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Two photons co- and counterpropagating through N cross-Kerr sites

Daniel J. Brod,1,* Joshua Combes,1,2,† and Julio Gea-Banacloche3,‡
1Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada N2L 2Y5

2Institute for Quantum Computing and Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
3Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA

(Received 4 May 2016; published 18 August 2016)

A cross-Kerr interaction produces a phase shift on two modes of light proportional to the number of photons in
both modes and is sometimes called cross-phase modulation. Cross-Kerr nonlinearities have many applications in
classical and quantum nonlinear optics, including the possibility of a deterministic and all-optical controlled-phase
gate. We calculate the one- and two-photon S matrices for fields propagating in a medium where the cross-Kerr
interaction is spatially distributed at discrete interaction sites comprised of atoms. For the interactions considered,
we analyze the cases where the photons copropagate and counterpropagate through the medium and give a physical
interpretation to the differences between the two cases. Finally, we obtain the S matrix in the limit of infinitely
long chains, showing that it corresponds to a perfect controlled-phase operation.
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I. INTRODUCTION

Cross-Kerr nonlinearities have been suggested as solutions
to a variety of optical quantum information processing tasks
since Milburn’s proposal of a quantum optical Fredkin gate [1].
In the field of quantum computing, strong Kerr nonlinear-
ities (χ (3)) have been suggested for circuit-model [2] and
measurement-based quantum computing [3], as have weak
Kerr nonlinearities [4,5]. Beyond quantum computing, cross-
Kerr nonlinearities have also been proposed for all-optical
switching [6], generation of entangled coherent states [7],
quantum teleportation [8], Fock state conversion [9], entangle-
ment distillation [10–13], nonlinear quantum metrology [14],
and quantum nondemolition (QND) detection of photon
number [15]. Broadly speaking, one of the advantages of cross-
Kerr interactions is that they are photon-number-preserving,
making them suitable for several of these applications.

The goal of this paper is to present a full theoretical
description of the interaction between two single-photon wave
packets mediated by a network of cross-Kerr interaction sites.
We use input-output theory and the theory of cascaded open
quantum systems to model the interaction sites, which can
be realized physically in a number of equivalent ways, such
as cavities containing χ (3) Kerr media, three- or four-level
atoms, and pairs of atoms with dipole coupling. We then use
this formulation to solve the one- and two-photon transport
problem, where the photon wave packets can be either co- or
counterpropagating. Although this work is largely motivated
by the design of a CPHASE gate (also often called a controlled-
phase or controlled-Z gate) that takes into account the fully
multimode nature of photon wave packets, it also has more
general applications to the quantum theory of cross-Kerr
nonlinearities and quantum nonlinear optics.

Our solutions to the few-photon transport problem are given
in terms of S matrices. The S matrix is a unitary matrix that
connects asymptotic input and output field states and is a
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canonical way to characterize the action of a medium on light.
The few-photon S matrix has been studied for a long time in
quantum optics [16,17] and there has been renewed interest
since the work of Shen and Fan [18]. Indeed, the scattering
problem for small photon numbers has applications and is
interesting in and of itself. There is a vast literature on the
subject, some of which is summarized in Ref. [19].

We now briefly summarize the literature that is particularly
related to our work, namely, works concerning photon scat-
tering in Kerr media and spin chains. The early investigations
by Deutsch et al. [16,17] considered an atomic vapor that
was modeled as a continuous spatially distributed self-Kerr
medium and solved the two-photon transport problem. Re-
cently, a few works considered coupling two fields at a single
spatial site via a cavity-mediated self-Kerr interaction [20,21]
as well as one-dimensional arrays of coupled cavities with a
self-Kerr medium driven by coherent [22] or Fock [23] states.

Regarding scattering off cascaded spin chains, Roy [24]
considered an input-output channel coupled to the end points
of a chain of three two-level systems coupled by hopping
terms. Fang et al. [25] studied scattering of photons by three
two-level systems coupled to a waveguide supporting left-
and right-propagating modes and later [26] generalized this
to N two-level systems. Chiral and nonchiral single-photon
transports through a one-dimensional waveguide with a linear
atomic chain side coupled to the waveguide were considered
in Refs. [27–29].

A. Further motivation and structure of the paper

There are two notable problems with most of the proposed
uses of cross-Kerr nonlinearities of Refs. [1–15]. The first is
that they treat the field as a single-frequency mode, whereas
for propagating fields a full multimode analysis is more
suitable, since frequency mixing within and between modes
can ruin operation of devices. Based on such an analysis,
Shapiro [30] and Gea-Banacloche [31] have argued that single-
photon cross-Kerr nonlinearities cannot straightforwardly be
used to construct a CPHASE gate with any useful fidelity.
Similar conclusions were drawn for QND detection of photon
number at microwave frequencies [32]. The second problem
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is that, historically, experimentally demonstrated cross-Kerr
nonlinearities have been very weak [33] and experimentalists
need to go to extraordinary lengths to observe an effect in the
quantum domain [34].

In some instances, however, the issues that arise from the
multimode treatment can be overcome with careful analysis
and some elaborate tricks. For example, a proposal for a
CPHASE gate by Chudzicki et al. [35] considers a series of
localized χ (3) interaction sites interleaved with active error
correction. Similar results were obtained for QND photon-
number detection in Refs. [36,37]. Additionally, in recent
years large cross-Kerr nonlinearities have been demonstrated,
for example, in cavity QED [38] (≈0.28 rad per photon),
atomic ensembles [39] (≈1.05 rad per photon), and single
artificial atoms [40] (≈0.35 rad per photon). Both of these
positive outcomes suggest that it may be valuable to consider
alternative realizations, at the microscopic level, of cross-Kerr
interaction media for single photons.

As one particular application of our results, we use the scat-
tering matrix that describes two photons counterpropagating
in an N -site chain to show that, in the limit where N is large
and the photons are spectrally narrow, a CPHASE gate can be
performed with near-unit fidelity. In a related paper [41], two
of us analyze the performance of our proposed setup when
N is small, showing that very high fidelities can be obtained
for just a few dozen interactions sites, giving hope that our
proposal may lead to an experimentally feasible construction.

The calculations in this paper are detailed, so in Sec. I B
we set some notation and conventions. In Sec. II we give
a brief overview of input-output theory and the cascaded
theory of open quantum system, in particular in the form
of the SLH formalism. This formalism is useful to obtain
our differential equation used in the remainder of the paper,
but the familiar reader can skip this section. In Sec. III
we determine the single- and two-photon S matrices when
there is a Kerr interaction at a single site in space, making
heavy use of the methodology developed by Fan et al. [42].
Although these results have previously been obtained using
a different formalism in [43], we use this section as an
opportunity to introduce our mathematical ingredients in a
simple setting. Our general philosophy is to outline the crucial
steps of the scattering calculations and put the details in an
appendix. In Sec. III we also discuss several different physical
implementations for which our results apply.

In Secs. IV and V we determine the one- and two-photon
S matrices when the photons are co- and counterpropagat-
ing, respectively, and there are two interaction sites. This
investigation is inspired by related work on QND photon
detection at microwave frequencies, where it was shown that
adding more systems can improve detection efficiency [36].
We generalize the counterpropagating analysis to N interaction
sites in Sec. VI and then investigate the N → ∞ limit in
Sec. VII. We conclude with a discussion of the similarities and
differences of co- and counterpropagating configurations and
its possible consequences for various applications.

B. Notation and conventions

In this paper we consider two input-output fields that couple
independently to separate physical systems. Thus, we denote

the input-output fields by ain or bin and aout or bout, respectively.
The input field ain couples to cavity or atomic operators labeled
by a or A, while the input field bin couples to operators labeled
by b or B. Since none of our Hamiltonians transfer excitations
between modes a and b in any way, statements such as “there
are no excitations in mode a” should be understood to mean
that there are no excitations in the collection of (i) the external
mode ain plus (ii) any cavity modes a or atoms A. Finally,
when fields are coupled to a chain of multiple similar systems,
we call each unit cell an interaction site.

We denote frequency eigenstates in the infinite past by |ν+〉
and those in the infinite future by |ω−〉. When there are two
modes of the field, a and b, they will be identified by their
respective indices, e.g., |ν+

a ν+
b 〉. To simplify the notation, we

usually omit vacuum states of unoccupied modes, e.g., |ν+
a 〉 :=

|ν+
a 0b〉, unless there is risk of ambiguity. It should be pointed

out that, given our physical setting, all states of the type |ν+
a 〉 or

|ω−
a ω−

b 〉 also include implicitly an atomic ground state for all
the atoms in the system. We denote the Pauli-Z matrix on atom
A by Az := |0〉〈0| − |1〉〈1| and Bz for atom B. The atomic
states are represented by |0〉 and |1〉, but should just be under-
stood as the standard ground and excited states |g〉 and |e〉, re-
spectively. We define the atomic ladder operators on atom A as
A− = |0〉〈1| and A+ = A

†
− = |1〉〈0| and similarly for atom B.

When there are multiple interaction sites the atomic opera-
tors become A(i)

z and A
(i)
− for Az and A− acting on atom A at site

i. We point out that we made a few nonstandard choices, such
as writing the atomic interaction as (1 − Az) ⊗ (1 − Bz) rather
than just Az ⊗ Bz to simplify comparison between cavity- and
atom-mediated interactions. It is clear that these conventions
can be mapped to more standard ones by unimportant global
or local energy redefinitions. Finally, we will omit the tensor
product sign throughout the paper whenever there is no risk of
ambiguity.

II. THEORETICAL BACKGROUND

In this section we describe some of the theoretical back-
ground that is useful in obtaining our main results. In Sec. II A
we outline the basics of input-output theory, which describes
the interaction between a quantum system and an external
field in terms of the incoming and outgoing field operators.
However, in our paper we actually want to solve the scattering
problem for several different networks of connected quantum
systems. Although it is possible, in principle, to do this by
identifying the outputs of some quantum systems as inputs
of others, this quickly becomes impractical. To facilitate this
description, in Sec. II B we describe the SLH formalism for
composing and cascading of open quantum systems. This
formalism consists of a set of algebraic relations that allows
us to easily describe a network of quantum systems as a single
larger quantum system, from which the relevant differential
equation can be obtained directly, without the need to perform
manipulations by hand. This section can be safely skipped by
the reader familiar with this subject.

A. Input-output theory

The starting point for our analysis is the Gardiner-Collett
Hamiltonian [44,45]. The simplest form of their Hamiltonian
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models a single arbitrary system (e.g., an atom) interacting
with a one-dimensional chiral field. The Gardiner-Collett
Hamiltonian is

HT = Hsys + HB + Hint,

HB = �

∫
dω ωb†(ω)b(ω), (1)

Hint = i�
√

γ

∫
dω[Lb†(ω) − L†b(ω)],

where the field operators obey [b(ω),b†(ω′)] = δ(ω − ω′), L

is an operator on the system, and henceforth � = 1. Using this
Hamiltonian and the machinery developed in [44–46] one can
find equations of motion for an arbitrary system operator X,

∂tX = i[Hsys,X] + L†[L]X + [L†,X]bin(t) + b†in(t)[X,L],

(2)

where L†[L]X = L†XL − 1
2 (L†LX + XL†L). The well-

known relation between input and output field operators is

bout(t) = L + bin(t). (3)

Here the bin(t) operators satisfy [bin(t),b†in(s)] = δ(t − s) and
are given by

bin(t) = 1√
2π

∫
dω b0(ω)e−iω(t−t0), (4)

where b0(ω) is b(ω) taken at time t0. By taking the limit
t0 → −∞ we obtain the field operators for the scattering
eigenstates, i.e., states that are frequency eigenstates at the
asymptotic past, denoted by

b†in(ω)|0〉 = |ω+〉.
It is clear that bin(ω) and bin(t) are related by

bin(t) = 1√
2π

∫
dω bin(ω)e−iωt . (5)

Analogously, bout(t) satisfy [bout(t),b
†
out(s)] = δ(t − s) and

are given by

bout(t) = 1√
2π

∫
dω bf (ω)e−iω(t−tf ), (6)

where again bf (ω) is b(ω) taken at time tf , and we can take
tf → ∞ to obtain the frequency eigenstates in the asymptotic
future

b
†
out(ω)|0〉 = |ω−〉.

Operators bout(ω) and bout(t) satisfy a relation analogous to
Eq. (5). For a detailed account on the relationship between the
input-output and scattering formalisms see Refs. [19,42,45].

In what follows we will need the natural extension of these
formalisms to two chiral input-output modes ain and bin. In
vector form, the resulting equations of motion for an arbitrary
system operator X and the input-output relations are

∂tX = i[HT ,X] + L†[LT ]X

+ [L†
T ,X]Fin(t) + F †

in(t)[X,LT ], (7)

Fout(t) = LT + Fin(t), (8)

FIG. 1. Schematic representations of the concatenation product
GA � GA and series product GB�GA. Both products are generaliza-
tions of the cascaded theory of open quantum systems [50].

where LT = (LA,LB)T , Fin/out(t) = (ain/out(t),bin/out(t))T ,
HT = HA + HB + HAB , and HAB is an interaction between
systems.

B. The SLH formalism and cascaded open quantum systems

Following the success of input-output theory, a method-
ology was developed for driving a quantum system with the
output field of another [47–49]. This was recently elaborated
into the so-called SLH formalism [50], which is a powerful
mathematical tool set, embodied in a few algebraic relations,
which greatly simplifies the process of networking quantum
systems.

The SLH formalism assigns to each individual site in
a network a triple (S,L,H ). The L and H parameters
correspond exactly to those that appear in Eqs. (2) and (3) [or
Eqs. (7) and (8)], encoding the system-field coupling and the
system’s internal Hamiltonian, respectively. We will drop the
S parameter for brevity since it will be trivial throughout this
paper. Suppose then that there are two quantum systems, with
LH parameters GA = (LA,HA) and GB = (LB,HB), which
we wish to combine. There are two ways of doing this: the
concatenation product and the series product.

The concatenation product of GA and GB , depicted in
Fig. 1, is a convenient way to describe the two independent
systems as one larger system GT = (LT ,HT ) and is given by

GT = GA � GB =
([

LA

LB

]
,HA + HB

)
. (9)

Within this formalism, the concatenation product is the formal
way of generalizing from Eqs. (2) and (3) to Eqs. (7) and (8)
or to higher numbers of input-output modes. Now suppose one
wishes to feed the output of one system into the input of the
other, as in Fig. 1. This is the series product and is given by

GT = GB�GA

=
(

LA + LB,HA + HB + 1

2i
(L†

BLA − L
†
ALB)

)
. (10)
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After combining the two systems, the L and H parameters can
be fed either into (2) and (3) or into (7) and (8), as appropriate
for the number of input-output modes, to obtain the relevant
equations of motion.

These two relations may seem like trivial shortcuts and
indeed for small networks it is straightforward to perform
these concatenations by hand. However, for larger or more
complex networks this quickly becomes prohibitive and the
SLH formalism allows us to describe the entire network as
a single large quantum system from which the input-output
relations and equations of motion can be read off directly.
Throughout this paper we will describe our networks of
interaction sites simply by their SLH parameters. For a more
in-depth review on this formalism, we direct the interested
reader to [50].

III. SINGLE-SITE SCATTERING

Now we outline the steps required to determine the
scattering matrix for one- and two-photon transport when
a cross-Kerr interaction is present, i.e., a χ (3) interaction.
We consider several alternative physical realizations for the
nonlinear interaction and show they all have the same one-
and two-photon S matrices. Some of the results of this section
have previously been obtained in [43] using a different,
but equivalent, formalism. However, it will be convenient
to describe them here in detail, so as to outline the main
mathematical steps used for our results in subsequent sections.

A. Cavity-mediated Kerr interaction

The first system we wish to model is of two input fields
that impinge on two cavities that interact via a cross-Kerr
interaction, as illustrated in Fig. 2. As usual, cavity operators
obey [a,a†] = [b,b†] = 1 and [a,b†] = 0. The two cavities are
identical, with internal Hamiltonians 	a†a and 	b†b,1 and the
Kerr interaction is given by χa†ab†b. The cavities are coupled
to the waveguides via operators LA = √

γ a and LB = √
γ b.

The main reason we have drawn this system as two separate
cavities is in order to provide a natural way to separate the
photons after the scattering interaction, which is essential for
the concatenation scheme we have in mind. Note, however,
that the same goal could be accomplished with a single
one-sided cavity, provided the two photons have orthogonal
polarizations: They could then be combined going in (and
separated going out) at a polarizing beam splitter.

The total system GT = (LT ,HT ) is specified by the con-
catenation product (see Sec. II B)

Gsys = (
√

γ a,	a†a + χa†ab†b) � (
√

γ b,	b†b)

=
((√

γ a√
γ b

)
,	a†a + 	b†b + χa†ab†b

)
. (11)

1Although 	 is usually reserved for a detuning, rather than a cavity’s
resonant frequency, we are here thinking of the cavity field as a
harmonic oscillator, so 	 is the difference between its consecutive
energy levels, just as in a subsequent section it will represent the
energy difference between atomic levels.

FIG. 2. An interaction between two input fields is mediated by
two crossed cavities with a cross-Kerr interaction H = χa†ab†b.
The input-output field in mode a couples to the cavity internal energy
	a†a and the input-output relation aout = √

γ a + ain (and similarly
for mode b).

On the second line we have adopted the convention that the a

mode has the Kerr Hamiltonian. We can determine the equation
of motion for the cavity operator using Eq. (7) with X = a and
the LH parameters in Eq. (11),

∂ta = −
(γ

2
+ i	

)
a − iχab†b + √

γ [a†,a]ain(t)

= −
(γ

2
+ i	

)
a − iχab†b − √

γ ain(t). (12)

In going from the first to the second line we used [a†,a] = −1,
a trivial simplification that will become important later on.
Similarly, the equation of motion for the cavity operator b is

∂tb = −
(γ

2
+ i	

)
b − iχa†ab − √

γ bin(t). (13)

From Eqs. (8) and (11) the associated input-output relations
are

aout(t) = √
γ a + ain(t), (14a)

bout(t) = √
γ b + bin(t). (14b)

B. Atomic realizations of a Kerr interaction

It has been argued that cross-Kerr interactions are only
effective descriptions of interactions, as inevitably atoms must
mediate the interaction [32]. For this reason we wish to
consider here a couple of alternative realizations of the Kerr
interaction involving one or two atoms.

We first consider two independent fields coupled to separate
atoms that interact via a spin-spin interaction, as illustrated in
Fig. 3. Each atom may be assumed to be near the closed end of
a one-dimensional waveguide, yet they can interact through the
mirror that separates them, via an interaction term of the form
χ (1 − Az)(1 − Bz). The main reason to separate the atoms by
a mirror is the same as discussed in the previous subsection,
namely, we need a way to separate the output modes after the
interaction so we can cascade the unit cell using circulators.
Below we discuss an alternative polarization-based scheme
that will likely be easier to implement.
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FIG. 3. An interaction between two input fields is mediated by
two atoms that interact via H = χ (1 − Az)(1 − Bz) = χ |1,1〉〈1,1|.
The mirrors ensure none of the field from mode a leaks into mode
b and vice versa. The circulators ensure that all of the input field
arrives at the output. We show that, when at most one photon is
present in each mode, the S matrix for this case is identical to the
cavity-mediated Kerr interaction of Fig. 2.

The atomic lowering and raising operators, which couple
the fields to the atoms, obey the standard commutation
relations [A−,A+] = Az. The self-Hamiltonians for atoms A

and B are 	
2 (1 − Az) and 	

2 (1 − Bz), respectively, and the
interaction between the atoms is given by χ (1 − Az)(1 −
Bz). The total system GT = (LT ,HT ) is specified by the
concatenation product

Gsys =
(√

γA−,
	

2
(1 − Az) + χ (1 − Az)(1 − Bz)

)

�
(√

γB−,
	

2
(1 − Bz)

)

=
((√

γA−√
γB−

)
,
	

2
(1 − Az) + 	

2
(1 − Bz)

+χ (1 − Az)(1 − Bz)
)

. (15)

From this we determine the equation of motion for the atomic
operator A−,

∂tA− = −
(γ

2
+ i	

)
A− − iχA−(1 − Bz) − √

γAzain(t).

(16)

Notice that this equation is almost identical to Eq. (12). The
only differences are the

√
γAzain and χA−(1 − Bz) terms,

which for the cavity case read
√

γ ain and iχab†b, respectively.
These differences originate in slightly different commutation
relations obeyed by cavity and atomic operators but, as we will
see in the next two sections, they have no effect on the subset of
single- and two-photon transport that we consider. If one were
to consider, however, two- or multiphoton transport where
any input mode has more than one photon, then the atomic
medium would begin to saturate and the differences between
the cavity- and atom-mediated nonlinearities would likely
manifest. Similarly, the equation of motion for the operator
B− is

∂tB− = −
(γ

2
+ i	

)
B− − iχ (1 − Az)B− − √

γBzbin(t)

(17)

a

a

b

b

FIG. 4. Level structure of two coupled two-level atoms. In the
χ → ∞ limit, the population of the |1,1〉 atomic state is suppressed
and the remaining three atomic states can be identified with the states
of a single three-level atom in a V configuration.

and the input-output relations are

aout(t) = ain(t) + √
γA−, (18)

bout(t) = bin(t) + √
γB−. (19)

Many physically different arrangements lead to the same
interaction, i.e., Eq. (15), and subsequent equations of motion
and input-output relations. For example, it is straightforward
to see that these equations would equally well describe a single
four-level atom, in a one-sided waveguide or cavity (the latter
only in the fast-cavity regime), with the level scheme shown
in Fig. 4, if we assume that only the a photons can excite the
|00〉 → |10〉 and |01〉 → |11〉 transitions and likewise only
the b photons can excite the |00〉 → |01〉 and |10〉 → |11〉
transitions. One way this might be arranged would be for the
photons to have orthogonal circular polarizations, the levels
|00〉 and |11〉 to have magnetic quantum number m = 0, and
the levels |10〉 and |01〉 to have m = ±1.

In the level scheme illustrated in Fig. 4, the role of the
coupling χ is played by the detuning of the uppermost level
from exact two-photon resonance. As we will see below, only
when χ is equal to zero is the outgoing two-photon state
unentangled (assuming it was unentangled going in), since
in that case the system is equivalent to just two noninteracting
two-level atoms. For very large χ , on the other hand, one
may in effect ignore the uppermost level altogether and then
the system is equivalent to the three-level V configuration
discussed by Koshino [51] and Chudzicki et al. [35].

We now turn our attention to the asymptotic output states of
the interaction (15) when (i) a single photon is present either in
mode ain or mode bin and (ii) a single photon is present in both
modes ain and bin. At relevant points in the derivation we will
note the similarities and differences between the calculations
involving cavity operators a and b and atomic operators A−
and B−.

C. Single-photon S matrix

Our method and presentation closely follow those of
Ref. [42]. We will solve for the S matrix when there is
an input photon in mode ain; by symmetry the solution for
single-photon transport in mode bin is identical. The elements
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of the S matrix can be specified in the frequency domain by

Sωa,νa
= 〈ω−

a |ν+
a 〉, (20)

which we can express as [42]

Sωa,νa
= 1√

2π

∫
dt〈0| aout(t) |ν+

a 〉eiωat . (21)

By using the input-output relation, i.e., Eq. (18), this becomes

〈ω−
a |ν+

a 〉 = 1√
2π

∫
dt〈0| ain(t) + √

γA− |ν+
a 〉eiωat . (22)

The first term simply reduces to δ(ωa − νa), due to the δ

commutation relations of the input operators. The second term
can be obtained from Eq. (16) by sandwiching it between 〈0|
and |ν+

a 〉, leading to the differential equation

∂t 〈0| A− |ν+
a 〉 = −

(γ

2
+ i	

)
〈0| A− |ν+

a 〉
− √

γ 〈0| Azain(t) |ν+
a 〉, (23)

where the matrix element coming from the interaction term
in Eq. (16), proportional to χ , is zero since the second
mode is in vacuum. As the atom is in the ground state, it
holds that 〈0| Az = 〈0| and the solution to this equation is
identical to what we would have obtained by starting from
Eq. (12) instead, with an initially empty cavity. By solving
this differential equation, as detailed in Appendix A 1, we
obtain the single-photon scattering matrix

Sωa,νa
= 〈ω−

a |ν+
a 〉 = −
∗(ωa)


(ωa)
δ(ωa − νa), (24)

where we defined the shorthand


(ω) := γ

2
+ i(	 − ω). (25)

Equation (24) has been derived many times in the literature,
e.g., [44,46].

Now consider an input photon in some frequency-domain
wave packet |1ξ 〉 := ∫

dν ξ (ν)a†
in(ν)|0〉. Equation (24) can be

used to obtain the output wave packet by inserting a resolution
of the identity (on the output modes)

|1ξ ′ 〉 =
∫

dν dω Sω,νξ (ν)a†
out(ω)|0〉

=
∫

dω ξ ′(ω)a†
out(ω)|0〉,

where ξ ′(ω) := ∫
dν Sω,νξ (ν) and similarly for two-photon

transport.

D. Two-photon S matrix

The particular kind of two-photon transport we wish to
consider involves a single input photon in mode ain and
a single input photon in mode bin. The S matrix for this
problem is

Sωaωb,νaνb
= 〈ω−

a ω−
b |ν+

a ν+
b 〉

= 〈0a,0b| aout(ωa)bout(ωb) |ν+
a ν+

b 〉.
To determine the S matrix we use the input-output relations
given in Eq. (19) and the single-photon results from Sec. III C.

Doing so gives

〈ω−
a ω−

b |ν+
a ν+

b 〉 = − 
∗(ωa)


(ωa)

(
δ(ωa − νa)δ(ωb − νb)

+
√

γ

2π

∫
dt eiωbt 〈ω+

a | B− |ν+
a ν+

b 〉
)

.

(26)

To solve for the matrix element 〈ω+
a | B− |ν+

a ν+
b 〉 we sandwich

Eq. (17) between 〈ω+
a | and |ν+

a ν+
b 〉, as before, to obtain

∂t 〈ω+
a | B− |ν+

a ν+
b 〉 = −

(γ

2
+ i	

)
〈ω+

a | B− |ν+
a ν+

b 〉
− iχ 〈ω+

a | (1 − Az)B− |ν+
a ν+

b 〉
− √

γ 〈ω+
a | Bzbin(t) |ν+

a ν+
b 〉. (27)

As before we have 〈0| Bz = 〈0| and furthermore (1 − Az)
corresponds to the number operator in the single-photon sector
for the cavity in mode a. Consequently, the solution to this
equation is identical to the cavity-mediated case. It is not
obvious how to solve this equation for 〈ω+

a | B− |ν+
a ν+

b 〉 due
to the interaction with the photon in the other mode, i.e., the
〈ω+

a | (1 − Az)B− |ν+
a ν+

b 〉 term. Using a few operator identities,
as detailed in Appendix A 2, it can be reduced to a more
manageable form

∂t 〈ω+
a | B− |ν+

a ν+
b 〉

= −
(γ

2
+ i	

)
〈ω+

a | B− |ν+
a ν+

b 〉

− i
χγ

π

1


∗(ωa)

∫
dpa

e−i(pa−ωa )t


(pa)
〈p+

a | B− |ν+
a ν+

b 〉

−
√

γ

2π
e−iνbt δ(ωa − νa). (28)

Since Eq. (26) actually requires the Fourier transform of
〈ω+

a | B− |ν+
a ν+

b 〉, it is convenient to move Eq. (28) into the
Fourier domain, reducing it to an integral equation. The
solution, detailed in Appendix A 2, leads to the S matrix

Sωaωb,νaνb
= 〈ω−

a ω−
b |ν+

a ν+
b 〉

= 〈ω−
a |ν+

a 〉 〈ω−
b |ν+

b 〉

− i
χγ 2

π

(
1 + 2iχ


(ωa) + 
(ωb)

)−1

× δ(ωa + ωb − νa − νb)


(νb)
(νa)
(ωb)
(ωa)
, (29)

where 〈ω−
a |ν+

a 〉 〈ω−
b |ν+

b 〉 are the contributions from single-
photon transport, i.e., Eq. (24). The term proportional to χ

is, of course, due to the Kerr interaction. The δ function
δ(ωa + ωb − νa − νb) arises from energy conservation and
is generally responsible for spectral entanglement in the
output photon wave packets. As mentioned previously, a result
equivalent to Eq. (29) was derived by a direct calculation of the
output wave function in Ref. [43], although the actual result
presented there [Eq. (41) of Ref. [43]] has been simplified
under the assumption that the joint spectrum of the incoming
photons is symmetric with respect to the exchange of νa

and νb.
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E. Reduction to the three-level atom S matrix

One can also check that in the limit χ → ∞, the two-photon
S matrix [Eq. (29)] reduces to

Sωaωb,νaνb
= 〈ω−

a |ν+
a 〉 〈ω−

b |ν+
b 〉 − γ 2

2π

[
1


(ωa)
+ 1


(ωb)

]

× 1


(νb)
(νa)
δ(ωa + ωb − νa − νb), (30)

which is identical to the two-photon S matrix for a three-level
atom in a V configuration as derived by Koshino [51] and
Chudzicki et al. [35], up to a redefinition of the coupling
constant γ . Hence our model contains that system as a limit,
as explained in connection with Fig. 4 above.

IV. TWO-SITE SCATTERING WITH COPROPAGATING
PHOTONS

In this section we will take the single-site Kerr interaction
and feed its output into the input of another similar interaction,
with both photons propagating in the same direction. A
possible physical realization is illustrated in Fig. 5, which
achieves directionality using optical isolators or circulators. To
derive the system operator differential equations, input-output
relations, and subsequently the S matrix, we use the SLH
formalism described in Sec. II B.

A. Cascading and differential equations

The ith site is specified by the interaction (15) with
parameters χi , γi , and 	i . Then the cascading of a two-site
interaction where both photons are propagating in the same
direction has an SLH model

Gsys = GA � GB

= (LA,HA) � (LB,HB)

= (
G

(2)
A � G

(1)
A

)
�

(
G

(2)
B � G

(1)
B

)
, (31)

where

LA = √
γ1A

(1)
− + √

γ2A
(2)
− , (32)

HA = 	1

2

(
1 − A(1)

z

) + χ1
(
1 − A(1)

z

)(
1 − B(1)

z

)

FIG. 5. Two-site Kerr interaction with copropagating photons.

+ 	2

2

(
1 − A(2)

z

) + χ2
(
1 − A(2)

z

)(
1 − B(2)

z

)
+

√
γ1γ2

2i
(A(2)

+ A
(1)
− − A

(1)
+ A

(2)
− ) (33)

and

LB = √
γ1B

(1)
− + √

γ2B
(2)
− , (34)

HB = 	1

2

(
1 − B(1)

z

) + 	2

2

(
1 − B(2)

z

)
+

√
γ1γ2

2i
(B(2)

+ B
(1)
− − B

(1)
+ B

(2)
− ). (35)

Once more, we have used the convention that the Kerr
interaction is included in HA.

After substituting the SLH parameters and going through
the commutator algebra we have the differential equations

∂tA
(1)
− = −

(γ1

2
+ i	1

)
A

(1)
− − iχ1A

(1)
−

(
1 − B(1)

z

)
−√

γ1A
(1)
z ain(t), (36a)

∂tB
(1)
− = −

(γ1

2
+ i	1

)
B

(1)
− − iχ1

(
1 − A(1)

z

)
B

(1)
−

−√
γ1B

(1)
z bin(t), (36b)

∂tA
(2)
− = −

(γ2

2
+ i	2

)
A

(2)
− − iχ2A

(2)
−

(
1 − B(2)

z

)
−√

γ1γ2A
(2)
z A

(1)
− − √

γ2A
(2)
z ain(t), (36c)

∂tB
(2)
− = −

(γ2

2
+ i	2

)
B

(2)
− − iχ2

(
1 − A(2)

z

)
B

(2)
−

−√
γ1γ2B

(2)
z B

(1)
− − √

γ2B
(2)
z bin(t) (36d)

and the input-output relations

aout(t) = ain(t) + √
γ1A

(1)
− + √

γ2A
(2)
− , (37a)

bout(t) = bin(t) + √
γ1B

(1)
− + √

γ2B
(2)
− . (37b)

The differential equations and input-output relations above
are almost identical to the cascaded cavity-mediated Kerr
interaction. As before, the differences between the atomic
Kerr interaction and the cavity case are the

√
γiA

(i)
z ain

and χiA−(1 − B(i)
z ), etc., terms, which for the cavity case

read
√

γiain and iχiaib
†
i bi respectively. Nevertheless, these

differences do not affect the solution to the single- and
two-photon transport that we consider and this remains true in
the counterpropagating case.

B. Single-photon S matrix

Structurally, the S matrix for single-photon transport looks
similar to Eq. (21). However, this time we must use the two-site
input-output relation (37a) to obtain

〈ω−
a |ν+

a 〉 = δ(ωa − νa)

+
√

γ1

2π

∫
dt〈0| A(1)

− |ν+
a 〉eiωat

+
√

γ2

2π

∫
dt〈0| A(2)

− |ν+
a 〉eiωat . (38)

023833-7



BROD, COMBES, AND GEA-BANACLOCHE PHYSICAL REVIEW A 94, 023833 (2016)

The differential equation for 〈0| A(1)
− |ν+

a 〉 is essentially the
same as Eq. (23). The differential equation for 〈0| A(2)

− |ν+
a 〉

can be obtained from Eq. (36c):

∂t 〈0| A(2)
− |ν+

a 〉 = −
(γ2

2
+ i	2

)
〈0| A(2)

− |ν+
a 〉

− √
γ1γ2 〈0| A(1)

− |ν+
a 〉

− √
γ2 〈0| ain(t) |ν+

a 〉. (39)

Notice that Eq. (39) depends on 〈0| A(1)
− |ν+

a 〉, so we must solve
the equation for the latter first, then use that result in the former.
The steps for this solution are essentially the same as in the
single-site case and are carried out in Appendix B 1, leading

to the final expression

〈ω−
a |ν+

a 〉 = 
2
∗(ωa)
1

∗(ωa)


2(ωa)
1(ωa)
δ(ωa − νa), (40)

where we defined


i(ω) := γi

2
+ i(	i − ω). (41)

Equation (40) is as expected: The single photon simply passes
through both systems, acquiring the cumulative effect of
coupling with both atoms.

C. Two-photon S matrix

The fundamental difference between the single-site and
two-site single-photon transports was the additional term
arising from the cascaded input-output relations. This is also
the case for two-site two-photon transport. Our starting point is
similar to Eq. (26) for the single-site case, and we use Eq. (37b)
to obtain

〈ω−
a ω−

b |ν+
a ν+

b 〉 = 
1
∗(ωa)
2

∗(ωa)


1(ωa)
2(ωa)

×
(

δ(ωa − νa)δ(ωb − νb) +
√

γ1

2π

∫
dteiωbt 〈ω+

a | B(1)
− |ν+

a ν+
b 〉 +

√
γ2

2π

∫
dteiωbt 〈ω+

a | B(2)
− |ν+

a ν+
b 〉

)
. (42)

The equation for 〈ω+
a | B(1)

− |ν+
a ν+

b 〉 is the same as in the single-site case [cf. Eq. (27)], thus we simply use that solution. Now we
take the 〈ω+

a | · |ν+
a ν+

b 〉 matrix element of Eq. (36d) and, making manipulations similar to those leading up to Eq. (28), we arrive at

∂t 〈ω+
a | B(2)

− |ν+
a ν+

b 〉 = −
(γ2

2
+ i	2

)
〈ω+

a | B(2)
− |ν+

a ν+
b 〉 − √

γ1γ2 〈ω+
a | B(1)

− |ν+
a ν+

b 〉 −
√

γ2

2π
e−iνbt δ(ωa − νa)

− i
χ2γ2

π


1(ωa)


1
∗(ωa)
2

∗(ωa)

∫
dpa


∗
1 (pa)


1(pa)
2(pa)
e−i(pa−ωa )t 〈p+

a | B(2)
− |ν+

a ν+
b 〉. (43)

As in the single-photon case, we have a system of one standalone equation (for 〈ω+
a | B(1)

− |ν+
a ν+

b 〉) and one dependent equation
(for 〈ω+

a | B(2)
− |ν+

a ν+
b 〉). By solving both in the correct order and in the Fourier domain, as carried out in Appendix B 2, we obtain

the final result

〈ω−
a ω−

b |ν+
a ν+

b 〉 = 〈ω−
a |ν+

a 〉 〈ω−
b |ν+

b 〉 − δ(ωa + ωb − νa − νb)

π

×
[
i

(

∗

2 (ωa)
∗
2 (ωb)


2(ωa)
2(ωb)

)(
1 + 2iχ1


1(ωa) + 
1(ωb)

)−1
χ1γ

2
1


1(νb)
1(νa)
1(ωb)
1(ωa)

+ i

(

∗

1 (νa)
∗
1 (νb)


1(νa)
1(νb)

)(
1 + 2iχ2


2(ωa) + 
2(ωb)

)−1
χ2γ

2
2


2(νb)
2(νa)
2(ωb)
2(ωa)

+
(

1 + 2iχ1


1(ωa) + 
1(ωb)

)−1(
1 + 2iχ2


2(ωa) + 
2(ωb)

)−1 4χ1χ2γ
2
1 γ 2

2


1(νb)
1(νa)
2(ωb)
2(ωa)

× 1

(
1(ωa) + 
1(ωb))(
1(ωa) + 
2(ωb))(
2(ωa) + 
2(ωb))

]
. (44)

As unwieldy as this expression is, there is a clear physical
interpretation behind it. The scattering matrix is the sum of
four scattering channels: (I) the single-photon term, where the
photons do not interact at all (this corresponds to the first term
in the sum, obtained by setting χ1 = χ2 = 0); (II) the term
where the photons interact only at the first atom, obtained
by setting χ2 = 0 (this amplitude can be understood as the

product of the interaction term induced by χ1 and a single-
photon phase factor picked up by both photons at the second
interaction site); (III) the same as (II), but with the exchange
1 ↔ 2, corresponding to the interaction happening only at the
second site; and (IV) the last term, proportional to χ1χ2, which
encodes the channel where the photons interact at the first site
and then again at the second site.
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FIG. 6. Two-site Kerr interaction with counterpropagating
photons.

V. TWO-SITE SCATTERING WITH
COUNTERPROPAGATING PHOTONS

In this section we will take the single-site Kerr interaction
and feed its output into the input of another similar interaction,
however now the photons in mode ain and bin will be propa-
gating in opposite directions. A possible physical realization
is illustrated in Fig. 6. Our starting point is, once more, the
SLH formalism described in Sec. II.

A. Cascading and differential equations

The ith site is specified by the interaction (15) with
the parameters χi , γi , and 	i . Then the cascading of two
interaction sites where the photons are counterpropagating is
modeled in the SLH formalism as

Gsys = GA � GB

= (LA,HA) � (LB,HB)

= (
G

(2)
A � G

(1)
A

)
�

(
G

(1)
B � G

(2)
B

)
, (45)

where

LA = √
γ1A

(1)
− + √

γ2A
(2)
− , (46)

HA = 	1

2

(
1 − A(1)

z

) + χ1
(
1 − A(1)

z

)(
1 − B(1)

z

)
+ 	2

2

(
1 − A(2)

z

) + χ2
(
1 − A(2)

z

)(
1 − B(2)

z

)
+

√
γ1γ2

2i
(A(2)

+ A
(1)
− − A

(1)
+ A

(2)
− ) (47)

and

LB = √
γ1B

(1)
− + √

γ2B
(2)
− , (48)

HB = 	1

2

(
1 − B(1)

z

) + 	2

2

(
1 − B(2)

z

)
+

√
γ1γ2

2i
(B(1)

+ B
(2)
− − B

(2)
+ B

(1)
− ). (49)

After substituting the SLH parameters and going through
the commutator algebra we have the differential equations

∂tA
(1)
− = −

(γ1

2
+ i	1

)
A

(1)
− − iχ1A

(1)
−

(
1 − B(1)

z

)
−√

γ1A
(1)
z ain(t), (50a)

∂tB
(1)
− = −

(γ1

2
+ i	1

)
B

(1)
− − iχ1

(
1 − A(1)

z

)
B

(1)
−

−√
γ1γ2B

(1)
z B

(2)
− − √

γ1B
(1)
z bin(t), (50b)

∂tA
(2)
− = −

(γ2

2
+ i	2

)
A

(2)
− − iχ2A

(2)
−

(
1 − B(2)

z

)
−√

γ1γ2A
(2)
z A

(1)
− − √

γ2A
(2)
z ain(t), (50c)

∂tB
(2)
− = −

(γ2

2
+ i	2

)
B

(2)
− − iχ2

(
1 − A(2)

z

)
B

(2)
−

−√
γ2B

(2)
z bin(t) (50d)

and corresponding input-output relations

aout(t) = ain(t) + √
γ1A

(1)
− + √

γ2A
(2)
− , (51a)

bout(t) = bin(t) + √
γ1B

(1)
− + √

γ2B
(2)
− . (51b)

Notice that the primary difference between the differential
equations in this and the previous case is that here the
equation for B

(1)
− depends on the outcome of the equation

for B
(2)
− , whereas in the copropagating case this relation was

reversed. This gives rise to a different order of operations when
solving the two-photon transport problem and has fundamental
physical implications.

B. Single-photon S matrix

By comparing Eqs. (36a) and (36c) with Eqs. (50a)
and (50c) in the single-photon limit, it is obvious that the
single-photon solutions are the same in both the co- and
counterpropagating cases, as one would expect. We will not
repeat the calculations here, but just quote the result:

〈ω−
a |ν+

a 〉 = 
2
∗(ωa)
1

∗(ωa)


2(ωa)
1(ωa)
δ(ωa − νa). (52)

C. Two-photon S matrix

The relevant scattering matrix element can be written in
the same way as Eq. (42), since the two input-output rela-
tions (37b) and (51b) are the same. To avoid further repetition,
we will defer all calculations in this section to Appendix C 2.

However, we wish to emphasize one important difference
between the copropagating and counterpropagating analyses.
In the copropagating case we had to solve the equation for
〈0| B(1)

− |ν+
a 〉 and use that result to solve for 〈0| B(2)

− |ν+
a 〉. In the

counterpropagating case it is the other way around, as Eq. (50b)
is the one that depends on the outcome of Eq. (50d), which
is just the natural manifestation of the counterpropagating
cascading of the interaction sites.

This seemingly small difference has a major physical impli-
cation: While solving the differential equation for 〈0| B(1)

− |ν+
a 〉,

the term proportional to χ1χ2, which would correspond to
scattering channel (IV) where the photons interact at both
sites, is zero. In fact, the final scattering matrix can be
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written as

〈ω−
a ω−

b |ν+
a ν+

b 〉 = 〈ω−
a |ν+

a 〉 〈ω−
b |ν+

b 〉 − δ(ωa + ωb − νa − νb)

π

×
[
i

(

∗

2 (ωa)
∗
2 (νb)


2(ωa)
2(νb)

)(
1 + 2iχ1


1(ωa) + 
1(ωb)

)−1
χ1γ

2
1


1(νb)
1(νa)
1(ωb)
1(ωa)

+ i

(

∗

1 (νa)
∗
1 (ωb)


1(νa)
1(ωb)

)(
1 + 2iχ2


2(ωa) + 
2(ωb)

)−1
χ2γ

2
2


2(νb)
2(νa)
2(ωb)
2(ωa)

]
. (53)

As we can see from Eq. (53), the final scattering matrix
indeed can be interpreted as the sum of only three channels,
corresponding to (I) no interaction, (II) interaction as the first
site, or (III) interaction at the second site. This is a generic
feature of using counterpropagating wave packets, as we will
see in the next section when we write the solution for the
N -site chain: There are no terms involving interactions at
more than one site. An intuitive explanation for this critical
difference between the counter- and copropagating cases can
be given by redrawing the atom chains in both cases as if
the photons were copropagating, as in Fig. 7. There we see
that, in the counterpropagating case, interactions that happen
at more than one site are not causal and thus are suppressed
from Eq. (53). For example, if the two photons interact at
site 1, they cannot later (in the timeline of the a photon)
interact at site 2, because the photon b has already left that
site behind by the time it arrives at 1. This of course gives rise
to very different phenomenology in each case, as shown in the
companion paper [41], and as we will discuss in some detail
below.

VI. N-SITE SCATTERING WITH
COUNTERPROPAGATING PHOTONS

Let us now consider the scattering problem for N interaction
sites with counterpropagating photons. From the physical
intuition developed in the previous section (and our analysis
of the three-site interaction, not presented in this paper), we
have an obvious candidate for the solution: The scattering
matrix should be the sum of N + 1 scattering channels, the
first where no interaction happens and the remaining where
the photons interact at the j th site, for 1 � j � N , and just
pick up single-photon phases at the remaining N − 1 sites. We
prove that this is the case, under the simplifying assumption
that all interactions site are the same, i.e., for all 1 � i � N

we have γi = γ , 	i = 	, and χi = χ .

FIG. 7. Representing a counterpropagating network in a copropa-
gating manner, we see that local interactions in the former correspond
to very nonlocal interactions in the latter.

A. Cascading and differential equations

Here we generalize the counterpropagating analysis from
Sec. V. The right-going mode (mode a) and the left-going
mode (mode b) are, respectively, represented by the cascaded
systems

GA = (
G

(N)
A � · · · � G

(2)
A � G

(1)
A

)
,

GB = (
G

(1)
B � · · · � G

(N−1)
B � G

(N)
B

)
.

The total system is then the concatenation of those systems

Gcounter
sys = GA � GB.

The unwieldy SLH parameters are given in Appendix D 1. The
resulting differential equations are

∂tA
(k)
− = −

(γ

2
+ i	

)
A

(k)
− − iχA

(k)
−

(
1 − B(k)

z

)

− γA(k)
z

k−1∑
j=1

A
(j )
− − √

γA(k)
z ain(t), (54a)

∂tB
(k)
− = −

(γ

2
+ i	

)
B

(k)
− − iχ

(
1 − A(k)

z

)
B

(k)
−

− γB(k)
z

N∑
j=k+1

B
(j )
− − √

γB(k)
z bin(t) (54b)

and the input-output relations are

aout(t) = ain(t) + √
γ

N∑
j=1

A
(j )
− , (55)

bout(t) = bin(t) + √
γ

N∑
j=1

B
(j )
− , (56)

as expected.

B. Single-photon S matrix

The single-photon S matrix can now be written as

〈ω−
a |ν+

a 〉 = δ(ωa − νa)

+
√

γ

2π

N∑
j=1

∫
dt 〈0| A(j )

− |ν+
a 〉 eiωat . (57)

In Appendix D 2 we describe how to obtain the solution for this
S matrix from the relevant differential equations. The main new
ingredient compared to previous sections is an induction step:
We propose a form for the kth partial sum

∑k
j=1 〈0| A(j )

− |ν+
a 〉

and it can be shown that this form holds for k = 1 and that if
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it holds for k then it also holds for k + 1. Thus, we obtain the
solution for Eq. (57) by setting k = N , which results in

〈ω−
a |ν+

a 〉 =
(

−
∗(ωa)


(ωa)

)N

δ(ωa − νa). (58)

Again, this just corresponds to each photon picking up the
same phase at each of the N sites, as expected.

C. Two-photon S matrix

Once more, using the single-photon result, we have that

〈ω−
a ω−

b |ν+
a ν+

b 〉 =
(

−
∗(ωa)


(ωa)

)N(
δ(ωa − νa)δ(ωb − νb)

+
√

γ

2π

N∑
j=1

∫
dteiωbt 〈ω+

a | B(j )
− |ν+

a ν+
b 〉

)
.

(59)

Again, we make use of inductive reasoning to obtain the
final expression. However, now the indices in the inductive
reasoning run “backward”: We propose a general form for
the mth partial sum (starting from the end of the chain up until
the mth site); then it can be shown that this form holds for
m = N and that if it holds for m it holds for m − 1. By setting
m = 1 we obtain our final result. For the explicit expressions
for the inductive step we refer the reader to Appendix D 3. The
final result is

〈ω−
a ω−

b |ν+
a ν+

b 〉

= 〈ω−
a |ν+

a 〉 〈ω−
b |ν+

b 〉 − i
χγ 2

π

(
1 + 2iχ


(νb) + 
(νa)

)−1

× δ(ωa + ωb − νa − νb)


(νb)
(νa)
(ωb)
(ωa)

×
⎡
⎣ N∑

j=1

(

∗(ωa)
∗(νb)


(ωa)
(νb)

)N−j(

∗(ωb)
∗(νa)


(ωb)
(νa)

)j−1
⎤
⎦.

(60)

This confirms our previous intuition: The first term corre-
sponds to the no-interaction channel and the sum over j

corresponds to the photons interacting at site j and picking
up single-photon phases from all other N − 1 sites other
than j .

VII. THE N → ∞ LIMIT

In this section we will analyze the N → ∞ limit of
the N -site two-photon S matrix in the counterpropagating
arrangement. There are many ways to take this limit, for
example, we could follow Refs. [52,53] and take the limit
N → ∞ in the cascaded model, obtain the relevant differential
equations, and then calculate the S matrix. Here we will follow
the more direct route of applying the limit directly to the
expression of Eq. (60).

We begin by noticing that the 
∗(ω)/
(ω) factor that
appears at several places in Eq. (60) is simply a phase, so

we define the shorthand


∗(ωa)
∗(νb)


(ωa)
(νb)
= e2iφ1 ,

(61)

∗(ωb)
∗(νa)


(ωb)
(νa)
= e2iφ2 .

Now notice that the sum over j in Eq. (60) is of the form

N∑
j=1

xN−j yj−1 = xN − yN

x − y
,

which in our case leads to
N∑

j=1

(e2iφ1 )N−j (e2iφ2 )j−1 = ei(N−1)(φ1+φ2) sin[N (φ1 − φ2)]

sin[(φ1 − φ2)]
.

(62)

The explicit expression for φ1 is

φ1 = tan−1

[
2(ωa − 	)

γ

]
+ tan−1

[
2(νb − 	)

γ

]
,

with a similar equation for φ2. Let us now make the further
assumptions that the input wave packets are spectrally very
narrow (compared to γ ) and on resonance with the atoms (i.e.,
ω � 	 for all relevant frequencies) such that we can make the
approximation tan−1(x) ≈ x + O(x3) so that

φ1 � 2

γ
(ωa + νb − 2	),

(63)

φ2 � 2

γ
(ωb + νa − 2	).

In the same way, then, we can make the approximation
sin(φ1 − φ2) � (φ1 − φ2) in (62) and then, in the limit of large
N , use the relation limN→∞ sin(Nx)/x = πδ(x), so

N∑
j=1

(e2iφ1 )N−j (e2iφ2 )j−1 � πei(N−1)(φ1+φ2)δ(φ1 − φ2).

From this and (63) we write

δ(φ1 − φ2) � γ

2
δ(ωa − ωb − νa + νb). (64)

There is an interesting physical interpretation for the appear-
ance of this δ function in the N → ∞ limit of the S matrix. In
the same way that δ(ωa + ωb − νa − νb) can be interpreted as
energy conservation, the δ(ωa − ωb − νa + νb) function can be
interpreted as momentum conservation, which arises naturally
from the translation invariance of the medium in the N → ∞
limit. This also marks a crucial difference between the co-
and counterpropagating configurations. In the copropagating
case, energy and momentum conservation lead to the same
conditions between the input and output frequencies and the
spectral-entanglement-inducing term seems to be unavoidable.
However, in the counterpropagating case, they lead to two
distinct conditions, embodied in the two δ functions discussed
above. Then, we can use the property

δ(ωa + ωb − νa − νb)δ(ωa − ωb − νa + νb)

= 1
2δ(ωa − νa)δ(ωb − νb) (65)
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to write the final S matrix as

〈ω−
a ω−

b |ν+
a ν+

b 〉 = 〈ω−
a |ν+

a 〉 〈ω−
b |ν+

b 〉
[

1 − i
χγ 3

4

(
1 + 2iχ


(νb) + 
(νa)

)−1 1

|
(ωb)
(ωa)|2
]
. (66)

This shows that the combination of energy- and momentum-
conservation conditions has the remarkable property of elimi-
nating spectral entanglement altogether.

It may seem that the apparition of this second δ function
in Eq. (65) contradicts the claim in [21] that, for a finite-
size interaction region, the density matrix can contain only
one δ function, associated with the conservation of the total
energy. We note that the proof in [21] explicitly assumes a
copropagating geometry and would have to be modified to deal
with the counterpropagating case. Even so, there is technically
no direct contradiction with that result because, for finite N ,
our second δ function in Eq. (65), as we have seen, is only
an approximation, albeit one that becomes better and better
as the number of sites (and hence the size of the interaction
region) increases. The important point, however, is that even
only an approximate δ function can be very useful, as the
numerical results in Ref. [41] demonstrate. Mathematically,
the derivation given above for this second δ function in Eq. (65)
shows that for a finite number of sites N its actual width
is of the order of 1/N in the variable φ, or about γ /N in
frequency units, which could be called the bandwidth of the
momentum-conservation condition for our scheme.

We can make one final simplification to Eq. (66), under the
assumption that ω � 	, to replace 
(ω) by γ /2 and obtain

〈ω−
a ω−

b |ν+
a ν+

b 〉 = 〈ω−
a |ν+

a 〉 〈ω−
b |ν+

b 〉
(

γ − 2iχ

γ + 2iχ

)

= 〈ω−
a |ν+

a 〉 〈ω−
b |ν+

b 〉 e−i2 tan−1(2χ/γ ). (67)

Finally, by taking the limit that χ → ∞, we obtain

〈ω−
a ω−

b |ν+
a ν+

b 〉 = − 〈ω−
a |ν+

a 〉 〈ω−
b |ν+

b 〉. (68)

This shows that, under these approximations, two (spec-
trally) unentangled photons input in the medium will remain
(spectrally) unentangled when they exit it and acquire an
overall (−1) phase beyond whatever phase is induced by
the individual single-photon propagators. This is exactly the
condition required for a perfect CPHASE gate, which would
allow for fully optical quantum computation. Indeed, in a
companion paper to this one [41], two of us have shown how to
obtain a high-fidelity CPHASE gate in this setup and studied how
this fidelity improves as a function of the number of interaction
sites (and wave packet bandwidth). Perhaps surprisingly, it is
shown there that 12 sites are sufficient to obtain a CPHASE gate
with a fidelity of greater than 99%.

VIII. CONCLUSION

In this paper we considered a fundamental problem in
quantum nonlinear optics, namely, few-photon transport in an
atom-mediated χ (3) medium. Specifically, we computed the S

matrix for single- and two-photon transport through discrete
one-dimensional (1D) Kerr media in several situations. We
considered a single atomic site composed of two coupled

atoms; two cascaded atomic interaction sites, with the photons
co- or counterpropagating; a cascaded chain of N interac-
tion sites, with counterpropagating photons; and, finally, we
studied the double limit of N → ∞ and narrow input wave
packets.

The main difference we identified between co- and counter-
propagating cases is the additional term in the copropagating
S matrix, proportional to χ1χ2 in Eq. (44), which corresponds
to an interaction between the photons at more than one
site. Beyond the two-site case, the presence of this term
in Eq. (44) indicates that the scattering solution for the
N -site copropagating case would be more complicated than
the counterpropagating case, i.e., Eq. (60). In particular, we
would expect that the full scattering matrix would contain
all terms proportional to χ,χ2,χ3, . . . ,χN , corresponding to
interactions happening at 1,2,3, . . . ,N sites, respectively.

The differences between counter- and copropagating pho-
tons might not manifest for all parameter regimes. In particular,
it is possible that, when the χi and or γi are sufficiently small,
the expression for the N -site copropagating S matrix reduces
to the one from the counterpropagating case, indicating that
the problem can be treated in a perturbative approach. An
apparent example of this, in the context of waves propagating
in spin chains, is a recent paper by Thompson et al. [54],
where the authors consider a perturbative analysis of two
copropagating wave packets in a configuration that is similar
in spirit to ours. Another example of this limit might be the
work of Chudzicki et al. [35], where the authors explicitly
choose to work in a regime in which the phase shift acquired
at each site is very small and the total phase shift of π

would have to be accumulated over many sites. However, in
their scheme the (undesirable) spectral entanglement would
also accumulate from site to site and the only way to get
a high-fidelity gate is to make use of a series of projective
measurements interspersed with the nonlinear interactions.
This is in contrast with our counterpropagating-pulse scheme,
in which we get the entirety of the phase shift from just one site
and the role of the other sites is, essentially, to passively remove
the spectral entanglement by generating (through interference)
the momentum-conservation δ function, i.e., Eq. (64).

Our work is not the first to consider the use of coun-
terpropagating wave packets for the implementation of a
CPHASE gate and other examples include [55–64]. For example,
in [56] the authors consider the photons scattering in a
counterpropagating manner through an atomic vapor medium
and in [61] the authors couple the fields to a spin chain and the
wave packets counterpropagate as fermionic waves through
the spin chain. The main conclusion of these works seems to
be that counterpropagating wave packets really undergo more
uniform cross-phase modulations than copropagating ones,
leading to a higher-fidelity CPHASE gate between the photons.
We believe the work developed here and in our companion
paper [41] supports these claims, although there are a few
important differences from these previous works.
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First, we explicitly compute the S matrices for an N -site
chain, which leads to a larger flexibility in terms of physical
implementations. We can investigate the phenomena as a func-
tion of N (and in fact, we do so in [41]) to find out how large N

must be for a desired application to work within some quality
threshold, but we can also take an N → ∞ limit and use the
result to model a continuum medium such as an atomic vapor.

Second, our formalism makes it easier to consider a
non-translation-invariant medium. Although we only do that
explicitly for the two-site case for simplicity, it should not be
too hard to generalize our N -site analysis for the case where
the parameters γi , 	i , and χi are not all equal; then one could
investigate different longitudinal profiles of these parameters
to optimize the operation of a CPHASE gate or any other task
one may wish to perform. For example, consider the work
of Hush et al. [52], which constructs a photonic memory by
taking N → ∞ and choosing 	 to be a linear ramp in the
continuous medium.

Finally, we point out that some of the other proposals
with counterpropagating photons, notably [55,56], have been
criticized (see, e.g., [57]) on the grounds that, although the
wave packets do not accumulate spectral entanglement during
the scattering, they do get entangled in their transversal
modes when one considers a fully 3D treatment. However,
our approach could also be suitable for a 1D chain of coupled
atoms embedded in a waveguide, in which case the 3D analysis
of [57] might not be applicable.

While we have spent some time discussing the application
of our results to a CPHASE gate we hope that they will become
useful in other quantum nonlinear optics applications. Other
applications might require transport for more than one photon
per mode. We leave for future work the generalization of our
results to multiphoton transport in either a cavity-based Kerr
interaction or an equivalent atomic realization.

ACKNOWLEDGMENTS

The authors acknowledge helpful discussions with Agata
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APPENDIX A: SINGLE-SITE SCATTERING

The purpose of this and the following appendixes is to fill
in the gaps of the more technical aspects of the calculations
performed in Secs. III–VI. In particular, this appendix is
concerned with the single- and two-photon scattering in a
single-site interaction. Although this is the simplest case,
it already contains almost all of the technical ingredients
important for the remaining results and so we describe its
steps in more detail. We also point out that some of the key
mathematical steps of this proof are similar to those found, e.g.,
in Refs. [43,65], although the starting points and formalisms
used are quite different.

1. Single-photon transport

As described in Sec. III, the elements of the S matrix can
be written as

〈ω−
a |ν+

a 〉 = 1√
2π

∫
dt〈0| aout(t) |ν+

a 〉eiωat ,

which, by the input-output relation, i.e., Eq. (18), becomes

〈ω−
a |ν+

a 〉 = δ(ωa − νa) +
√

γ

2π

∫
dt〈0| A− |ν+

a 〉eiωat , (A1)

where we have used (1/
√

2π )
∫

dt〈0| ain(t) |ν+
a 〉eiωat =

δ(ωa − νa). Now we sandwich Eq. (16) between 〈0| and |ν+
a 〉

to obtain

∂t 〈0| A− |ν+
a 〉 = −

(γ

2
+ i	

)
〈0| A− |ν+

a 〉

− iχ���������〈0| A−(1 − Bz) |ν+
a 〉

−√
γ 〈0| Azain(t) |ν+

a 〉, (A2)

where the two-photon term cancels since we are only interested
in single-photon transport for now. Since

〈0| Azain(t) |ν+
a 〉 = 〈0| ain(t) |ν+

a 〉 = 1√
2π

e−iνa t ,

Eq. (A2) becomes

∂t 〈0| A− |ν+
a 〉 = −

(γ

2
+ i	

)
〈0| A− |ν+

a 〉 −
√

γ

2π
e−iνa t .

(A3)
If we now multiply Eq. (A3) by 1√

2π
eiωat and integrate in t we

get

1√
2π

∫
dt eiωat 〈0| A− |ν+

a 〉 = −
√

γ


(ωa)
δ(ωa − νa),

where we define the shorthand


(ω) := γ

2
+ i(	 − ω). (A4)

Finally, plugging this into Eq. (A1) we get

〈ω−
a |ν+

a 〉 =
(

1 − γ


(ωa)

)
δ(ωa − νa)

= −
∗(ωa)


(ωa)
δ(ωa − νa), (A5)

where we used the identity γ


(ω) − 1 = 
∗(ω)

(ω) , which will appear

often in the following calculations.

2. Two-photon transport

Now we wish to compute the quantity

〈ω−
a ω−

b |ν+
a ν+

b 〉 = 〈0a0b| aout(ωa)bout(ωb) |νaνb〉.
We start by inserting a resolution of the identity
1 = |0a0b〉〈0a0b| + ∫

dsa|sa0b〉〈sa0b| + ∫
dsb|0asb〉〈0asb| +

(two-photon terms) between aout(ωa) and bout(ωb). Given that
the result is being acted upon by 〈0a0b| and there is no
scattering between the a modes and the b modes, it is clear
that only the terms proportional to |sa0b〉〈sa0b| contribute to
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the final expression. Consequently, we have (reverting to the abbreviated vacuum notation)

〈ω−
a ω−

b |ν+
a ν+

b 〉 =
∫

dsa〈0| aout(ωa)|s+
a 〉〈s+

a |bout(ωb) |ν+
a ν+

b 〉.

Using the one-photon result, we get

〈ω−
a ω−

b |ν+
a ν+

b 〉 = −
∗(ωa)


(ωa)

(
δ(ωa − νa)δ(ωb − νb) +

√
γ

2π

∫
dt eiωbt 〈ω+

a | B− |ν+
a ν+

b 〉
)

. (A6)

Now we sandwich Eq. (17) between 〈ω+
a | and |ν+

a ν+
b 〉 to obtain

∂t 〈ω+
a | B− |ν+

a ν+
b 〉 = −

(γ

2
+ i	

)
〈ω+

a | B− |ν+
a ν+

b 〉 − iχ 〈ω+
a | (1 − Az)B− |ν+

a ν+
b 〉 − √

γ 〈ω+
a | Bzbin(t) |ν+

a ν+
b 〉. (A7)

However, we can write

〈ω+
a | Bzbin(t) |ν+

a ν+
b 〉 = 1√

2π
δ(ωa − νa)e−iνbt

since Bz acts trivially on states with excitations only on the a subsystem. We can also write

〈ω+
a | (1 − Az)B− |ν+

a ν+
b 〉 =

∫
dpa〈ω+

a | 1 − Az|p+
a 〉〈p+

a |B− |ν+
a ν+

b 〉

= 2
∫

dpa〈ω+
a | A+|0〉〈0|A−|p+

a 〉〈p+
a |B− |ν+

a ν+
b 〉,

where we used that 1 − Az = 2A+A− and introduced resolutions of the identity between A+A− and between A−B− (as before,
we omit terms that are automatically zero due to photon-number-counting considerations). However, from the single-photon case

〈0| A− |p+
a 〉 = −

√
γ

2π

1


(pa)
e−ipa t

and so

〈ω+
a | (1 − Az)B− |ν+

a ν+
b 〉 = γ

π

1


∗(ωa)

∫
dpa

e−i(pa−ωa )t


(pa)
〈p+

a | B− |ν+
a ν+

b 〉.

Plugging all back into Eq. (A7) we obtain

∂t 〈ω+
a | B− |ν+

a ν+
b 〉 = −

(γ

2
+ i	

)
〈ω+

a | B− |ν+
a ν+

b 〉 − i
χγ

π

1


∗(ωa)

∫
dpa

e−i(pa−ωa )t


(pa)
〈p+

a | B− |ν+
a ν+

b 〉

−
√

γ

2π
e−iνbt δ(ωa − νa). (A8)

We will now solve this equation in the Fourier domain. We multiply the whole equation by 1√
2π

eiωbt , integrate in t , and define

f (ωb,ωa) := 1√
2π

∫
eiωbt 〈ω+

a | B− |ν+
a ν+

b 〉 [we omit the dependence of f (ωb,ωa) on νa and νb to simplify the notation]. We remark
that f (ωb,ωa) is already what we will need for Eq. (A6), so it will be unnecessary to invert the Fourier transform. The equation
then becomes


(ωb)f (ωb,ωa) = −i
χγ

π

1


∗(ωa)

∫
dpa

f (ωb + ωa − pa,pa)


(pa)
− √

γ δ(ωa − νa)δ(ωb − νb).

By replacing ωb → ωb − ωa in the previous equation and defining g(ωb,ωa) := f (ωb − ωa,ωa), we get

g(ωb,ωa) = −i
χγ

π

1


(ωb − ωa)
∗(ωa)

∫
dpa

g(ωb,pa)


(pa)
− √

γ
1


(ωb − ωa)
δ(ωa − νa)δ(ωb − ωa − νb).

Note that the integral does not depend on ωa . So we can define

G(ωb) =
∫

dpa

1


(pa)
g(ωb,pa),

fixing the dependence of g(ωb,ωa) on ωa:

g(ωb,ωa) = −i
χγ

π

1


(ωb − ωa)
∗(ωa)
G(ωb) −

√
γ


(ωb − ωa)
δ(ωa − νa)δ(ωb − ωa − νb). (A9)
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We can now plug this into the definition of G(ωb),

G(ωb) = −i
χγ

π
G(ωb)

∫
dpa

1


(ωb − pa)
(pa)
∗(pa)
− √

γ

∫
dpaδ(pa − νa)

δ(ωb − pa − νb)


(ωb − pa)
(pa)
.

We can solve the first integral via the residue theorem to obtain∫
dpa

1


(ωb − pa)|
(pa)|2 = 2π

γ (γ + 2i	 − iωb)
.

The second integral is simple if one reads it as
∫

dpaδ(pa − νa)K(pa) = K(νa) for K(pa) = δ(ωb − pa − νb)/
(ωb − pa)
(pa).
Then G(ωb) is

G(ωb) = −√
γ

(
1 + 2iχ

γ + 2i	 − iωb

)−1
δ(ωb − νa − νb)


(νb)
(νa)
.

Plugging this back into Eq. (A9) we get

g(ωb,ωa) = i
χγ

√
γ

π

(
1 + 2iχ

γ + 2i	 − iωb

)−1
δ(ωb − νa − νb)


(νb)
(νa)
(ωb − ωa)
∗(ωa)
−

√
γ


(ωb − ωa)
δ(ωa − νa)δ(ωb − ωa − νb)

and reverting to f (ωb,ωa) we have

f (ωb,ωa) = i
χγ

√
γ

π

(
1 + 2iχ


(ωa) + 
(ωb)

)−1
δ(ωa + ωb − νa − νb)


(νb)
(νa)
(ωb)
∗(ωa)
−

√
γ


(ωb)
δ(ωa − νa)δ(ωb − νb).

Finally, plugging this result back into Eq. (A6) we get

〈ω−
a ω−

b |ν+
a ν+

b 〉 = −
∗(ωa)


(ωa)

[
δ(ωa − νa)δ(ωb − νb)

(
1 − γ


(ωb)

)
+ i

χγ 2

π

(
1 + 2iχ


(ωa) + 
(ωb)

)−1
δ(ωa + ωb − νa − νb)


(νb)
(νa)
(ωb)
∗(ωa)

]

= 〈ω−
a |ν+

a 〉 〈ω−
b |ν+

b 〉 − i
χγ 2

π

(
1 + 2iχ


(ωa) + 
(ωb)

)−1
δ(ωa + ωb − νa − νb)


(νb)
(νa)
(ωb)
(ωa)
. (A10)

APPENDIX B: TWO-SITE SCATTERING WITH
COPROPAGATING PHOTONS

Both this Appendix and the next follow a reasoning similar
to that of Appendix A, only with more cumbersome equations.
We will omit much of the repeated discussion, focusing on the
particularities of each case.

1. Single-photon transport

Again, we wish to compute

〈ω−
a |ν+

a 〉 = 1√
2π

∫
dt〈0| aout(t) |ν+

a 〉eiωat ,

which by the input-output relation (37a) becomes

〈ω−
a |ν+

a 〉 = δ(ωa − νa) +
√

γ1

2π

∫
dt〈0| A(1)

− |ν+
a 〉eiωat

+
√

γ2

2π

∫
dt〈0| A(2)

− |ν+
a 〉eiωat . (B1)

Now we sandwich Eqs. (36a) and (36c) between 〈0| and |ν+
a 〉,

already preemptively neglecting the two-photon terms:

∂t 〈0| A(1)
− |ν+

a 〉 = −
(γ1

2
+ i	1

)
〈0| A(1)

− |ν+
a 〉

−√
γ1 〈0| A(1)

z ain(t) |ν+
a 〉, (B2a)

∂t 〈0| A(2)
− |ν+

a 〉 = −
(γ2

2
+ i	2

)
〈0| A(2)

− |ν+
a 〉

−√
γ1γ2 〈0| A(2)

z A
(1)
− |ν+

a 〉
−√

γ2 〈0| A(2)
z ain(t) |ν+

a 〉. (B2b)

However, we also have that

〈0| A(1)
z ain(t) |ν+

a 〉 = 〈0| ain(t) |ν+
a 〉

= 1

2π
e−iνa t = 〈0| A(2)

z ain(t) |ν+
a 〉

and

〈0| A(2)
z A

(1)
− |ν+

a 〉 = 〈0| A(1)
− |ν+

a 〉

since A(i)
z acts trivially to the left on the vacuum state. With

these facts, Eqs. (B2) become

∂t 〈0| A(1)
− |ν+

a 〉 = −
(γ1

2
+ i	1

)
〈0| A(1)

− |ν+
a 〉 −

√
γ1

2π
e−iνa t ,

(B3a)

∂t 〈0|A(2)
− |ν+

a 〉 = −
(γ2

2
+ i	2

)
〈0|A(2)

− |ν+
a 〉

−√
γ1γ2〈0|A(1)

− |ν+
a 〉 −

√
γ2

2π
e−iνa t .

(B3b)

Note that Eq. (B3a) only depends on matrix elements of
A

(1)
− , so we can solve it and then feed the result into Eq. (B3b).

Moving to the Fourier domain, Eq. (B3a) leads directly
to

1√
2π

∫
dt eiωat 〈0| A(1)

− |ν+
a 〉 = −

√
γ1


1(ωa)
δ(ωa − νa),
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where 
i(ω) is defined analogously to 
(ω) but with parameters pertaining to site i, and Eq. (B3b) in turn leads to

1√
2π

∫
dt eiωat 〈0| A(2)

− |ν+
a 〉 = −

√
γ2


2(ωa)
δ(ωa − νa)

(
1 − γ1


1(ωa)

)

=
√

γ2


2(ωa)


1(ωa)∗


1(ωa)
δ(ωa − νa).

Plugging all back into Eq. (B1) we get

〈ω−
a |ν+

a 〉 = 
2
∗(ωa)
1

∗(ωa)


2(ωa)
1(ωa)
δ(ωa − νa). (B4)

2. Two-photon transport

Again we wish to compute the quantity

〈ω−
a ω−

b |ν+
a ν+

b 〉 = 
1
∗(ωa)
2

∗(ωa)


1(ωa)
2(ωa)

(
δ(ωa − νa)δ(ωb − νb) +

√
γ1

2π

∫
dt eiωbt 〈ω+

a | B(1)
− |ν+

a ν+
b 〉

+
√

γ2

2π

∫
dt eiωbt 〈ω+

a | B(2)
− |ν+

a ν+
b 〉

)
. (B5)

Equations (36b) and (36d) now lead to

∂t 〈ω+
a | B(1)

− |ν+
a ν+

b 〉 = −
(γ1

2
+ i	1

)
〈ω+

a | B(1)
− |ν+

a ν+
b 〉 − iχ1 〈ω+

a | (1 − A(1)
z )B(1)

− |ν+
a ν+

b 〉

−√
γ1 〈ω+

a | B(1)
z bin(t) |ν+

a ν+
b 〉, (B6a)

∂t 〈ω+
a | B(2)

− |ν+
a ν+

b 〉 = −
(γ2

2
+ i	2

)
〈ω+

a | B(2)
− |ν+

a ν+
b 〉 − iχ2 〈ω+

a | (1 − A(2)
z )B(2)

− |ν+
a ν+

b 〉

−√
γ1γ2 〈ω+

a | B(2)
z B

(1)
− |ν+

a ν+
b 〉 − √

γ2 〈ω+
a | B(2)

z bin(t) |ν+
a ν+

b 〉. (B6b)

We can make simplifications similar to those leading up to Eq. (A8) and use the single-photon results to obtain

∂t 〈ω+
a | B(1)

− |ν+
a ν+

b 〉 = −
(γ1

2
+ i	1

)
〈ω+

a | B(1)
− |ν+

a ν+
b 〉 −

√
γ1

2π
e−iνbt δ(ωa − νa)

− i
χ1γ1

π

1


1
∗(ωa)

∫
dpa

e−i(pa−ωa )t


1(pa)
〈p+

a | B(1)
− |ν+

a ν+
b 〉, (B7a)

∂t 〈ω+
a | B(2)

− |ν+
a ν+

b 〉 = −
(γ2

2
+ i	2

)
〈ω+

a | B(2)
− |ν+

a ν+
b 〉 − √

γ1γ2 〈ω+
a | B(1)

− |ν+
a ν+

b 〉 −
√

γ2

2π
e−iνbt δ(ωa − νa)

− i
χ2γ2

π


1(ωa)


1
∗(ωa)
2

∗(ωa)

∫
dpa


∗
1 (pa)


1(pa)
2(pa)
e−i(pa−ωa )t 〈p+

a | B(2)
− |ν+

a ν+
b 〉. (B7b)

Moving to the Fourier domain and defining fi(ωb,ωa) := 1√
2π

∫
eiωbt 〈ω+

a | B(i)
− |ν+

a ν+
b 〉 we have


1(ωb)f1(ωb,ωa) = −i
χ1γ1

π

1


1
∗(ωa)

∫
dpb

1


1(pa)
f1(ωb + ωa − pa,pa) − √

γ1δ(ωa − νa)δ(ωb − νb), (B8a)


2(ωb)f2(ωb,ωa) = −i
χ2γ2

π


1(ωa)


1
∗(ωa)
2

∗(ωa)

∫
dpb


∗
1 (pa)


1(pa)
2(pa)
f2(ωb + ωa − pa,pa)

−√
γ1γ2f1(ωa,ωb) − √

γ2δ(ωa − νa)δ(ωb − νb). (B8b)

Both equations can be solved by the same method as in the single-system case, by defining gi(ωb,ωa) := fi(ωb − ωa,ωa) and
then defining Gi(ωb) to be the integral of gi(ωb,ωa) in ωa , with some multiplying factor. Then we solve a consistency equation
to obtain Gi(ωb) and with that result find the expressions for gi(ωb,ωa) and subsequently fi(ωb,ωa). Equation (B8a) should be
solved first, since the result for f1(ωb,ωa) needs to be fed into Eq. (B8b), which then can be solved for f2(ωb,ωa). We will omit
these details, as they are not really enlightening, and only display the final conclusion of the calculation, obtained by plugging
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the results for f1(ωb,ωa) and f2(ωb,ωa) into Eq. (B5):

〈ω−
a ω−

b |ν+
a ν+

b 〉 = 〈ω−
a |ν+

a 〉 〈ω−
b |ν+

b 〉 − δ(ωa + ωb − νa − νb)

π

×
[
i

(

∗

2 (ωa)
∗
2 (ωb)


2(ωa)
2(ωb)

)(
1 + 2iχ1


1(ωa) + 
1(ωb)

)−1
χ1γ

2
1


1(νb)
1(νa)
1(ωb)
1(ωa)

+ i

(

∗

1 (νa)
∗
1 (νb)


1(νa)
1(νb)

)(
1 + 2iχ2


2(ωa) + 
2(ωb)

)−1
χ2γ

2
2


2(νb)
2(νa)
2(ωb)
2(ωa)

+
(

1 + 2iχ1


1(ωa) + 
1(ωb)

)−1(
1 + 2iχ2


2(ωa) + 
2(ωb)

)−1 4χ1χ2γ
2
1 γ 2

2


1(νb)
1(νa)
2(ωb)
2(ωa)

× 1

(
1(ωa) + 
1(ωb))(
1(ωa) + 
2(ωb))(
2(ωa) + 
2(ωb))

]
. (B9)

APPENDIX C: TWO-SITE SCATTERING WITH COUNTERPROPAGATING PHOTONS

1. Single-photon transport

By comparing Eqs. (36a) and (36c) with Eqs. (50a) and (50c) in the single-photon limit, it is obvious that the single-photon
solutions are the same in both the co- and counterpropagating cases, as one would expect. We will not repeat the calculations
here, but just quote the result:

〈ω−
a |ν+

a 〉 = 
2
∗(ωa)
1

∗(ωa)


2(ωa)
1(ωa)
δ(ωa − νa). (C1)

2. Two-photon transport

Let us once more compute the quantity

〈ω−
a ω−

b |ν+
a ν+

b 〉 = 
1
∗(ωa)
2

∗(ωa)


1(ωa)
2(ωa)

(
δ(ωa − νa)δ(ωb − νb) +

√
γ1

2π

∫
dt eiωbt 〈ω+

a | B(1)
− |ν+

a ν+
b 〉

+
√

γ2

2π

∫
dt eiωbt 〈ω+

a | B(2)
− |ν+

a ν+
b 〉

)
. (C2)

From the differential equations for the counterpropagating case, Eqs. (50b) and (50d), we can use the same manipulations as in
the previous appendix to obtain the equations in the Fourier domain, for fi(ωb,ωa) := 1√

2π

∫
eiωbt 〈ω+

a | B(i)
− |ν+

a ν+
b 〉:


1(ωb)f1(ωb,ωa) = −i
χ1γ1

π

1


1
∗(ωa)

∫
dpb

1


1(pa)
f1(ωb + ωa − pa,pa) − √

γ1γ2f2(ωa,ωb) − √
γ1δ(ωa − νa)δ(ωb − νb),

(C3a)


2(ωb)f2(ωb,ωa) = −i
χ2γ2

π


1(ωa)


1
∗(ωa)
2

∗(ωa)

∫
dpb


∗
1 (pa)


1(pa)
2(pa)
f2(ωb + ωa − pa,pa) − √

γ2δ(ωa − νa)δ(ωb − νb). (C3b)

The main difference between this and the copropagating case is that, in order to solve Eqs. (B8), we solved first Eq. (B8a) for
f1(ωb,ωa) and then used that result to solve Eq. (B8b) for f2(ωb,ωa). Now this relation is inverted: The equation for f2(ωb,ωa)
must be solved first and its result used to solve the equation for f1(ωb,ωa). The steps to solve these equations are essentially the
same as in the single-site case and in the copropagating case [see the discussion after Eqs. (B8)], but there is one seemingly small
difference that turns out to be of great physical significance. After solving the equation for f2(ωb,ωa) and plugging the result
into the equation for f1(ωb,ωa), at a certain point we must solve the following integral:∫

dpa

1


1(ωb − pa)
2(ωb − pa)
1
∗(pa)
2

∗(pa)
. (C4)

The equivalent step in the copropagating case led to the term proportional to χ1χ2 in Eq. (B9), which we interpreted as being due
to the photons interacting at both the first and the second site. However, in the counterpropagating case this integral is zero. This
can be seen by the fact that the integrand only has poles in the Im(pa) > 0 half plane. Since the integrand decays sufficiently
fast for |pa| → ∞, we can close the integration contour via an infinite semicircle on the lower half of the complex plane. Since
the functions has no poles in that region, we conclude by the residue theorem that the above integral is zero. The important
consequence of this fact is that the final scattering matrix does not contain the scattering channel where interactions happened at
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both sites, which can be confirmed by the final expression obtained at the end of the above calculation:

〈ω−
a ω−

b |ν+
a ν+

b 〉 = 〈ω−
a |ν+

a 〉 〈ω−
b |ν+

b 〉 − δ(ωa + ωb − νa − νb)

π

×
[
i

(

∗

2 (ωa)
∗
2 (νb)


2(ωa)
2(νb)

)(
1 + 2iχ1


1(ωa) + 
1(ωb)

)−1
χ1γ

2
1


1(νb)
1(νa)
1(ωb)
1(ωa)

+ i

(

∗

1 (νa)
∗
1 (ωb)


1(νa)
1(ωb)

)(
1 + 2iχ2


2(ωa) + 
2(ωb)

)−1
χ2γ

2
2


2(νb)
2(νa)
2(ωb)
2(ωa)

]
. (C5)

APPENDIX D: N-SITE SCATTERING WITH
COUNTERPROPAGATING PHOTONS

Now we consider the scattering problem for N interaction
sites with counterpropagating photons. For simplicity we will
work under the assumption that all interactions sites are the
same, i.e., for all 1 � i � N we have γi = γ , 	i = 	, and
χi = χ , although we believe that our results should not be
hard to generalize otherwise. Since a large fraction of the
proof just follows along the same steps as done in the previous
appendixes, we will just give an outline of the new ingredients
that are required in this case, which consist essentially of two
proofs by induction.

1. The SLH parameters

The total system is then the concatenation of those systems

Gcounter
sys = GA � GB = (

G
(N)
A � · · · � G

(2)
A � G

(1)
A

)
�

(
G

(1)
B � · · · � G

(N−1)
B � G

(N)
B

)
. (D1)

To work out the general rule for cascading N elements we
need to know the following:

G
(i+1)
A �G

(i)
A =

(
Si+1Si,Li+1 + Si+1Li,Hi + Hi+1

+ 1

2i
(L†

i+1Si+1Li − L
†
i S

†
i+1Li+1)

)
, (D2)

G
(i)
B �G

(i+1)
B =

(
SiSi+1,Li + SiLi+1,Hi+1 + Hi

+ 1

2i
(L†

i SiLi+1 − L
†
i+1S

†
i Li)

)
. (D3)

Using our model thus gives

GA = (SA,LA,HA), (D4)

SA = 1, (D5)

LA =
N∑

i=1

√
γiA

(i)
− , (D6)

HA =
N∑

i=1

	i

2

(
1 − A(i)

z

) + χi

(
1 − A(i)

z

)(
1 − B(i)

z

)

+ 1

2i

N∑
i=2

i−1∑
j=1

√
γiγj (A(i)

−
†A(j )

− − A
(j )
−

†A(i)
− ), (D7)

GB = (SB,LB,HB), (D8)

SB = 1, (D9)

LB =
1∑

i=N

√
γiB

(i)
− , (D10)

HB =
1∑

i=N

	i

2

(
1 − B(i)

z

) + 1

2i

N∑
i=2

i−1∑
j=1

√
γN+1−iγN+1−j

× (B(N+1−i)
−

†B(N+1−j )
− − B

(N+1−j )
−

†B(N+1−i)
− ).

(D11)

The cavity-based Kerr SLH parameters look similar.

2. First inductive step: Single-photon transport

Again, the expression for the S matrix elements can be
written as

〈ω−
a |ν+

a 〉 = δ(ωa − νa) +
√

γ

2π

N∑
j=1

∫
dt〈0| A(j )

− |ν+
a 〉eiωat .

(D12)
However, notice, from Eq. (54a), that the differential equation
that we need to solve the kth term 〈0| A(k)

− |ν+
a 〉 depends on

the results for the partial sum of the previous operators from
1 to k − 1. So the inductive reasoning is as follows: We will
propose a general expression satisfied by the kth partial sum,
which we obtained by inspection on equivalent results from the
two- and three-site cases (the latter not included in this paper).
It can then be proven, which we leave as an exercise for the
interested reader, that (i) this expression holds for k = 1 and
(ii) if it holds for k then it also holds for k + 1. Our final result
is then obtained by setting k = N , which corresponds to the
complete sum over all sites required for Eq. (D12). Concretely,
the kth proposition is

δ(ωa − νa) +
√

γ

2π

k∑
j=1

∫
dt〈0| A(j )

− |ν+
a 〉eiωat

= (−1)k
(


∗(ωa)


(ωa)

)k

δ(ωa − νa). (D13)

After showing that the inductive hypothesis holds, we obtain
the final result for k = N :

〈ω−
a |ν+

a 〉 =
(

−
∗(ωa)


(ωa)

)N

δ(ωa − νa). (D14)
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3. Second inductive step: Two-photon transport

Once more, using the single-photon result, we have that

〈ω−
a ω−

b |ν+
a ν+

b 〉 =
(

−
∗(ωa)


(ωa)

)N(
δ(ωa − νa)δ(ωb − νb)

+
√

γ

2π

N∑
j=1

∫
dt eiωbt 〈ω+

a | B(j )
− |ν+

a ν+
b 〉

)
.

(D15)

From Eq. (54b) it is clear that each differential equation for
〈ω+

a |Bm
−|ν+

a ν+
b 〉 depends on partial sums, which now go from

the N th to the (m + 1)th site. We can use the same inductive
reasoning as before, but now running backward: We propose
a general form for the mth partial sum (starting from the end
of the chain); then it can be shown that (i) it holds for m = N

and (ii) if it holds for m then it holds for m − 1. Finally, we
obtain our final result by setting m = 1. Given fi(ωb,ωa) :=

1√
2π

∫
eiωbt 〈ω+

a | B(i)
− |ν+

a ν+
b 〉, the mth proposition is

δ(ωa − νa)δ(ωb − νb) + √
γ

N∑
j=m

fj (ωa,ωb) =
(

−
∗(ωb)


(ωb)

)N−m+1

δ(ωa − νa)δ(ωb − νb)

+ i
χγ 2

π
(−1)N−m

(
1 + 2iχ


(νb) + 
(νa)

)−1
δ(ωa + ωb − νa − νb)


(νb)
(νa)
(ωb)
(ωa)∗

× 
(ωa)N−1
(ωb)m−1


∗(ωa)N−1
∗(ωb)m−1

N∑
j=m

(

∗(ωa)
∗(νb)


(ωa)
(νb)

)N−j(

∗(ωb)
∗(νa)


(ωb)
(νa)

)j−1

.

(D16)

Again, we leave as an exercise for the reader to check that the requirements for the induction hold. The main aspect of the omitted
calculations that is important to point out is that, like in the counterpropagating two-site case, all of the integrals that would lead
to terms with higher powers of χ , which would correspond to scattering channels where the photons interact at more than one
site, are zero, for the same reasons as Eq. (C4). Setting m = 1 in Eq. (D16) and plugging into Eq. (D15) we obtain our final result

〈ω−
a ω−

b |ν+
a ν+

b 〉 = 〈ω−
a |ν+

a 〉 〈ω−
b |ν+

b 〉 − i
χγ 2

π

(
1 + 2iχ


(νb) + 
(νa)

)−1
δ(ωa + ωb − νa − νb)


(νb)
(νa)
(ωb)
(ωa)

×
N∑

j=1

(

∗(ωa)
∗(νb)


(ωa)
(νb)

)N−j(

∗(ωb)
∗(νa)


(ωb)
(νa)

)j−1

. (D17)
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resonances and bound states for strongly interacting Rydberg
polaritons, Phys. Rev. A 90, 053804 (2014).

[60] A. Feizpour, G. Dmochowski, and A. M. Steinberg, Short-
pulse cross-phase modulation in an electromagnetically-
induced-transparency medium, Phys. Rev. A 93, 013834
(2016).

[61] A. V. Gorshkov, J. Otterbach, E. Demler, M. Fleischhauer, and
M. D. Lukin, Photonic Phase Gate via an Exchange of Fermionic
Spin Waves in a Spin Chain, Phys. Rev. Lett. 105, 060502
(2010).

[62] A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, and
M. D. Lukin, Photon-Photon Interactions via Rydberg Blockade,
Phys. Rev. Lett. 107, 133602 (2011).

[63] B. He, A. V. Sharypov, J. Sheng, C. Simon, and M. Xiao, Two-
Photon Dynamics in Coherent Rydberg Atomic Ensemble, Phys.
Rev. Lett. 112, 133606 (2014).

[64] E. Shahmoon, G. Kurizki, M. Fleischhauer, and D. Petrosyan,
Strongly interacting photons in hollow-core waveguides, Phys.
Rev. A 83, 033806 (2011).

[65] J. Gea-Banacloche and N. Német, Conditional phase gate
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