooperative
nature of a cloud’s response can be roughly characterized by
the widths of the distributions of collective resonance shifts
and decay rates. We will show that at the densities reached
in the experiment, the interactions between an atom and its
nearest neighbor sensitively depend on their relative distance,
thus illustrating the role of DD interactions in the formation of
correlations in the cold atoms.

We will then review how this model can be generalized to a
cloud of 87Rb atoms, accounting for Zeeman degeneracy [2],
in Sec. III B. In the case of multiple electronic ground states
the simulations represent a classical approximation where
the recurrent scattering between the atoms is included, but
nonclassical higher order correlations between internal levels
that involve fluctuations between ground-state coherences of
different levels and the polarization are factorized [47]. In the
limit of low light intensity (that we assume everywhere in this
paper) the classical approximation correctly represents all the
atomic ground-state population expectation values of even the
exact quantum solution.

We will illustrate that, in a cloud of N = 450 atoms as
realized in the experiment, the light-induced DD interactions
between the atoms result in broad distributions of collective
mode resonance frequencies and decay rates. We will also

discuss the effects of atomic motion in a thermal sample by
introducing an inhomogeneous broadening to the resonance
frequencies of the atoms, but still considering the atoms as
frozen during their interaction with the probe light.

A. Coupled dynamics of two-level atoms

For simplicity we introduce the theoretical model first by
considering an ensemble of two-level atoms, before general-
izing to the multilevel scheme that describes the 87Rb F = 2
ground-state experiments. Since the vectorial nature of electric
field and dipole moment matters in this paper, the two-level
atom is assumed to have the vector dipole moment matrix
element between the ground and excited state Dê, where D
is real and ê is a possibly complex unit vector. This situation
could be approximated experimentally by applying a strong
magnetic field on an atom, so that only one transition between
the Zeeman levels is close to resonance with the driving light.

1. Basic relations

For each stochastic realization of atomic positions, we have
an ensemble of N atoms with ground state |g〉 and excited
state |e〉, which the incident field couples via an electric dipole
transition with resonance frequency ω0. In the low-intensity
limit, in which population of the excited state can be neglected,
the expected scattered field can be computed by treating the
atoms as classical linear oscillators whose dipole moments are
given by

dj (t) = êDP (j )(t). (4)

When analyzing the light and atoms, we adopt the rotating
wave approximation where the dynamics is dominated by the
frequency of the driving laser ω. Here, and in the rest of the
paper, the light and atomic field amplitudes refer to the slowly
varying versions of the positive frequency components of the
corresponding variables, where the rapid oscillations e−iωt due
to the laser frequency have been factored out. In Eq. (4) P (j )

is a dimensionless dipole amplitude; the index j = 1, . . . ,N

denotes the j th atom with the position Xj . This dipole, in turn,
emits an electric field with the amplitude

ε0E(j )
S (r) = G(r − Xj )êDP (j ), (5)

where G is the monochromatic dipole radiation kernel whose
elements are given in Cartesian coordinates by [57]

Gij (r) =
[

∂

∂ri

∂

∂rj

− δij∇2

]
eikr

4πr
− δij δ(r). (6)

There is a characteristic length to the dipole radiation set by
the wave number of the light, k−1 = λ/2π .

An incident field with E0(r,t) drives the atomic sample.
The atom j in the ensemble is driven by the electric field that
includes the incident field and the fields emitted by all other
atoms in the system,

Eext(Xj ,t) = E0(Xj ,t) +
∑
l �=j

E(l)
S (Xj ,t). (7)
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This results in the atomic dipole amplitudes satisfying the
coupled dynamics

d

dt
P (j ) = (i	 − γ )P (j ) + i

ξ

D ê∗ · ε0Eext(Xj )

= (i	 − γ )P (j ) + iξ
∑
l �=j

G(j l)P (l)

+ i
ξ

D ê∗ · ε0E0(Xj ), (8)

with the detuning 	 = ω − ω0, the single-atom Wigner-
Weisskopf linewidth γ [Eq. (1)], and

ξ = 6πγ

k3
. (9)

G(j l) is the DD coupling between two different atoms j and l,

G(j l) = ê∗ · G(Xj − Xl)ê. (10)

The decay rate γ may, in fact, be regarded as a result of the
dipolar field acting back on the same atom that radiates it.

In typical situations we are mostly interested in the
steady-state response. It is then useful to introduce the
atomic polarizability α = −D2/[�ε0(	 + iγ )] that provides
the relationship between the atomic dipole amplitude and the
field driving the atom

DP (j ) = αε0 ê∗ · Eext(Xj ). (11)

This simulation procedure with coupled dipoles accounts for
recurrent scattering of light between the atoms to all orders,
exactly reproducing the dynamics of light-induced N -body
correlation functions for stationary atoms in the limit of
low light intensity, and was originally introduced for atomic
systems in Ref. [34] (see also [47]); owing to the simple level
structure and the low light intensity, the coupled-dipole model
simulations are exact even in quantum mechanics [34,47]. The
close correspondence between the classical electrodynamics
and the quantum-mechanical collective emission of a single-
photon excitation for a cloud of N two-level atoms was also
discussed in Ref. [58].

The coupled equations for the dipole amplitudes (8) are
linear, of the form

ḃ = −iHb + F, (12)

where b is a vector made of the amplitudes P (j ), say, b =
[P (1), . . . ,P (N)]T, −iH is the coupling matrix corresponding
to the first two terms on the right-hand side of Eq. (8), and F
is a vector whose components correspond to the driving of the
dipoles by the incident field.

The evolution of the coupled atom-light system can be
analyzed using collective eigenmodes n (n = 1, . . . ,N), which
correspond to the eigenvectors vn of H with the eigenvalues
δn − iυn. Here δn is the difference between the collective mode
resonance frequency and the resonance frequency of a single,
isolated atom, and υn is the collective radiative linewidth.
The matrix H is in general not Hermitian, hence the nonzero
imaginary parts of the eigenvalues. Moreover, the eigenvectors
are not necessarily orthogonal. In all of our examples, though,
they still form a basis. One can therefore uniquely express the

dipole amplitudes and the driving incident field as

b(t) =
∑

n

cn(t)vn, F(t) =
∑

n

fn(t)vn. (13)

Conversely, given b at any time t , the first of Eqs. (13) may be
construed as a linear set of equations from which to solve the
coefficients cn, and likewise for the second equation.

From Eq. (12), the amplitudes cn of the collective mode
(here driven at the single atom resonance) satisfy the equation
of motion

ċn = (−iδn − υn)cn + fn(t). (14)

Equivalently, since the atoms are not excited before the
incident field is turned on [cn(−∞) = 0], the amplitudes
satisfy

cn(t) =
∫ t

−∞
dt ′e(−iδn−υn)(t−t ′)fn(t ′). (15)

This is how we handle explicitly time-dependent excitation
pulses in the present paper.

For a driving field that is turned on at time t = 0 and
remains constant in time, the inverse of the collective linewidth
1/υn is a measure of how quickly a collective mode will
reach its steady state. In the special case of a driving field
with a time-independent amplitude and hence constant fn,
the atomic response eventually reaches a steady state. In the
present notation the steady state is specified by

cn = fn

iδn + υn

. (16)

The same steady state could be found directly from Eq. (12)
by solving the linear set of equations −iHb + F = 0 for the
excitation amplitudes b.

Given the vector of the dipole excitations b, one can
compute the electric field at an arbitrary position r, except
for the exact positions of the atoms, from

E(r,t) = E0(r,t) +
∑

l

E(l)
S (r,t). (17)

Of course, the assumption here and in all of our development is
that the slowly varying quantities do not change substantially
during the time it takes light to propagate across the atomic
sample. That is why the time argument, explicit or implied, is
the same throughout our equations. The assumption is valid
in light propagation, provided that the group velocity of light
does not become comparable with Lγ , where L denotes the
characteristic sample size.

2. Inhomogeneous broadening

At the very low temperatures of the experiments the atoms
make a homogeneously broadened sample; to the leading
order of approximation they do not move at all. We have
thus adopted a “frozen gas” approximation with stationary
atoms. In principle one could allow the atoms to move
ballistically and in response to the dipole forces between
the atoms, even take into account collisions of other origin,
and integrate the equations of the polarization amplitudes (8)
treating the positions Xj as time dependent. This would make
the propagation phases such as eikr in the dipolar field time
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FIG. 2. Stochastic simulation of the probability distribution of
the distance between an atom and its nearest neighbor in a cloud of
N = 450 atoms. The characteristic interatomic separation distance
1/k that represents the length scale below which the light-induced
DD interactions become especially strong is highlighted in the plot
by a vertical line.

dependent, and bring in the usual consequences of the atomic
motion such as the Doppler shifts. The drawbacks are that then
both our analysis of the collective modes and the notion of a
microscopic stationary state break down, and the management
of the motion in and of itself greatly complicates the coding.

Instead, we resort to a simple model of inhomogeneous
broadening. Although our aim here is to model the Doppler
shifts of moving atoms [1], the simulation procedure for the
inhomogeneous broadening is general and applies also to other
resonant emitter systems [59], such as those consisting of cir-
cuit resonators or quantum dots in which case typical sources
for inhomogeneous broadening are fabrication imperfections.

In order to incorporate the inhomogeneous broadening to
the stochastic model we add to the detuning of the j th atom
a random quantity ζj that has a Gaussian distribution with
the root-mean-square width �. For instance, with � = ku and
u = √

kBT /m being the thermal velocity, this would be the
standard model for the Doppler broadening of a resonance
line of an atom with mass m at the temperature T . Instead of
the usual Lorentzian resonance line of width γ (normalized
here to the maximum value of one), we use the Voigt profile
(the convolution of a Lorentzian and a Gaussian):

V (	,γ,�) = 1√
2π �

∫
dζ

γ 2

(	 + ζ )2 + γ 2
e
− ζ2

2�2

=
√

π

2

γ

�
Re

[
e

(γ−i	)2

2�2 erfc

(
γ − i	√

2�

)]
, (18)

where erfc stands for the complement of the error function.
We then fit AV (	 − δω,γ,�) to a resonance line, with any
of A, δω, γ , or � regarded as variable parameters as needed,
providing an estimate of the resonance shift δω of the sample
from the atomic resonance ω0.

3. General role of DD interactions

To appreciate qualitatively the effect that the DD interac-
tions have on the atomic response, we display in Fig. 2 the
distribution of nearest-neighbor separations in an atomic gas
of N = 450 atoms corresponding to the experimental setup.
The interatomic separation distance 1/k that represents the
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FIG. 3. Sensitivity of DD interactions to the distance between
an atom and its nearest neighbor. Here two two-level atoms are
positioned so that their axis of separation is perpendicular to the
direction of propagation of the driving plane wave and the dipoles
are perpendicular to the axis of separation. (a) The shift δ of the
superradiant collective mode (blue, solid top curve) and subradiant
mode (red, solid lower curve) of the two atoms as a function of the
distance between them. The dashed lines that bracket the solid lines
indicate the collective widths of the modes. (b) The DD interaction
energy Vdd as a function of the separation distance. The two curves
are for the driving light tuned to the resonance frequency of the
superradiant mode of the atoms when separated by the mean distance
between the atoms in a cloud of N = 450 atoms as in Fig. 2 (solid
line), and to the single-atom resonance (dashed line).

characteristic length scale associated with the dipole radiation
and below which the light-induced DD interactions become
especially strong is highlighted in the plot.

In the case of two atoms, there are two collective eigen-
modes for the optical response, each with a distinct frequency
and decay rate. The frequencies and decay rates are shown in
Fig. 3(a). As a result of the DD interactions mediated by the
electric field, the eigenfrequencies of the nonrelativistic theory
diverge in the limit of vanishing distance between the atoms
as 1/r3. In this same limit the linewidth of one of the modes
approaches 2γ , twice the linewidth of an individual atom, and
the linewidth of the other mode tends to zero. We call these
modes, respectively, superradiant and subradiant [25,60].

Figure 3(b) shows the strength of the DD interaction

Vdd = −DP (1)∗êy · E(2)
S (X1)

−DP (2)∗êy · E(1)
S (X2) + c.c. (19)

as a function of the distance between the two atoms for two
different fixed tunings of the driving light. The interaction
tends to zero at short distances.

Our example presents two important lessons about DD
interactions between two atoms. First, as the characteristic
frequencies of the collective modes δn diverge at short distance,
the external drive will no longer excite the collective modes [cf.
Eq. (16)]; nor will the individual atoms be polarized. Moreover,
even if the DD interaction formally seems to diverge as 1/r3 at
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short distances, the decoupling of the atoms from the driving
light wins out. One might surmise that at very short distances
the DD interaction between two atoms becomes a calamity.
Not so: both atoms drop out of consideration altogether.
Second, when the characteristic distance between the atoms
is comparable to 1/k, their interactions with light depend
sensitively on their relative positions. Local density fluctua-
tions are important, and the conventional electrodynamics for
a many-atom system that assumes that the density of the atoms
is sufficient to characterize their interactions with light is liable
to break down.

B. Coupled dynamics of 87Rb atoms

The multilevel structure of alkali-metal atoms, such as 87Rb,
complicates the collective dynamics of a cold gas with respect
to that of two-level gases [2,3]. Rather than atoms beginning
in a single ground state, they could in principle occupy any
linear combination of Zeeman ground states before the incident
field interacts with the ensemble. Furthermore, different
polarizations of light interact with the various transitions
between Zeeman states in the ground and hyperfine levels
in different ways according to the corresponding Clebsch-
Gordan coefficients. Here, we simulate the response of an
atomic cloud whose atoms are in an incoherent mixture of
Zeeman levels. We will then discuss the dynamics of an
individual stochastic realization, and examine the distributions
of collective resonance frequencies and decay rates that appear
in a dense cloud of atoms.

1. Dealing with Zeeman states

In the experiments the optical pumping process prepares
each atom in an incoherent mixture of Zeeman states |g,M〉
with probabilities pM (

∑
M pM = 1), where M = −g, . . . ,g

indicates the magnetic quantum number of a state in the
hyperfine level g. To account for this incoherent mixture in our
stochastic simulations, for each realization of atomic positions
{X1, . . . ,XN } we also sample a magnetic quantum number Mj

from each atom j according to the probability distribution pM .
In the discussion below the ground-state magnetic quantum
numbers Mj are constants characteristic of one particular
realization of the N -atom sample.

The EM response of each atom is then characterized
by three amplitudes P (j )

Mj ,Mj +σ , where σ = −1,0,1 is an

index indicating the polarization, and P (j )
Mj ,η

is an amplitude
corresponding to the |g,Mj 〉j ↔ |e,η〉j transition. In the low
light-intensity limit, the electric dipole moment is

dj (t) = D
1∑

σ=−1

C(σ )
Mj ,η

êσP (j )
Mj ,η

(t), (20)

where C(σ )
M,η ≡ 〈Feη; 1Fg|FgM; 1σ 〉 are Clebsch-Gordan co-

efficients for the corresponding dipole transition (Ff is the
total atomic angular momentum of hyperfine level f ), and
the polarization vectors are defined in Eq. (2). We use Greek
indices to denote the Zeeman states of the excited level e, and
adopt the convention that repeated Greek indices are summed
over. Here we consider the case Fg = 2 and Fe = 3.

As with two-level atoms, each 87Rb atom j in our system is
driven by the field Eext(Xj ,t), which comprises the incident
field E0 and the scattered fields E(l)

S (l �= j ). As a result,
the amplitudes of the atomic dipoles associated to a given
transition have the dynamics

d

dt
P (j )

Mj η
= (i	Mj η − γ )P (j )

Mj η

+ iξ
∑
l �=j

C(σ )
Mj ,η

G(j l)
σς C(ς)

Ml,ζ
P (l)

Mlζ

+ i
ξ

DC(σ )
Mj ,η

ê∗
σ · ε0E0(r,t), (21)

where the amplitudes are coupled through the DD interaction
between dipoles of orientation êσ and êς ,

G(j l)
σς = ê∗

σ · G(Xj − Xl)êς . (22)

In addition to the incident and scattered electric fields, the
applied B = 1 G bias field in the x direction shifts the
individual Zeeman levels. The resonance frequency of the
|g,M〉 ↔ |e,η〉 transition is shifted so that the incident field is
detuned from that transition by

	Mη ≡ ω −
[
ω0 + μBB

�
(geM − ggν)

]
, (23)

where the Landé g factors are gg ≈ 0.50 and ge ≈ 0.67, and ω0

is the resonance frequency unperturbed by the magnetic bias
field. The total electric field elsewhere except at the position
of the atoms is

E(r,t) = E0(r,t) + D
ε0

∑
j

C(σ )
Mj ,η

G(r − Xj )êσP (j )
Mj ,η

(t). (24)

The steady-state response then follows from

DP (j )
Mj η

= αMj η

∑
σ

C(σ )
Mj ,η

ê∗
σ · ε0Eext(Xj ,t), (25)

where the polarizability now reads

αMj η = − D2

�ε0(	Mj η + iγ )
. (26)

The construction of the collective modes and their use in the
analysis of the response of the system proceeds in the same
way as with the two-level system, except that the vector of
polarization amplitudes b for N atoms is now made of the
3N polarization amplitudes P (j )

Mj η
with η = Mj − 1,Mj ,Mj +

1. In our analysis of the Rb cloud we will also introduce
an inhomogeneous broadening for the resonance frequencies
similarly as it was explained in the case of two-level atoms.

The numerical results shown in this paper have been tested
by two independently developed sets of codes. The codes are
based on a collection of C++ classes capable of handling
an arbitrary angular momentum degenerate multilevel atom
dipole coupled to an arbitrary set of driving fields, etc. The
same numerical methods have also been applied to solving
collective electromagnetic response of plasmonic and mi-
crowave resonator arrays [8,9,39], with appropriate extensions
to include the magnetic properties of these materials.
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IV. NUMERICAL AND EXPERIMENTAL RESULTS

In this section we present numerical simulation results and
experimental findings of the optical response of an atomic
ensemble in an elongated, ellipsoidal trap. The experimental
setup is explained in Sec. II and concerns a cold 87Rb vapor
with several internal electronic ground states participating
in the light scattering processes. In numerical simulations
we also compare the cold-atom simulations with those of a
thermal vapor. We begin by analyzing some generic collective
properties of the atomic ensemble by calculating the collective
radiative excitations modes of the atoms and the corresponding
collective radiative resonance linewidths and line shifts.

A. Cooperative modes

The collective mode characteristics for a particular realiza-
tion of atomic positions strongly influence the response of the
ensemble as a whole. As seen in Eqs. (14) and (15), the closer
the collective resonance frequencies and decay rates are to
those of a single atom, the better the scattering dynamics can
be approximated by independent atoms. A broad distribution
of resonance frequencies or decay rates, as will be evidenced
in Secs. IV B and IV C, alters the optical response.

1. Eigenmodes

Figure 4 shows the distribution of the logarithm of collective
mode decay rates log10(υ/γ ) for cold (homogeneously
broadened) and thermal (inhomogeneously broadened) gases
of 87Rb atoms with N = 450. This distribution represents
the probability density of obtaining a particular value of
log10(υ/γ ) on randomly selecting a collective mode from a
gas with randomly chosen atomic positions. We computed the
distribution numerically from 51200 realizations of atomic
positions.

In a cold gas the number of atoms in the ensemble strongly
influences the width of the distribution of the collective
decay rates. The system may support collective modes with
subradiant and superradiant decay rates spanning several
orders of magnitude. For N = 50 and N = 450 cold 87Rb
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FIG. 4. Distribution of collective mode decay rates in a cloud
of homogeneously broadened (cold) 87Rb atoms (a), and in an
inhomogeneously broadened (hot) cloud in which the single-atom
resonance frequencies have a Gaussian distribution with the root-
mean-square width � = 100γ (b). The samples contain N = 50
(light bottom curve) and N = 450 (dark top curve) atoms. The
distributions were computed from a histogram of the values of
log10(υn) generated by 51200 samples of atomic positions in which
the Zeeman states have initial populations p0 = p1 = p2 = 1/3 and
p−1 = p−2 = 0.
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FIG. 5. Representation in the complex plane of the eigenvalues
associated with the collective modes for a particular realization of
the atomic positions. Each mode is represented by a point, with the
coordinates being the mode resonance frequencies δn and its decay
rates γn. (a) Homogeneously and (b) inhomogeneously broadened
(with a root-mean-square Gaussian width of 100γ ) samples of 450
87Rb atoms.

atoms, one percent of collective modes have decay rates
of less than 0.45γ and 0.39γ , respectively, and the median
linewidths in these samples are 0.98γ and 0.79γ , respectively.
The inhibition of the light-mediated interactions in thermal
ensembles is also shown in the distribution of the decay rates
that is notably narrower. For both N = 50 and N = 450 atoms,
the median linewidth matches that of a single atom, while
one percent of the collective decay rates are below 0.90γ and
0.62γ , respectively. Overall, we find that increasing the density
of cold atoms makes the median value of the linewidth smaller,
and generates a long tail of subradiant mode decay rates.

One can also see how collective modes differ in cold and
thermal gases by examining the joint distributions of δn and
log10 υn. Scatter plots of δn and log10 υn obtained from five
realization of atomic positions in samples of 450 atoms are
shown in Fig. 5. In a cold gas, many of the mode resonance
frequencies are shifted from the single-atom resonance, while
collective decay rates span several orders of magnitude. The
eigenmodes that exhibit larger resonance shifts also tend to
be either fairly subradiant or superradiant and do not have
linewidths that are close to the linewidth of a single isolated
atom, indicating that large resonance shifts are correlated with
the changes in the decay rates. Interestingly, the largest shifts
are not associated with the most subradiant or superradiant
modes.

The distribution of mode resonance frequencies in the in-
homogeneously broadened sample, on the other hand, mostly
reflects the Gaussian distributions of single-atom resonance
frequencies. Furthermore, the collective mode decay rates
closely match single-atom decay rates, indicating that the
atoms respond to light nearly independently.

2. Decay of collective modes

The role different collective decay rates play in the optical
response of the ensemble can be inferred by calculating the
temporal profile of scattered light. Consider a 125 ns square
pulse, tuned to the frequency that, on average, most strongly
scatters from a single 87Rb atom. Here, for simplicity, we
neglect the rise and fall times. After the pulse is turned off,
the collective modes with higher decay rates contribute most
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FIG. 6. Simulated scattered power collected by the lens as a
function of time after a 125 ns square excitation pulse is turned off for
(a) a homogeneously broadened sample, and (b) an inhomogeneously
broadened sample of 87Rb atoms with the Doppler broadening of
100γ . Here the atoms are trapped in a thermal equilibrium during
and after the pulse. We show the intensity scattered into the detection
apparatus (the curves from bottom to top) for the atom numbers
N = 1 (black), N = 5 (red), N = 20 (brown), N = 50 (green),
N = 200 (cyan), N = 325 (blue), and N = 450 (purple). The light
is on single-atom resonance. The varying rates of decay in the
homogeneously broadened sample indicate the participation of both
superradiant and subradiant collective modes, while the constant
decay rates of the inhomogeneously broadened samples at the lowest
atom numbers indicate that the atoms are radiating independently.

strongly to light emission. But later, when more subradiant
modes are present in the ensemble, the reduction in scattered
light intensity slows with time, reflecting the excitation of
subradiant modes that live longer. This behavior is illustrated
for samples of various numbers of atoms in Fig. 6. Samples
with more atoms, and hence broader distribution of decay rates,
produce scattered radiation with a temporal profile that decays
more slowly as time goes on. The deviations of the curves
from straight lines in Fig. 6 indicate the coexistence of different
exponential decay rates in the temporal profile. These represent
non-negligible atom populations of different collective modes
that exhibit different linewidths. In a thermal gas, where
inhomogeneous broadening weakens DD interactions, this
effect of subradiant modes requires higher densities to manifest
itself than in a cold gas.

Using a cold and low density, but optically thick, atom vapor
the effects of subradiance were recently observed [19]. In these
experiments the long tails of the decay distribution indicated
the existence of subradiant mode excitations. Our simulations
show that the signal in a dense gas could be notably enhanced.

B. Experimental measurements of scattered light

The experimental setup was described in Sec. II. Reference
[2] reported measurements of light scattering performed by
sending a series of light pulses on the atomic cloud, hereafter
referred to as the “burst excitation” method. Additional
experimental protocols based on imaging with a single laser
pulse were reported in Ref. [3]. These were used to rule out
potential systematics and check the robustness of the resonance
shift measurements of Ref. [2].

1. Burst excitation method

In the first experiments described in detail in Ref. [2], we
excited the cloud with 125 ns long pulses with flat-top temporal
profile (rise time 7 ns) while the cloud had been released in
free flight for 500 ns. The switching off of the dipole trap
was meant to eliminate light shifts caused by the trapping
laser. The atomic density was nearly frozen during this period.
However, as the amount of scattered light collected in a single
realization of the experiment was very small, corresponding to
less than 10−3 photons, we recycled the cloud many times and
repeated sequences of excitation and recapture two hundred
times with the same cloud of atoms. Excitation pulses were
thus interleaved with 1 μs periods of recapture in the dipole
trap. Further runs were then performed with newly prepared
atomic clouds. The duration of the excitation pulse of T =
2.4/γ = 125 ns results from a compromise: it allows the atoms
to approach the steady state, while minimizing the heating of
the atoms. The choice of the number of sequences of excitation
and recapture is then a trade-off between getting a good signal-
to-noise ratio and avoiding light assisted losses [61] or heating
of the cloud, as both effects would lower the cloud’s density.
We have checked that the temperature of the cloud did not rise
by more than 5% after the entire set of pulses and that less
than 5% of the atoms were depumped in the (5S1/2,F = 1)
hyperfine level.

For each excitation pulse, we recorded the total time-
integrated power of the light scattered by the cloud arriving
at the CCD camera, as shown in Fig. 1. For each number of
atoms, we monitored the amount of scattered light as a function
of the detuning of the excitation laser. As shown in Ref. [2],
the lines are well fit by a Lorentzian. From the fit we extracted
the amplitude A, the shift of the center of the line δωc, as well
as the HWHM γc. The results for the shift and the width are
plotted in Figs. 7 and 8 as a function of the peak atomic density
ρ of the cloud. The latter is calculated from the measurement
of the number of atoms, the temperature, and the knowledge
of the trapping potential. Each point, for a given atom number,
corresponds to an average over typically 1000 newly loaded
clouds. We observe a small redshift (|δωc| � 0.3γ ) and a
broadening of the line, showing a sharp increase with the
density for ρ � 1014 at/cm3.

Let us consider now an incident field tuned to the frequency
that maximizes the scattered intensity from a single atom. If
N atoms were to scatter independently, the fluorescence of the
ensemble would be N times that of a single atom. We find
that the light scattered in the z direction at resonance does not
increase linearly with the number of atoms as one would expect
for noninteracting atoms, but actually increases more slowly.
It is shown in Fig. 9 that this is also the case off resonance.
We observe that the amount of scattered light is strongly
suppressed on resonance as the number of atoms increases,
and that we gradually recover the behavior of noninteracting
atoms as we detune the laser away from resonance.

2. Complementary protocols

To rule out possible systematics due to the repetition of
excitation pulses, we performed complementary measure-
ments using the protocol described above [3] but where we
reduced the number of pulses per burst [62]. The results, which
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FIG. 7. Line shift as a function of the atom density. Filled
red circles: excitation with bursts of 200 light pulses; each point
corresponds to a different number of atoms. Upper and lower
red triangles: excitation with respectively 75 and 1 pulses per
burst. Empty red circles: excitation with one pulse after a variable
time of flight; the cloud contains ∼450 atoms. The shaded area
indicates the laser linewidth of ±0.3γ . The error bars on the
densities result from the cumulated measurement uncertainties on
the trap size (∼10%), atom number (∼10%), and temperature
(∼10%). Decreasing values of the density correspond to time of
flights 	t = (0.7,1.7,2.7,3.7,4.7,6.7,8.7,20.7) μs. Error bars on the
experimental shift are from the fit of the fluorescence resonance
spectrum by a Lorentz function. Numerical simulations: shift of the
line for homogeneously (black empty squares) and inhomogeneously
broadened samples with root-mean-square spectral broadening of
10γ (blue crosses), 20γ (brown diamonds), and 100γ (green circles).
Error bars: 95% confidence intervals on the shift obtained from the fit
of the spectrum to the Voigt profile (see text). Dashed line: estimated
Lorentz-Lorenz shift.
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FIG. 8. Full width at half maximum of the lines from the exper-
iments where many bursts are sent onto the cloud (purple squares),
and from probing the cloud after a time-of-flight measurement (red
circles). Also shown are the results of the burst experiment for
different number of pulses sent onto the cloud. The open square
corresponds to 350 atoms, at 190 μK, probed with a single pulse.
Open circle: 350 atoms at 140 μK, one pulse. Open triangle: 340
atoms at 150 μK, 75 pulses. Error bars on the densities: same as in
Fig. 7. Error bars on the width are from the fit of the fluorescence
spectrum to a Lorentz function. The solid and dashed lines are
phenomenological fits by a power law to the burst and time-of-flight
method data, respectively.
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FIG. 9. Amount of scattered photons Nph(N,	) detected in the
z direction, vs the number of atoms N , for different detunings 	 of
the laser. The number of detected photons for each atom number is
normalized to the single atom case, Nph(1,	), at the same detuning.
The detunings are 	 = 0 (red circle), 	 = ±2γ (up and down open
triangles), and 	 = ±5γ (up and down filled triangles). Red line:
result of the numerical simulation of a homogeneously broadened
gas.

we report in Figs. 7 and 8, do not indicate any significant
change. While this does not entirely exclude the possibility
of variations of the density during a single pulse, it does
rule out the possible cumulative effect from sending several
pulses on the same cloud. Finally, we performed measurements
with excitation intensities at even lower levels (down to
I/Isat = 0.001). We still did not see any significant shift in
the resonance.

In order to check for the robustness of the absence of the
shift in a cold atomic sample, we also implemented a new
protocol for the excitation. Instead of varying the density by
modifying the atom number we change the geometry of the
cloud. After having trapped ∼450 atoms, we switched off
the trap and varied the free-flight period 	t during which
the density of the atoms drops as N/[(2π )3/2σxσyσz], with
σ 2

i (	t) = σ 2
i (0) + kBT (	t)2/m (i = x,y,z), and the aspect

ratio of the cloud evolves from a highly elongated cigar-shaped
cloud to a spherical cloud. We then imaged the atoms with a
2 μs pulse at a given detuning and repeated the experiment
∼1000 times using a new cloud each time. The results for
the resonance shifts and widths are shown in Figs. 7 and
8 as a function of the peak density of the cloud at the
beginning of the excitation pulse [63]. The density is again
deduced from the independent measurements of the trap size,
atom number, and temperature of the cloud. Importantly,
the various experimental protocols were implemented over a
period of several months and with numerous adjustments to the
experimental apparatus, but the results consistently indicate a
very small resonance shift, and a broadening of the line with
the same general shape.

C. Simulations of the optical response

The basic procedures of the numerical simulations of the
multilevel 87Rb experiment are described in Sec. III B where
we model the experimental setup described in Sec. II. The
inhomogeneous broadening is introduced using the techniques
explained in Sec. III A 2. From the response of the atomic
dipoles to the incident field, we then calculate the intensity
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scattered into the detection apparatus as in the experimental
configuration: the lens with numerical aperture 0.5 gathers
light in the far field centered on the −z direction, and the
signal passes through a polarizer rotated about −êz by 55◦
from the x axis.

1. Fluorescence spectrum

Figure 10 shows the integrated scattered intensity as a
function of 	 = ω − ω′

0 for numbers of atoms N = 1–450,
where ω′

0 is the frequency at which a single 87Rb atom
scatters the most incident light in the presence of the magnetic
field. Calculations on few-atom cold ensembles produce the
expected Lorentzian line shapes for the spectra of the scattered
intensity. As N increases, the spectral response begins to
deviate from the independent atom scattering both in width and
in the power of scattered light [2]. The spectral response in the
numerics becomes both broader and more asymmetric, with
a fat tail that drops off more slowly for red-detuned incident
fields than for blue detuning. As the numerically calculated
spectrum cannot be modeled by a Lorentzian, extracting the
value of the width is difficult. More quantitative comparisons
between the theory and the measurements may be obtained
from (1) the shift of the resonance and (2) the suppression of
the computed peak fluorescence per atom relative to that of a
single atom.

2. Resonance shifts

Figure 7 shows the experimental shifts, which are deduced
from Lorentzian fits to the measured spectra, together with
the shifts deduced from the coupled-dipole simulations by
simply taking the detunings corresponding to the maxima of
the fluorescence intensity. Both shifts are negligible over the
range of densities explored here, and are generally smaller than
the linewidth of the laser ∼γ /3 in the experiments.

By contrast, in the simulations we may also introduce the
Doppler broadening associated with the thermal Maxwell-
Boltzmann distribution of the atomic velocities, and find the
resonance shift by fitting to a Voigt line shape. We find
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FIG. 10. (a) Scattered intensity from an ensemble of 87Rb atoms
as a function of detuning 	. Light is scattered from an ensemble (the
curves from bottom to top) with N = 1 (black), N = 5 (red), N = 20
(brown), N = 50 (green), N = 200 (cyan), N = 325, and N = 450
(purple) atoms. (b) Relative fluorescence as a function of number
of atoms for homogeneously (black squares) and inhomogeneously
broadened samples with root-mean-square spectral broadening of
10γ (red crosses), 20γ (brown diamonds), and 100γ (green circles).
The dashed line denotes the result for noninteracting atoms.
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FIG. 11. Light scattered from an inhomogeneously broadened
(100γ ) sample of 450 atoms in the presence of a 1 G magnetic field
as a function of driving frequency. The scattered intensity calculated
from numerical simulations and the fit to the Voigt profile are virtually
indistinguishable.

notably larger shifts [3]. For the Doppler width of 10γ ,
corresponding to the temperature of 5.5 K, the shift is, e.g., at
the density ρ = 2.4 × 1014cm−3, already 50 times larger than
the stationary-atom result. Increasing the Doppler broadening
further has a weaker effect on the shift. The quality of the
fit of the Doppler-broadened line shape to the Voigt profile is
illustrated in Fig. 11.

In continuous effective-medium electrodynamics a natural
energy scale for the resonance shifts is the Lorentz-Lorenz
(LL) shift 	LL = −2πγρ/k3, and at low atom densities
ρ one expects a shift of a resonance ∝ ρ/k3 also from
dimensional analysis. We may estimate the LL shift by ρ

at the center of the trap (dashed line in Fig. 7). We find
that the LL shift is absent both in the experiments and in
the electrodynamics simulations of a cold gas. By contrast,
introducing inhomogeneous broadening restores a resonance
shift that is roughly equal to the LL shift 	LL, as illustrated in
Fig. 7.

The difference between the optical responses of the cold
and thermal atomic ensembles may be understood by the
change in the light-induced DD interactions. With increasing
inhomogeneous broadening the atoms are simply farther away
from resonance with the light sent by the other atoms, which
reduces the light-mediated interactions [1]. Moreover, the
response of a cold, dense vapor is characterized by the many-
atom collective excitation modes. In our case (this generally
depends on the geometry of the sample and the excitation
protocol [64]) the highly excited modes exhibit resonance
frequencies close to the single atom resonance, and the shift
in the observed spectrum consequently is small. In contrast, in
thermal ensembles the shift can be qualitatively attributed to
the standard local-field corrections [65,66] that give rise to the
LL shift.

3. Scattered intensity

In addition to the absence of the resonance shift, the
collective response suppresses the resonant fluorescence.
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FIG. 12. Differences between the responses to the steady-state
and pulsed laser excitations. Left: the time-integrated intensity
scattered from N = 450 atoms. Each curve is normalized to the peak
time-integrated intensities scattered from a single atom driven by
the incident field corresponding to that curve. Right: the peak relative
fluorescence (at the frequency that maximizes scattering from a single
atom) of the time-integrated intensity as it depends on the number of
atoms. Curves from bottom to top: the steady-state response (black),
a smoothed square pulse [Eq. (28)] (green), and a square [Eq. (27)]
(blue).

The numerical calculations predict the suppression of the
scattered light when the number of atoms increases [2,61].
The homogeneously broadened case, as shown in Fig. 9, is in
good agreement with the experimental data for N � 50. For
N � 50, the agreement is only qualitative, as the effects of
the dipole-dipole interactions are found to be less pronounced
experimentally.

By contrast, as shown in Fig. 10(b), adding a small
amount of inhomogeneous broadening reduces the suppression
of the scattering. The fluorescence of the inhomogeneously
broadened samples eventually also approaches the ideal
limit of noninteracting atoms as the broadening reduces the
interactions.

4. Finite pulse duration

The results shown thus far indicate how the ensemble
of atoms would scatter in the steady state when exposed
to a monochromatic driving field of frequency ω. In the
experiments, on the other hand, the atoms are excited by a
pulse with a carrier frequency ω that is about 125 ns long. The
apparatus then captures the scattered intensity integrated over
time for each pulse. The spectral width of the driving pulse
would tend to smoothen out some of the features that appear in
the steady-state responses, since the time integrated response
is proportional to a convolution of the pulse spectrum with the
steady-state spectral response.

Figure 12 compares the response of ensembles of 87Rb
atoms to two pulse profiles and to the steady-state illumination.
One pulse is a square pulse with the temporal profile

Esq(t) = E0êin�(t)�(T − t), (27)

where T is 125 ns. The second is a smoothed square pulse that
closely resembles the experimental pulse profile,

Esm(t) = E0

√
1

1 + exp
( − t−ton

	t

) − 1

1 + exp
( − t−T −ton

	t

) .

(28)
Here T � 124 ns and 	t � 7.56 ns is the pulse rise and fall
time.

The scattered intensities shown in Fig. 12 are normalized
to the peak single-atom integrated intensity for the respective
pulse shape. Since the smoothed pulse is spectrally narrower
than the square pulse, the resonance width is consistently
slightly narrower than that of the square pulse. Both pulsed ex-
citations, however, are broader than the steady-state response.
The relative fluorescence of the smoothed pulse is also slightly
smaller than that of the square pulse, but not suppressed as
much as that of the steady state.

5. Ground-state populations and Zeeman splitting

In the simulations discussed until now the populations of the
initial state of the Rb atoms were always p0 = p1 = p2 = 1/3.
Our next topic about the simulations is the question about the
sensitivity of the results to the initial state of the atom.

Figure 13 shows both the fluorescence line shape for a
fixed large (N = 450) number of atoms and the fluorescence
intensity on resonance for a variable number of atoms for three
different initial level populations of Rb, and indeed for the
hypothetical two-level atom. The left-hand side panel shows
that the level structure has a significant quantitative effect on
the fluorescence intensity, but not on the line shift that was
the object of our comparisons with the experiments. In the
right-hand side panel the fluorescence intensities for different
atom numbers are normalized to the maximum fluorescence
intensity for a single atom with the same level structure and
initial state. There is an effect from the level structure, but,
when viewed in this way, it is not particularly dramatic.

In addition, we have tested the robustness of the simulation
results to various other parameters in the experiments and have
found no notable changes in the resonance shifts. For example,
the Zeeman splitting due to the 1 G magnetic field in the simu-
lations does not significantly modify the response as compared
with the zero field case. In a dense ensemble of 87Rb atoms the
main effect is to provide a slightly narrower resonance peak
with a more recognizable “hump” on the red-detuned side of
the peak than in the absence of the magnetic field.
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FIG. 13. Left: the effects of Zeeman state populations on scat-
tered intensity for an ensemble of N = 450 87Rb atoms. The curves
from top to bottom: the scattered intensity from two-level atoms
(black), from 87Rb with p2 = 1 (blue), p2 = p1 = p0 = 1/3 (green),
and pj = 1/5 for all j (red). Right: relative fluorescence as a function
of number of atoms, for an incident field tuned to a single atom’s peak
fluorescence. The scattered intensity from an ensemble of atoms is
normalized to the maximum of the scattered intensity from a single
atom. The curves from top to bottom: the scattered intensity from
87Rb with pj = 1/5 for all j (red), two-level atoms (black), 87Rb
with p2 = p1 = p0 = 1/3 (green), and p2 = 1 (blue). The magnetic
field is equal to zero.
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V. CONCLUDING REMARKS

It has previously been shown in the case of coherent
light transmission that in dense, homogeneously broadened
atomic ensembles strong light-mediated interactions and the
resulting light-induced correlations can lead to a dramatic and
qualitative failure of standard continuous effective-medium
electrodynamics [1,43]. This is because the standard textbook
theory of optics [65,66] represents an effective-medium mean-
field theory that assumes each atom interacting with the
average behavior of the surrounding atoms. In such models
the spatial information about the precise locations of the
pointlike atoms—and the corresponding details of the position-
dependent DD interactions—is washed out, resulting in the
absence of the light-induced correlations.

In the presence of inhomogeneous broadening the results
of the standard electrodynamics of continuous polarizable
medium, however, can be restored [1]. At sufficiently high
temperatures, the simulations qualitatively agree with the
standard established models of resonance line shifts, the LL
shift, and its similarly mean-field theoretical collective (finite-
size) counterpart, the “cooperative Lamb shift” [67]. The
microscopic mechanism for the emergence of the continuous
medium electrodynamics is the suppression of the light-
mediated resonant DD interactions between the atoms: with
increasing inhomogeneous broadening the atoms are simply
farther away from resonance with the light scattered by the
other atoms. Formally, one can show [1] that in thermal ensem-
bles each recurrent scattering event is suppressed by the factor
∼γ /�, where � denotes the width of the inhomogeneous
broadening.

Here we have explained in detail and extended our work
of Refs. [2,3] on near-resonance light scattering from small
clouds of cold or thermal atoms. We illustrated a substantially
different behavior of resonance fluorescence of trapped, cold
Rb atoms from that of thermal atoms. In our analysis we
performed side-by-side comparisons between experimental
observations and large-scale numerical simulations of reso-
nance fluorescence in a dense cloud of 87Rb atoms. Both
the experiment and stochastic simulations demonstrate the
emergence of collective DD interactions that dramatically
alter the optical response as the number of atoms is gradually
increased. We found that both the cold-atom simulations and
the experimental observations of the resonance line shifts

and the total collected scattered light intensity substantially
deviate from those of thermal atomic ensembles. In particular,
a density-dependent resonance shift of a thermal atomic
ensemble is almost entirely absent in a cold atomic cloud.
Our numerical models of fluorescence are also more involved
than those of light transmission in Ref. [1], and incorporate
the experimental setup in detail, including the inhomogeneous
atom densities due to the trapping potential, the internal
multilevel structure of 87Rb, and the imaging geometry with
the optical components (e.g., lenses and polarizers).

Moreover, we analyzed the effect of strong light-mediated
interactions between the atoms by calculating the collective
radiative excitation eigenmodes of the system. As a result
of light-induced DD interactions, the response of the sample
becomes collective, exhibiting collective radiative resonance
linewidths and line shifts including those with subradiant and
superradiant character. When the collective radiative decay
rates are far from those of a single isolated atom, the optical
response of the cloud cannot be approximated by the one
consisting of independent atoms, and a broad distribution of
decay rates is an indication of strong DD interactions.

The role of collective excitation eigenmodes in the optical
response is in particular illustrated by the calculation of the
temporal profile of the decay of light-induced excitations
after the incident laser pulse is switched off. At high atom
densities the simulations predict a significantly slower decay
for cold than for thermal atom clouds. In a logarithmic
scale the calculated scattered power notably deviates from
a straight line, indicating non-negligible occupations of (both
superradiant and subradiant) collective modes with different
radiative linewidths.

The data presented in the paper can be found in Ref. [68].
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