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Phase-dependent multiple optomechanically induced absorption in multimode optomechanical
systems with mechanical driving
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We investigate theoretically the response of the output field from an optomechanical system consisting of N

nearly degenerate mechanical resonators each coupled to a common cavity mode. When the cavity is driven
simultaneously by a strong control field and a weak probe field and each mechanical resonator is driven by a
coherent mechanical pump, we obtain the analytical expression for the probe transmission. We show that the
probe transmission spectrum can exhibit multiple optomechanically induced absorption (OMIA) with at most N

narrow absorption dips, which can be tuned by the phase and amplitude of the mechanical driving field as well
as the control field. Moreover, it is shown that the peak probe transmission can be enhanced or suppressed by
increasing the amplitude of the mechanical pump, which depends on the phase difference. This phase-dependent
effect plays an important role in controlling the propagation of the probe field between OMIA and parametric
amplification.
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I. INTRODUCTION

The rapidly developing field of cavity optomechanics
studies the interaction between the optical and mechanical
degrees of freedom via radiation pressure. It provides an
effective platform to observe quantum-mechanical behavior
of macroscopic objects and has potential applications in
ultrasensitive measurements and quantum information pro-
cessing [1–3]. A generic optomechanical system consists of
a Fabry-Pérot cavity where one mirror is fixed but another is
free to move around its equilibrium position as a mechanical
resonator. In the presence of a strong control field and a weak
probe field, the electromagnetic response of the system is
modified due to the radiation-pressure-induced mechanical
oscillation, resulting in the phenomena of optomechanically
induced transparency (OMIT) [4–11], optomechanically in-
duced absorption (OMIA) [12–14], and parametric amplifi-
cation [15] in various optomechanical systems. OMIT and
OMIA are the optomechanical analogs of electromagnetically
induced transparency (EIT) [16,17] and electromagnetically
induced absorption (EIA) [18], which were first observed in
atomic vapors and then in solid-state systems. Similar to EIT,
OMIT can be used for controlling the group delay of light
signals [19,20] and storing optical information in long-lived
mechanical oscillations [21,22].

Moreover, more complicated interference effects appear if
the mechanical resonator is driven by an additional coherent
driving field. One unique advantage of the mechanical pump
in optomechanical systems is that it can produce mechanical
coherence directly, which is similar to generating atomic
coherence in phaseonium systems by the direct drive at the
microwave frequency [23]. Meanwhile, coherent oscillation
of the mechanical resonator can be induced by the radiation
pressure force at the beat frequency between the strong control
field and weak probe field. The probe field can interfere with
the control field scattered by the mechanical-pump-induced
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mechanical mode and radiation-pressure-induced mechanical
mode. It is shown theoretically that the phase and amplitude
of the mechanical pump can be used to control the probe
transmission spectra [24,25], the group delay of the output
probe field [26], and the process of second-order sideband
generation [25,27]. Experimentally, cascaded optical trans-
parency combined with extended optical delay and optical
advancing have been demonstrated in a multimode-cavity
optomechanical system by applying both an optical pump and
a mechanical pump [28].

Recently, multimode optomechanical systems comprising
more than two active degrees of freedom have attracted
significant research interest [13,28–31]. On the one hand, by
coupling two electromagnetic cavities with different resonant
frequencies to a single mechanical resonator, one can realize
frequency conversion between the two light fields [32–36]. On
the other hand, a single electromagnetic cavity can couple with
multiple mechanical resonators, leading to the hybridization
between two mechanical modes [37], the preparation for
the two-mode squeezed states [38], and the double OMIT
phenomenon [39,40], which has also been investigated in an
optomechanical system with a two-level atom [41]. In addition,
Buchmann and Stamper-Kurn derived a general and complete
master equation for the behavior of the two nondegenerate
mechanical modes interacting via weak coupling to a common
cavity field [42].

In this paper, we provide a theoretical study of a phase-
dependent multiple OMIA phenomenon in a multimode op-
tomechanical system in the presence of a strong coupling field,
a weak probe field, and weak coherent mechanical driving
fields. We demonstrate that there are at most N absorption
dips in the probe transmission spectrum when the coupled
system has N mechanical resonators with slightly different
resonant frequencies. Furthermore, a detailed analysis shows
that the probe transmission spectrum can be effectively tuned
by the combination of the control field and the mechanical
driving fields. In contrast to previous works about generic
optomechanical systems with mechanical driving [24–27], in
which only red sideband was considered, here we investigate
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the multiple OMIA and amplification in a general multimode
optomechanical system driven on the blue sideband of the
cavity.

II. MODEL AND THEORY

We consider an optomechanical system where N me-
chanical resonators with slightly different frequencies are
individually coupled to a common cavity field, as shown in
Fig. 1. In the microwave domain [see Fig. 1(a)], the microwave
cavity may be described by an equivalent inductance L and an
equivalent capacitance C; the bare resonance frequency of the
cavity is then given by ω0 = 1/

√
LC [7]. The motion of each

mechanical resonator, expressed as time-varying capacitors
Ck , independently modulates the total capacitance and there-
fore the resonance frequency of the cavity. The interaction is
described by the Hamiltonian Ĥint = ∑N

k=1 �Gkx̂kâ
†â, where

Gk = (ω0/2C)∂Ck/∂xk denotes the change in the cavity
resonance frequency for a given mechanical displacement
x̂k and â (â†) is the annihilation (creation) operator of the
cavity mode [15,20,30]. In the optical version [Fig. 1(b)],
a multimode optomechanical system can be pictured as a
Fabry-Pérot cavity containing N membranes. In both domains,
we assume that the cavity is driven by a strong control field
with frequency ωc and a weak probe field with frequency

FIG. 1. Schematic diagram of the multimode optomechanical
systems consisting of N mechanical resonators each coupled to
a common cavity. The cavity is driven by a strong control field
and a weak probe field, and each mechanical resonator is driven
by a coherent mechanical pump at the beat frequency � between
the probe field and control field. (a) Circuit optomechanical system
with the microwave cavity represented by the equivalent inductance
L and capacitance C. The displacement xk of each mechanical
resonator results in a time-varying capacitor Ck and independently
modulates the total capacitance C and, hence, the cavity frequency.
(b) Optomechanical system with N membranes placed inside an
optical cavity.

ωp simultaneously. Meanwhile, each mechanical resonator is
driven by a weak coherent mechanical pump with amplitude
εm, frequency � = ωp − ωc, and phase φm. In a rotating frame
at the frequency of the control field ωc, the Hamiltonian of the
multimode optomechanical system can be written as [29,30]

Ĥ = ��0â
†â +

N∑
k=1

(
p̂2

k

2mk

+ 1

2
mkω

2
k x̂

2
k

)

+
N∑

k=1

�Gkx̂kâ
†â + Ĥdr , (1)

where �0 = ω0 − ωc is the detuning of the control field from
the bare cavity frequency ω0. x̂k and p̂k are the displacement
and momentum operators of the kth mechanical resonator
having effective mass mk and resonance frequency ωk . Ĥdr

describes the interaction between the optomechanical system
and the driving fields [24–27]:

Ĥdr = i�
√

ηcκ/2[(εc + εpe−i�t−iφp )â† − H.c.]

− 2
N∑

k=1

x̂kεmcos(�t + φm), (2)

where κ is the total decay rate of the cavity and consists of
an intrinsic decay rate κ0 and external decay rate κex . The
coupling parameter ηc = κex/(κex + κ0) can be experimentally
adjusted, and we choose ηc = 1/2 in this work. εc and εp

are the amplitudes of the control field and the probe field,
and they are related to their powers by

√
2Pc/�ωc and√

2Pp/�ωp, respectively. φp is the phase difference between
the probe field and control field, and we have assumed that
the frequency of the mechanical driving field is equal to the
frequency detuning between the probe field and control field.
Applying the Heisenberg equations of motion for the cavity
and mechanical modes and neglecting the quantum noise and
thermal noise terms [20], we have

d

dt
â = −

[
κ/2 + i

(
�0 +

N∑
k=1

Gkx̂k

)]
â

+
√

ηcκ/2(εc + εpe−i�t−iφp ), (3)

d

dt
x̂k = p̂k

mk

, (4)

d

dt
p̂k = −mkω

2
k x̂k − �Gkâ

†â + 2εmcos(�t + φm) − γkp̂k,

(5)

where the decay rates for the cavity (κ) and mechanical
resonators (γk) have been introduced phenomenologically. We
can obtain the steady-state solutions for the intracavity field
and mechanical displacement by setting all the time derivatives
in Eqs. (3)–(5) to be zero, which obeys the following algebraic
equations:

ā =
√

ηcκ/2

κ/2 + i�̄
εc, (6)

mkω
2
k x̄k + �Gk|ā|2 = 0, (7)
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where �̄ = �0 + ∑N
k=1 Gkx̄k is the effective cavity detuning

including radiation pressure effect.
Since the probe field is much weaker than the control

field, we can rewrite each Heisenberg operator as the sum
of its steady-state mean value and a small fluctuation, i.e.,
â(t) = ā + δâ(t) and x̂k = x̄k + δx̂k(t). Then, keeping only
first-order terms in the small quantities δâ, δâ†, and δx̂k , we
can obtain the linearized Heisenberg-Langevin equations as
follows:

d

dt
δâ(t) = −(κ/2 + i�̄)δâ − i

N∑
k

Gkāδx̂k(t)

+
√

ηcκ/2εpe−i(�t+φp), (8)

d2

dt2
δx̂k(t) + γk

d

dt
δx̂k(t) + ω2

kδx̂k(t)

= −�Gk

mk

ā[δâ(t) + δâ†(t)] + 2εm

mk

cos(�t + φm), (9)

where the neglected nonlinear terms such as δx̂kδâ and δâ†δâ
can result in second-order sidebands [8,27]. Note that the
system is stable only if all the eigenvalues associated with
the linearized equations (8) and (9) have negative real parts.
The stability condition can be derived by applying the Routh-
Hurwitz criterion [43], whose general form is too cumbersome
to give here. However, we have checked numerically that
the parameters we choose in this paper satisfy the stability
condition. Since the drives are classical coherent fields, we
will identify all the operators with their expectation values,
viz., 〈δâ(t)〉 = δa(t) and 〈δx̂k(t)〉 = δxk(t). In order to solve
Eqs. (8) and (9) we introduce the following ansatz: δa(t) =
A−e−i�t + A+ei�t and δxk(t) = Xke

−i�t + X∗
k e

i�t . We are
interested here in the resolved sideband regime (κ � ωk) and
close to the blue (�̄ = −ωm) sideband of the control field,
where ωm is the average frequency of N mechanical resonators.
In this case, the lower sideband A+ is far off resonance and
can be neglected. Upon substituting the above ansatz into
Eqs. (8) and (9), we can obtain the amplitude A− of the cavity
field,

A− =
√

ηcκ/2εpe−iφp

κ/2 − i(� + ωm) + ∑N
k �G2

k|ā|2χ (mk,ωk)

+
∑N

k Gkāχ (mk,ωk)εme−iφm

κ/2 − i(� + ωm) + ∑N
k �G2

k|ā|2χ (mk,ωk)
,

(10)

where

χ (mk,ωk) = 1

2mkωk[−γk/2 + i(� + ωk)]
. (11)

The first term in Eq. (10) is the contribution from the probe
and the control field, which gives rise to the usual optome-
chanically induced absorption and parametric amplification.
The second term is the contribution from the phonon-photon
parametric process involving the driving on the mechanical
resonators.

The output field from the optomechanical
cavity can be found using the input-output

relationship

aout(t) = ain(t) −
√

ηcκ/2a(t)

= (εc −
√

ηcκ/2ā)e−iωct

+ (εpe−iφp −
√

ηcκ/2A−)e−iωpt

−
√

ηcκ/2A+e−i(2ωc−ωp)t . (12)

Defining the transmission of the probe field as t =
(εpe−iφp − √

ηcκ/2A−)/(εpe−iφp ), we can get

t = t1 + t2, (13)

with

t1 = 1 − ηcκ/2

κ/2 − i(� + ωm) + ∑N
k �G2

k|ā|2χ (mk,ωk)
, (14)

t2 = −
√

ηcκ/2
∑N

k Gkāχ (mk,ωk)εm/εpe−iφ

κ/2 − i(� + ωm) + ∑N
k �G2

k|ā|2χ (mk,ωk)
, (15)

where φ = φm − φp is the phase difference between two
sources. t1 is the expression for the probe transmission without
mechanical pump, which has been discussed in previous
work with a single mechanical resonator [12]. t2 represents
the modification of the probe transmission induced by the
mechanical driving field. Interference between t1 and t2
determines the probe transmission spectrum, in which the
control power Pc, the phase difference φ, and the amplitude
εm of the mechanical driving field play an important role.

III. RESULTS AND DISCUSSION

In this section, we will numerically investigate the trans-
mission spectrum of the probe field when the common
cavity field is coupled to N mechanical resonators. For
simplicity, we first consider the optomechanical systems with
two mechanical resonators with slightly different frequencies.
The parameters used are chosen from a recent experiment
[30]: ω0 = 2π × 6.98 GHz, ω1 = 2π × 32.1 MHz, ω2 =
2π × 32.5 MHz, κ = 2π × 6.2 MHz, γ1 = γ2 = γm = 2π ×
930 Hz, m1 = 557 fg, m2 = 534 fg, G1 = 2π × 1.8 MHz/nm,
G2 = 2π × 2 MHz/nm. Here and below, we consider only the
situation where the cavity field is driven on its blue sideband
(�̄ = −ωm).

In the absence of mechanical driving, the probe trans-
mission |t |2 is plotted as a function of (� + ω1)/2π for
Pc = 2 nW in Fig. 2. We can see that there are two very
narrow absorption dips in the center of the figure, and the insets
show clearly that the two dips locate at (� + ω1)/2π = 0
and (� + ω1)/2π = −0.4 MHz. Using the chosen values of
the mechanical resonance frequencies, we can find that the
two absorption dips locate, respectively, at � = −ω1 and
� = −ω2 in the probe transmission, which can be called
double optomechanically induced absorption. Similar to the
single OMIA in other optomechanical systems [6,12], this
phenomenon can be understood as a result of a radiation
pressure force at the beat frequency � between the probe
and control photons. When this frequency difference is close
to the mechanical resonance frequency, � = −ωk (k = 1,2),
the mechanical mode starts to vibrate coherently, generating
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FIG. 2. Probe transmission versus the probe detuning (� +
ω1)/2π without mechanical driving when the control field is blue
detuned by the amount of ωm = (ω1 + ω2)/2 with Pc = 2 nW. The
insets show the two sharp absorption dips close to � = −ω1 and
� = −ω2 on an enlarged scale. Other parameters are ω0 = 2π × 6.98
GHz, ω1 = 2π × 32.1 MHz, ω2 = 2π × 32.5 MHz, κ = 2π × 6.2
MHz, ηc = 0.5, γ1 = γ2 = γm = 2π × 930 Hz, m1 = 557 fg, m2 =
534 fg, G1 = 2π × 1.8 MHz/nm, G2 = 2π × 2 MHz/nm. We fix
εp = εc/1000 throughout this work since the probe field should
be much weaker than the control field; otherwise, the perturbation
method will be invalid.

Stokes and anti-Stokes scattering of light from the strong
control field. If the cavity is driven on its blue sideband
(ω0 − ωc ≈ −ωm) and the system operates in the resolved-
sideband regime (ω1 > κ and ω2 > κ), the anti-Stokes field at
ωc + ωk is strongly suppressed because it is off resonant with
the cavity field and we can assume only the Stokes field at
ωc − ωk builds up within the cavity. Furthermore, constructive
interference between the Stokes field and the degenerate probe
field can enhance the buildup of the intra-cavity probe field.
The increased absorption of probe photons into the cavity
manifests itself as the reduced probe transmission at � = −ω1

and � = −ω2. It should be noted that there is only a single
absorption dip when the two mechanical resonators have the
same resonance frequency and no direct interaction.

In the rest of the paper, we mainly investigate the effect of
mechanical driving on the transmission spectrum of the probe
field. Here we assume for simplicity that each mechanical
resonator is driven by a coherent mechanical pump with the
same amplitude εm, frequency �, and phase φm. In general,
each mechanical resonator can be driven independently. It is
shown in Fig. 2 that there are two absorption dips in the probe
transmission. Without loss of generality, we just need to focus
on investigating one absorption dip and the other should be
similar. It should be pointed out that those two mechanical
modes are separated by a frequency much larger than the
mechanical damping rate γm so that the two absorption dips
don’t overlap. Figure 3 plots the peak probe transmission |tp|2
at � = −ω1 (i.e., |tp|2 = |t |2�=−ω1

) as a function of phase
difference φ and amplitude εm of the external driving force
under the same control power Pc = 2 nW. It can be seen that
with the increase of the driving amplitude, the effect of phase
difference φ on the peak probe transmission |tp|2 becomes
more evident. The peak probe transmission |tp|2 reaches the
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FIG. 3. Contour plot of the peak probe transmission |tp|2 at � =
−ω1 as a function of phase difference φ and amplitude εm of the
external driving force for a constant control power Pc = 2 nW. Other
parameters are the same as in Fig. 2.

maximum near φ = π/2 and the minimum near φ = 3π/2
under the same amplitude εm, which can be explained by the
process of interference. Moreover, it is shown that the peak
probe transmission can exceed 1 when εm becomes larger
than a critical value in a certain range of phase difference.
Therefore, the system can easily switch from double OMIA
to parametric amplification by controlling the phase and
amplitude of the mechanical driving force.

In order to see the effect of mechanical driving more
clearly, we plot the probe transmission spectra versus probe
detuning (� + ω1)/2π with different mechanical pumps in
Fig. 4. In the case without the mechanical driving (εm = 0),
there is a reduced probe transmission |t |2 at � = −ω1. When
the mechanical driving force is applied to the mechanical
resonator with εm = 12 fN, the probe transmission is greatly

(a) (b)

(c) (d)

FIG. 4. Probe transmission spectra as a function of probe detun-
ing (� − ω1)/2π with different values of εm and φ. Other parameters
are the same as in Fig. 2.
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FIG. 5. Plots of |tp|2, |t1p|2, and |t2p|2 at � = −ω1 as a function
of the mechanical driving force εm for (a) φ = π/2 and (b) φ = 3π/2.
Other parameters are the same as in Fig. 2.

enhanced for φ = π/2 or further reduced for φ = 3π/2, as
shown in Fig. 4(a). Hence, the phase-dependent effect is quite
evident. Figures 4(b)–4(d) present the transmission spectra
as a function of (� + ω1)/2π for different amplitudes of
the mechanical driving with φ = 0, φ = π/2, and φ = 3π/2,
respectively. When φ = 0 and φ = π/2, the peak probe trans-
mission at � = −ω1 is enhanced monotonically by increasing
the amplitude of the mechanical driving. However, increasing
the amplitude of the mechanical driving does not always bring
an enhancement of the probe transmission when φ = 3π/2.
If the mechanical driving is weak, εm � 7 fN, for example,
the peak probe transmission decreases with the increase of εm,
but when εm is further increased to 20 fN, we can see that the
peak probe transmission is enhanced. Such a phase-dependent
effect makes the probe transmission spectrum more tunable in
optomechanical systems with mechanical driving.

To gain a more physical origin for the above phase-
dependent effects, we plot |tp|2, |t1p|2, and |t2p|2 at � =
−ω1 (i.e., |t1p|2 = |t1|2�=−ω1

and |t2p|2 = |t2|2�=−ω1
) versus the

mechanical driving force εm in Fig. 5. |t1p|2 stays constant, but
|t2p|2 increases monotonically with the enhancement of εm.
When φ = π/2, constructive interference occurs between t1p

and t2p. If they have the same amplitude, perfect constructive
interference leads to the result that |tp|2 � 4|t1p|2 = 4|t2p|2
around εm = 7 fN, as shown in Fig. 5(a). When φ = 3π/2,
there is destructive interference between t1p and t2p, and it can
be seen from Fig. 5(b) that |tp|2 � 0.0023 around εm = 7 fN,
where perfect destructive interference occurs and the energy
of photons are transferred into the mechanical degrees of
freedom. Moreover, Figs. 5(a) and 5(b) also show that the
larger the difference between the amplitudes of t1p and t2p is,
the weaker the interference effect becomes.

The control field is kept constant in the above discussions,
i.e., �̄ = −ωm and Pc = 2 nW. In Fig. 6, the peak probe
transmission |tp|2 at � = −ω1 is plotted as a function of
control power with different mechanical pumps. In the four
cases, the effect of control power is similar. At first, the peak

FIG. 6. Peak probe transmission |tp|2 at � = −ω1 as a function of
the control power Pc. The four curves correspond to the case without
mechanical driving (εm = 0) and with mechanical driving of the same
amplitude (εm = 5 fN) but different phases (φ = 0, π/2, and 3π/2,
respectively). Other parameters are the same as in Fig. 2.

probe transmission decreases with increasing control power
from an initial value for the bare cavity to a minimum, but
further increasing the control power will make |tp|2 increase
again and exceed the initial value for the bare cavity. If the
control power is strong enough, |tp|2 can even be larger than 1,
which indicates that the system enters the regime of parametric
amplification. However, it can be seen that the effect of phase
difference on the peak probe transmission is evident when the
amplitude of the mechanical driving remains the same. The
curve for εm = 5 fN and φ = 0 is similar to the curve without
the mechanical driving, but some remarkable differences exist
when φ = π/2 and φ = 3π/2. We give some physical insight
into these phenomena as follows: both radiation pressure and
mechanical driving can result in the coherent oscillation of
mechanical resonators, giving rise to two kinds of Stokes
scattering of light from the control field. Phase difference φ

plays an important role in the interference between these two
Stokes fields and intracavity probe field. Moreover, the number
of Stokes photons (i.e., down-converted control photons) is
dependent on the control power Pc. If the control power
Pc is low enough, the number of down-converted control
photons is smaller than the number of probe photons sent
to the cavity. Therefore, the stimulated absorption of probe
photons caused by the interference effect is only partial. With
the increase of the control power, the absorption dip deepens
and minimum probe transmission can be obtained when the
number of down-converted control photons is equal to the
number of probe photons. If the control power is further
increased, the number of down-converted control photons
exceeds the number of probe photons, leading to an increase
in the probe transmission. When the control power is bigger
than a critical value, which depends on the system parameters
as well as the phase and magnitude of the mechanical pump,
the probe transmission can exceed unity [12]. Note that the
probe power increases simultaneously with the increasing of
the control power since we fix εp = εc/1000 but εm doesn’t
change; thus, the contribution from the two terms in Eq. (10)
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FIG. 7. Probe transmission |t |2 versus the probe detuning (� +
ω1)/2π considering the effect of mechanical driving. The control
field is blue detuned by the amount of ωm = (ω1 + ω2 + ω3)/3 with
Pc = 2 nW. The insets show the two sharp absorption dips close to
� = −ω1 and � = −ω3 on an enlarged scale. Parameters for the
third mechanical resonator are ω3 = 2π × 31.7 MHz, m3 = 580 fg,
G3 = 2π × 1.6 MHz/nm, γ3 = 2π × 930 Hz. Other parameters are
the same as in Fig. 2.

also varies with the control power, and there is a crossing point
between the two curves for φ = π/2 and φ = 3π/2.

Next, we consider a multimode optomechanical system
with three different mechanical resonators coupled to a
common cavity field. Based on the current experimental
parameters [30], we assume the parameters of the third
mechanical resonator are as follows: ω3 = 2π × 31.7 MHz,
m3 = 580 fg, G3 = 2π × 1.6 MHz/nm, γ3 = 2π × 930 Hz.
Figure 7 shows the probe transmission |t |2 against the probe
detuning (� + ω1)/2π before and after the mechanical driving
forces are applied. There are three absorption dips at the bottom
of the transmission spectrum, which locate at � = −ω1,
� = −ω2, and � = −ω3, respectively. Moreover, the effect of
mechanical driving is similar to the case with two mechanical
resonators, as shown in the insets Fig. 7.

We have shown that double and triple optomechanically
induced absorption exist in optomechanical systems with two
and three nondegenerate mechanical resonators, respectively.
Finally, in the general multimode optomechanical system
with N mechanical modes, if all the frequencies of the N

mechanical resonators are slightly different, we can conclude
qualitatively that there are at most N absorption dips at
� = −ωk(k = 1,2,3, . . . ,N ). The physical reason can also
be understood in terms of interference effects between the
probe field and the generated Stokes field at the frequency

ωc − ωk(k = 1,2,3, . . . ,N), which has been explained in
detail before. If L(1 < L < N) mechanical resonators have the
same frequency ω (ω1 = ω2 = · · · = ω) and the frequencies
of the left N − L resonators are different from ω, there
are N − L + 1 absorption dips in the probe transmission
spectrum. However, if all the mechanical resonators have the
same frequency ωk = ωm, only one absorption dip exists when
� = −ωm. Experimentally, coupling multiple mechanical
resonators to a common cavity can be realized by using the
on-circuit implementation of the optomechanical interaction in
the microwave domain [30] or trapping several distinguishable
atomic ensembles within the same optical resonator [44].
Note that collective effects in multimode optomechanics have
attracted some attention in recent years. For example, Kipf and
Agarwal have theoretically shown that the system’s response
can be switched from a superradiant regime to a collective
gain regime by varying the frequency detuning of the pump
field [45]. Zhang et al. experimentally demonstrated that arrays
of mechanical oscillators can be synchronized to oscillate in
tandem when coupled purely through a common optical cavity
field [46].

IV. CONCLUSION

In summary, we have explored the response of an op-
tomechanical system which includes N nearly degenerate
mechanical resonators to a weak probe field in the presence of a
strong control field and weak mechanical driving fields. When
the cavity was driven on its blue sideband, we obtained the
analytical expression for the transmission of the probe field.
We have shown that the system can exhibit the phenomenon of
multiple OMIA with at most N narrow absorption dips, which
can be adjusted by the amplitude and phase of the mechanical
driving field. At low control power, the amplitude and phase
of the mechanical pump can be used to control the system
between OMIA and parametric amplification. Moreover, at
high control power, parametric amplification of the weak probe
field can also be obtained, in which the phase-dependent effect
is evident.

ACKNOWLEDGMENTS

The authors gratefully acknowledge support from the
National Natural Science Foundation of China (Grant
No. 11304110), the Natural Science Foundation of Jiangsu
Province (Grant No. BK20130413), the Natural Science
Foundation of the Jiangsu Higher Education Institutions of
China (Grants No. 13KJB140002 and No. 15KJB460004),
and the Science and Technology Support Program of Huai’an
City (Grant No. HAG2014019).

[1] T. J. Kippenberg and K. J. Vahala, Science 321, 1172 (2008).
[2] F. Marquardt and S. M. Girvin, Physics 2, 40 (2009).
[3] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod.

Phys. 86, 1391 (2014).
[4] G. S. Agarwal and S. Huang, Phys. Rev. A 81, 041803

(2010).

[5] S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet,
A. Schliesser, and T. J. Kippenberg, Science 330, 1520
(2010).

[6] A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield,
M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter,
Nature (London) 472, 69 (2011).

023837-6

http://dx.doi.org/10.1126/science.1156032
http://dx.doi.org/10.1126/science.1156032
http://dx.doi.org/10.1126/science.1156032
http://dx.doi.org/10.1126/science.1156032
http://dx.doi.org/10.1103/Physics.2.40
http://dx.doi.org/10.1103/Physics.2.40
http://dx.doi.org/10.1103/Physics.2.40
http://dx.doi.org/10.1103/Physics.2.40
http://dx.doi.org/10.1103/RevModPhys.86.1391
http://dx.doi.org/10.1103/RevModPhys.86.1391
http://dx.doi.org/10.1103/RevModPhys.86.1391
http://dx.doi.org/10.1103/RevModPhys.86.1391
http://dx.doi.org/10.1103/PhysRevA.81.041803
http://dx.doi.org/10.1103/PhysRevA.81.041803
http://dx.doi.org/10.1103/PhysRevA.81.041803
http://dx.doi.org/10.1103/PhysRevA.81.041803
http://dx.doi.org/10.1126/science.1195596
http://dx.doi.org/10.1126/science.1195596
http://dx.doi.org/10.1126/science.1195596
http://dx.doi.org/10.1126/science.1195596
http://dx.doi.org/10.1038/nature09933
http://dx.doi.org/10.1038/nature09933
http://dx.doi.org/10.1038/nature09933
http://dx.doi.org/10.1038/nature09933


PHASE-DEPENDENT MULTIPLE OPTOMECHANICALLY . . . PHYSICAL REVIEW A 94, 023837 (2016)

[7] J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois,
J. D. Whittaker, and R. W. Simmonds, Nature (London) 471,
204 (2011).

[8] H. Xiong, L. G. Si, A. S. Zheng, X. X. Yang, and Y. Wu,
Phys. Rev. A 86, 013815 (2012).

[9] M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi,
R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, Phys. Rev.
A 88, 013804 (2013).

[10] A. Kronwald and F. Marquardt, Phys. Rev. Lett. 111, 133601
(2013).
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