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Atom-assisted quadrature squeezing of a mechanical oscillator inside a dispersive cavity
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We present a hybrid optomechanical scheme to achieve dynamical squeezing of position quadrature of a
mesoscopic mechanical oscillator, that can be externally controlled by classical fields. A membrane-in-the-middle
setup is employed, in which an atom in � configuration is considered to be trapped on either side of the membrane
inside the cavity. We show that a considerable amount of squeezing (beyond the 3-dB limit) can be achieved
and maintained at a transient time scale that is not affected by the spontaneous emission of the atom. Squeezing
depends upon the initial preparation of atomic states. Further, a strong effective coupling (larger than the relevant
decay rates) between the atom and the oscillator can be attained by using large control fields that pump the
atom and the cavity. The effects of cavity decay and the phononic bath on squeezing are studied. The results are
supported by the detailed analytical calculations.
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I. INTRODUCTION

Detection of quantum effects in mesoscopic harmonic
oscillators (MHOs) has been in the focus of study for quite
a long time. Such an oscillator is composed of a few billion
atoms and therefore can be considered as a system of classical
nature. Interestingly, at low temperature, it can be driven into
a quantum state, e.g., a superposition of separated position
eigenfunctions. Enormous attempts have been taken to reach
the quantum regime in the MHO. A central thrust of this
effort has been the development of ultrasensitive displacement
measurement techniques. The measurement of position of an
oscillator of mass m in the quantum regime is, however, limited
by the standard quantum limit [SQL; (�x)SQL = √

�/2mωm],
arising due to the intrinsic zero-point fluctuation, where ωm

is the natural frequency of the oscillator. In addition, the
oscillator also gets perturbed by the measurement device itself
in the quantum regime, leading to the back-action of the
oscillator onto the measurement device. This increases the
minimum limit of achievable uncertainty of the position to√

2(�x)SQL. To date, the best possible uncertainty that could
have been achieved is ∼4(�x)SQL [1] in a nanomechanical
oscillator (ωm = 1.35 GHz), coupled to a single-electron tran-
sistor, while uncertainties ∼100(�x)SQL [2] and ∼30(�x)SQL

[3] are also reported in lower-frequency oscillators. Back-
action evading techniques with ideally infinite measurement
precision have been proposed [4] and demonstrated [5] to
achieve up to ∼1.3(�x)SQL.

Measurement of position below the SQL has seen a
growing interest in recent times in the context of cavity
optomechanical systems [6]. Generating nonclassical states
like position-squeezed states in this system can lead to (�x) <

(�x)SQL. Such a system consists of a single mode Febry-Perot
cavity with one movable end mirror, in which the coupling
between the cavity mode and the mechanical mode of the
mirror is created due to the radiation pressure force. It has
been considered as a test platform to explore possibilities of
squeezing in mesoscopic oscillators. The radiation pressure
force makes the coupling between the two modes, linear
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in x, the displacement of the mirror from its equilibrium
position. Several proposals have been made to achieve position
squeezing in such systems. For example, it can be obtained by
pumping the cavity by a squeezed light source and thereafter
transferring this squeezing to the oscillator mode through a
state transfer protocol [7]. A two-mode cavity can be made
equivalent to an engineered reservoir that can lead to squeezing
of the oscillator via feedback [8]. It is also shown that
short pulses can be used to obtain mechanical squeezing in
the optical microcavity [9]. Such methods, however, require
either a continuous source of squeezed light and high transfer
efficiency at the quantum level or short pulses and thereby are
not the most sought-after methods for squeezing.

A natural way of obtaining quadrature squeezing dynam-
ically is to use a Hamiltonian that is quadratic in position
quadrature X = (b + b†)/

√
2 or momentum quadrature P =

(b − b†)/i
√

2, where b is the annihilation operator of the
quantized oscillator. E.g., the Hamiltonian H = χ (b2 + b†2),
χ being equivalent to the squeezing parameter, that is similar
to that of a degenerate parametric amplifier [10]. Position
squeezing in the ground state of the oscillator in the presence of
back-action would refer to (�X)2 < (�X)2

SQL = 1/2. It was
shown in [11] that if a mechanical oscillator is suspended inside
a cavity (with both the mirrors fixed) at a position where fre-
quency ωc of the cavity sees a node or antinode (i.e., ∂ωc/∂x =
0, a “membrane-in-the-middle” setup), the coupling becomes
quadratic in the displacement of the oscillator. In such a
system, squeezing can be obtained through a unitary evolution.
Driving the cavity with two laser beams, the frequencies
of which are detuned to either side of the cavity resonance
by an amount equal to the mechanical frequency in such a
setup, one can also obtain [12] a quadratic Hamiltonian. The
squeezing property of a quadratic Hamiltonian is discussed
in detail in [13] in the context of cavity optomechanical
systems. It is shown that to obtain a large squeezing, one
requires a large number of average thermal photons and a
proper conditional measurement of photon numbers in the
cavity. This is, however, limited by the cavity decay, as a
large number of photons are prone to faster decay out of
the cavity and it can lead to degradation of squeezing. To
combat this dissipation, alternative methods have also been
proposed, that require applying three coherent fields [14] or
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periodic intense pulses [15], as commonly used in dynamical
decoupling techniques [16].

In all the above methods to obtain squeezing, one employs
either a passive method such as feedback or a set of coherent
fields or pulses. Further, though one can dynamically achieve
squeezing through a quadratic Hamiltonian, the squeezing
effect is not pronounced, because the optical cavity decays
much faster than the oscillator. In this paper, we propose a
scheme to obtain dynamical squeezing, in which the effect of
cavity decay is minimized. This would be possible, if the cavity
mode interacts dispersively with the system, while squeezing
in the oscillator is governed by another auxiliary system, say,
an atom. Specifically, we consider an atom-cavity-oscillator
hybrid system, in which a coherently driven atom is coupled
to the mechanical oscillator via their common coupling to the
cavity mode in the membrane-in-the-middle setup. We choose
the low-lying energy levels of the atom, which are immune
to spontaneous emission. The cavity mode is adiabatically
eliminated from the interaction to reduce the effect of cavity
decay substantially. The amount of squeezing can be obtained
and maintained in a controllable way within the transient
time scale. The interesting features of this model are (a)
the control fields, that drive the atomic transition and the
cavity mode, control the degree of squeezing in the position
quadrature of the oscillator and (b) the squeezing parameter
depends upon the initial state of the atom. Note that cavity
optomechanics mediated by a two-level system has also
been proposed in [17], in which a Josephson-junction qubit
strongly interacts directly with both a microwave cavity and
the micromechanical oscillator. In contrast, in the present
model, the cavity mode, instead of the atom, mediates the
coupling between the atom and the oscillator and the intrinsic
atom-cavity and oscillator-cavity couplings are weak in nature,
that further can be controlled by external pumping fields.

The paper is organized as follows. We describe our hybrid
system in Sec. II. We discuss how the effective atom-oscillator
Hamiltonian can be obtained via adiabatic elimination of the
cavity mode. We also derive the expression of the squeezing
in the time domain as well as in the frequency domain. We
discuss the effect of the cavity decay and the phonon bath on
squeezing. Results are discussed in detail in Sec. III, along with
comparison with other proposals on squeezing. We conclude
the paper in Sec. IV.

II. A HYBRID MODEL

We consider a mechanical oscillator suspended inside an
optical cavity, that has both the mirrors fixed (the “membrane-
in-the-middle” setup) [11]. The dynamics of this system is
governed by the following Hamiltonian (in � = 1 unit):

H1 = H0 + Hcm + Hpump, (1)

where

H0 = ωca
†a + ωmb†b,

Hcm = g2a
†a(b + b†)2, (2)

Hpump = ε(a†e−iωl t + H.c.).

Here ωc and ωm are the frequencies of the cavity mode a and
the mechanical oscillator mode b, respectively, g2 defines the

FIG. 1. (a) A membrane-in-the-middle setup, in which an atom
is trapped and a mechanical oscillator is suspended inside a driven
cavity. (b) Energy-level configuration of the atom.

coupling between them, and ε is the amplitude of the coherent
field of frequency ωl that pumps the cavity mode. Note that
the g2 is proportional to the second-order derivative of ωc

with respect to the displacement x of the oscillator from its
equilibrium position. This Hamiltonian is quadratic, as Hcm is
proportional to the second order of the operators b and b† of
the oscillator.

In our hybrid model, we consider a single atom with three
relevant energy levels |0〉,|1〉,|e〉 in � configuration, that is
magneto-optically trapped inside the cavity on either side of
the oscillator (see Fig. 1). The |0〉 ↔ |e〉 transition is driven
by a classical control field with frequency ωp and the Rabi
frequency �, while the cavity mode drives the |1〉 ↔ |e〉
transition. The relevant Hamiltonian of the atom-cavity system
can be written as

Hac = �e−iωpt |e〉〈0| + g1|1〉〈e|a† + H.c.,
(3)

H atom
0 = ωe0|e〉〈e| + ω10|1〉〈1|,

where g1 is the atom-cavity coupling constant and H atom
0 is

the unperturbed Hamiltonian of the atom. In the reference
frame, rotating with the pumping laser frequency ωl , the total
Hamiltonian H = H1 + Hac + H atom

0 of the hybrid system
reduces to

H (1) = H
(1)
0 + H (1)

ac + Hcm + H (1)
pump, (4)

where

H
(1)
0 = δa†a + ωmb†b + ωe0|e〉〈e| + ω10|1〉〈1|,

H (1)
ac = (�e−iωpt |e〉〈0| + g1|1〉〈e|a†e−iωl t + H.c.), (5)

H (1)
pump = ε(a + a†),

and δ = ωc − ωl is the cavity pump detuning. Next, in the
interaction picture with respect to the Hamiltonian H atom

0 , the
Hamiltonian H (1) takes the following form:

H (2) = H
(2)
0 + H (2)

ac + Hcm + H (1)
pump, (6)

where

H
(2)
0 = δa†a + ωmb†b,

(7)
H (2)

ac = (�ei�t |e〉〈0| + g1|1〉〈e|ei(�+δ)t a† + H.c.),

and � = ωe0 − ωp = ωe1 − ωc is the common detuning of the
laser field and the cavity mode from the respective one-photon
transition.
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A. Effective Hamiltonian

We consider the large detuning limit � � �,g1. With
this approximation, the excited state |e〉 can be eliminated
adiabatically [18] and the three-level atom reduces to an
effective two-level atom, with the relevant energy levels |0〉
and |1〉. The Hamiltonian then can be written as

H (3) = H
(2)
0 + H (3)

ac + Hcm + H (1)
pump, (8)

where

H (3)
ac = −�g1

�
(|0〉〈0| + |1〉〈1|a†a)

− �g1

�
(|0〉〈1|a + H.c.) − δ|1〉〈1|. (9)

The first term in Eq. (9) above represents the Stark shifts of
the ground states of the atom due to its coupling to the control
field and the cavity field, while the second term describes the
dispersive coupling between the atom and the cavity mode.

The Heisenberg equation of motion of the cavity mode a

can be written as

ȧ = −i[a,H (3)] = −i

[
δa + ε − �g1

�
|1〉〈1|a

− �g1

�
|1〉〈0| + g2(b + b†)2a

]
. (10)

In the limit, δ � �g1

�
,g2, we can adiabatically eliminate the

cavity mode a by choosing ȧ ≈ 0. This leads us to the
following operator identity:

a ≈ 1

δ

(
�g1

�
|1〉〈0| − ε

)
. (11)

Thus, the final effective Hamiltonian becomes

H (4) = ωmb†b + ĝ(b + b†)2, (12)

where

ĝ = g2

δ2

[(
�g1

�

)2

|0〉〈0| − ε
�g1

�
(|0〉〈1| + |1〉〈0|) + ε2

]
.

(13)

Clearly, Eq. (12) depends quadratically on the position
quadrature (proportional to b + b†) of the oscillator. This is the
desired form of the Hamiltonian to obtain squeezing through
a unitary evolution. This is also equivalent to the Hamiltonian
that gives rise to the quantum optical spring effect [19], in
which decay of the atom or the cavity mode is now effectively
eliminated.

Further, ĝ defines an atomic operator, indicating that by
suitably choosing the initial state of the atom one can control
the squeezing parameter. This can be further revealed by
rewriting ĝ in the eigenbasis of its atomic part as

ĝ = g2

δ2
[λ1|e1〉〈e1| + λ2|e2〉〈e2| + ε2], (14)

where λ1,2 = 1
2

�g1

�
[�g1

�
±

√
(�g1

�
)
2 + 4ε2] and |e1,2〉 are the

corresponding eigenstates. If the atom is prepared in one of
these eigenstates |ei〉 (i = 1,2), the effective coupling constant
takes the form geff = (g2/δ

2)[λi + ε2]. Therefore one can
obtain desired squeezing by a suitable choice of � and ε.

Note that one could also achieve squeezing if the oscillator is
parametrically driven so that the coupling constant becomes
a sinusoidal function of time. This is usually done in a
movable-mirror setup, in which the frequency of the cavity
pump laser is suitably modulated [12,20], while in the present
hybrid model, one does not require any modulation.

B. Squeezing

We assume that the oscillator is in thermal equilibrium with
the phononic environment at a temperature T . The state of the
oscillator is described by the density matrix ρ = ∑

n pn|n〉〈n|,
where pn = (1 − exp[−�ωm/kBT ]) exp(−n�ωm/kBT ) is the
probability that the oscillator is in the phonon number state
|n〉 and kB is the Boltzmann constant. To identify squeezing
in position, we calculate the time-dependent uncertainty of
the relevant quadrature X = (b + b†)/

√
2. In the Heisenberg

picture, the operator b evolves as

b(t) = exp[iH (4)t]b exp[−iH (4)t] = rb(0) + sb†(0), (15)

where

r = cos(qt) − ik

q
sin(qt), s = −2igeff

q
sin(qt), (16)

with k = 2geff + ωm and q =
√

k2 − 4g2
eff . The uncertainty of

the position quadrature X is therefore given by

〈�X(t)〉2 = V

2

[
1 − 4geff

4geff + ωm

sin2(qt)

]
, (17)

where V = coth(�ωm/2kBT ). This clearly represents a time-
dependent squeezing with respect to the thermal state [12],
as 〈�X〉2 � 〈�X〉2

geff=0 = V/2. At qt = π/2, the uncertainty
becomes minimum as

(〈�X(t)〉2)min = V

2

ωm

4geff + ωm

, (18)

that can be further minimized by increasing geff . From the
above equation, the relative squeezing can be expressed in
decibel units as [21]

Stherm = −10 log10

[〈�X(t)〉2
min/〈�X〉2

geff=0

]

= −10 log10

[
1 − 4geff

4geff + ωm

]

= 10 log10[4(geff/ωm) + 1], (19)

that does not depend upon the temperature.
The squeezing usually refers to the uncertainty less than that

for a vacuum state. In the present case, the position squeezing
with respect to the SQL corresponds to (〈�X(t)〉2)min <

(�X)2
SQL = 1/2. This translates into the following condition

for squeezing, for an oscillator of natural frequency ωm at an
equilibrium temperature T :

geff

ωm

>
1

4

[
coth

(
�ωm

2kBT

)
− 1

]
= n̄

2
, (20)

where

n̄ = [exp(�ωm/kBT ) − 1]−1 (21)

is the average phonon number in the mechanical oscillator.
In decibel units, the squeezing relative to the SQL can be
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FIG. 2. Variation of squeezing Stherm [Eq. (19), solid line] and
SSQL (in decibel) [Eq. (22), dashed line] with coupling constant
geff/ωm for an oscillator with frequency 50 MHz at a temperature T =
1 mK. Note that below geff � 0.05ωm the thermal effect dominates
and gives rise to no squeezing with respect to vacuum, as SSQL < 0.

expressed as

SSQL = −10 log10

[〈�X(t)〉2
min/〈�X〉2

SQL

]

= 10 log10

[
{4(geff/ωm) + 1} tanh

(
�ωm

2kBT

)]
. (22)

Clearly the squeezing depends upon the coupling constant geff

and the temperature T . Lower temperature and larger coupling
constant help to have larger squeezing. In Fig. 2, we show
how the maximum attainable squeezing Stherm and SSQL varies
with geff when the atom is prepared in one of the eigenstates
|ei〉. This further demonstrates that ground-state cooling is not
necessary for mechanical squeezing [22].

It should be borne in mind that in the traditional models
of quadratic coupling, the coupling strength g2 between the
cavity mode and the oscillator is much smaller than the linear
coupling strength. This leads to the achievable squeezing only
of the order of 1.8 dB [13]. In the present case, we consider
a hybrid model, which provides us a flexibility to increase
the effective coupling to a much larger value, leading to larger
squeezing. For example, for geff = 0.5ωm [23] for an oscillator
at an equilibrium temperature T = 1 mK with the natural
frequency ωm = 2π × 50 MHz [24], we have a squeezing
Stherm = 10 log 3 = 4.77 dB with respect to the thermal state
and SSQL ≈ 4.69 dB with respect to SQL, beating the standard
50% squeezing (≡ 3 dB) limit for a bosonic system coupled
to a thermal bath [25]. Further, the squeezing can be enhanced
by moderately increasing ε and therefore geff (see Fig. 2).
This effectively leads to the strong-coupling limit (when geff

is larger than the decay rates of the atom and the oscillator),
that would be useful to drive the mechanical oscillator and that
could be achieved just by using large classical pump fields.

C. Effect of cavity decay

We emphasize that as long as the cavity mode is large
detuned from the external field and the relevant atomic
transition |1〉 ↔ |e〉, its decay does not substantially affect the
squeezing, especially in the transient time scale. To understand
this qualitatively, we incorporate the decay rate κ of the cavity
mode through an effective non-Hermitian Hamiltonian given

by Hdecay = H (3) − iκa†a [10]. Then Eq. (11) takes the form

a ≈ 1

δ − iκ

(
�g1

�
|1〉〈0| − ε

)
. (23)

Clearly, for δ � κ , the effect of the photon decay can be
negligible. For further analysis, we employ the standard
Markovian master equation, as follows:

ρ̇ = −i[H (3),ρ] − κ(a†aρ − 2aρa† + ρa†a). (24)

Here, we have considered the Hamiltonian H (3), that has
been derived before the adiabatic elimination of the cavity
mode. Note that for an optical cavity the average number
of the photons is negligible at low temperature (a few mK
or less) and therefore the cavity is considered to couple to
a vacuum bath in Eq. (24). The atom is initially prepared
to be in one of the eigenstates |ei〉, while the mechanical
oscillator is prepared in a state ρmech = ∑

m pm|m〉〈m|, which
is at thermal equilibrium with the phonon bath at a temperature
T . Considering that the cavity contains no photon at the time
t = 0, we have solved the above equation in the basis |k〉|n〉|m〉
(|k ∈ 0,1〉, |n〉, and |m〉 represent the atomic states, photon
number state, and the phonon number state, respectively) and
have calculated the position uncertainty of the mechanical
oscillator, by calculating the time-dependent reduced density
matrix of the oscillator. We have observed that in the transient
time scale (i.e., ωmt � 1), this uncertainty can be made lower
than the standard quantum limit. More importantly, for large
detunings δ � κ , the minimum achievable uncertainty in
position quadrature becomes negligibly affected by the cavity
decay. We demonstrate this effect in Fig. 3 using the presently
available experimental parameters, as in [24].

It must be borne in mind that, as required for adiabatic
elimination of the cavity mode, δ should be much larger than
�g1/� and g2. In that case, to obtain a larger effective coupling
strength geff and therefore, larger squeezing, one needs to
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X
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FIG. 3. Variation of the minimum achievable uncertainty (blue
line) and the standard quantum limit of uncertainty (red line) in the
position quadrature with the decay rate κ/ωm of the cavity mode. We
choose a mechanical oscillator with frequency ωm = 2π × 50 MHz at
an equilibrium temperature T = 10 μK. The other parameters chosen
are � = 1, g1 = 1, g2 = 0.5, δ = 5, � = 5, ε = 0.75, all in the unit
of ωm. The uncertainty is measured at ωmt � 1. The atom is assumed
to be prepared in the state |e1〉. Clearly, the variation of the uncertainty
with respect to κ remains negligible. Note that the Markovian master
equation is valid when κ is much smaller than ωm [13].
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increase ε and to optimally choose the ratio ε/δ [refer to the
expression geff = (g2/δ

2)(λi + ε2)].

D. Squeezing spectrum

As the evolution of the atom is effectively confined in
the ground-state manifold, the spontaneous emission may
be ignored in the present study. Further the cavity mode,
after its adiabatic elimination, does not significantly affect
the squeezing, as discussed in the previous subsection. In
the present model, the primary source of decoherence is the
coupling of the mechanical oscillator to the thermal phononic
bath at a temperature T , due to which the position uncertainty
increases and becomes proportional to V = coth(�ωm/2kBT )
[see Eq. (17) for geff = 0].

The effect of decoherence of the mechanical oscillator can
be further analyzed in terms of squeezing spectrum, where we
introduce another annihilation operator c(ω) for the bosonic
bath. The oscillator-bath interaction can be described by the
following Hamiltonian [26]:

Htot = H (4) + Hbath + HI ,

Hbath =
∫

dω ω c†(ω)c(ω), (25)

HI = i

∫
dωK(ω)[c†(ω)b − c(ω)b†],

where K(ω) is the frequency-dependent coupling constant. In
this case, the Heisenberg equation of motion of the mode b

can be written as

ḃ = −i[b,H (4)] − γ

2
b + √

γ bI (t), (26)

where we have chosen K(ω) = √
γ as in the case of white

bath, γ being the decay constant of the oscillator, and

bI (t) =
∫ ∞

−∞
dω exp[−iω(t − t0)]c(ω,t0). (27)

The solution of Eq. (26) can be obtained in the frequency
domain, through the Fourier transform

b(ω) = 1

2π

∫ ∞

−∞
eiωtb(t)dt. (28)

We find that

b(ω)=
√

γ [−2igeffb
†
I (−ω)−{i(ω+2geff+ωm)− γ

2 }bI (ω)](
iω− γ

2

)2+ωm(4geff + ωm)
.

(29)

Therefore, by noting that X(ω) = [b(ω) + b†(ω)]/
√

2, the po-
sition quadrature fluctuation 〈X(ω),X(ω′)〉 = 〈X(ω)X(ω′)〉 −
〈X(ω)〉〈X(ω′)〉 can be easily obtained. Using the following
relations for the bath at thermal equilibrium at a temperature
T ,

〈b†I (ω)bI (−ω′)〉 = n̄(ω)δ(ω + ω′),

〈bI (ω)b†I (−ω′)〉 = [n̄(ω) + 1]δ(ω + ω′), (30)

〈bI (ω)〉 = 〈b†I (ω)〉 = 0,
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FIG. 4. Variation of the position uncertainty 〈X(ω),X(ω)〉 with
the frequency ω/ωm. We have chosen n̄ = 0 (corresponding to a
temperature of 10 μK of a 50-MHz oscillator and γ = geff = ωm.

where n̄ is given by Eq. (21), we find that

〈X(ω),X(ω)〉 = γ

2

P

Q
,

P = (n̄ + 1)

{(
γ

2

)2

+ (ω + 2geff + ωm)2

}

+n̄

{(
γ

2

)2

+ (ω − 2geff − ωm)2

}

−2geff{ω + (2n̄ + 1)ωm},

Q =
[(

γ

2

)2

+ ωm(4geff + ωm) − ω2

]2

+ (ωγ )2.

(31)

In Fig. 4, we display the spectrum of position uncertainty.
It exhibits two maxima at the critical frequencies ωcrit =
±

√
ωm(4geff + ωm) − γ 2/4, where Q becomes minimum.

Note that the above variance (31) decreases as geff increases,
referring to squeezing at a particular frequency ω (see Fig. 5).
We also find that as the decay rate γ of the oscillator increases,
the uncertainty increases at ω = ωcrit. This suggests that the
decoherence degrades squeezing.
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FIG. 5. Variation of the position uncertainty 〈X(ω),X(ω)〉 with
the effective coupling constant geff/ωm at the frequency ω = ωm. We
have chosen n̄ = 0 and γ = ωm.
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III. DISCUSSION

As discussed above, the atom-assisted squeezing can be
generated at a time scale � 1/ωm and is least affected by the
decay of the cavity mode, in the large cavity-pump detuning
limit. In addition, the squeezing can be controlled dynamically
using external classical fields � and ε, used for driving the
atomic transition and the cavity mode, respectively. As clear
from Eq. (17), the squeezing depends upon the effective atom-
oscillator coupling constant geff = (g2/δ

2)(λi + ε2). Hence,
for negligible cavity driving (ε → 0), the squeezing primarily
depends upon the driving field �. However, in the adiabatic
limit, λi � 1 and therefore the squeezing cannot be increased
substantially to a large value. On the other hand, for larger
values of ε, the squeezing can be increased to a larger extent,
as geff ≈ (g2/δ

2)ε2.
Note that as ε increases, the average photon number 〈a†a〉

of the cavity becomes nonzero [see Eq. (11)]. However, in the
limit of large detuning δ, ȧ remains negligible as it inversely
varies as δ, leading to d(a†a)/dt ≈ 0. The cavity photon would
decay through the interaction with its own thermal bath and
this decay does not influence the atom-oscillator interaction, as
an effect of this adiabatic elimination. This means that as long
as large detuning is maintained, the condition for adiabatic
elimination of the cavity mode remains valid and eventually
the cavity decay does not substantially affect the transient
squeezing. This essentially means that to obtain a larger geff ,
there must be a tradeoff between the values of ε and δ.

We also note that an alternative way of achieving larger geff

could be to consider the microwave cavities (with angular
frequency ∼ a few GHz) and Rydberg atoms that have
negligible decay rates [27]. Such cavities have a decay rate
of approximately a few kHz which is much smaller than the
frequency ωm (∼ a few MHz) of the mechanical oscillator.
Therefore the effect of cavity decay on the transient dynamics
of squeezing becomes negligible. This would allow one to
increase ε to a larger extent and therefore to achieve a larger
geff .

Squeezing has also been considered by Jähne et al. [7],
who had driven the cavity with a 8–10-dB squeezed light
and thereafter transferred this squeezing to the mechanical
oscillator to obtain 5 dB mechanical squeezing for strong
coupling ∼0.1ωm. In contrast, our technique does not rely

upon such constraints. Just by pumping the cavity using a
highly detuned field, one can achieve a squeezing as large as
> 5 dB. Further, Asjad et al. [15] had used a cavity driven
with a pulsed laser and obtained a squeezing ∼10 dB using
open-loop feedback control, for an effective coupling 10−8ωm.
This mechanism is, however, limited by requirement of high
power short optical nanosecond pulses. In our case, a cw pump
laser would suffice to achieve squeezing. Girvin and coworkers
[12] had proposed to drive the cavity with two fields at different
frequencies, but of equal strengths, for a coupling 0.1ωm. This
may lead to certain squeezing; however, it is constrained to
work in the resolved sideband limit only (ωm is much larger
than the cavity decay rate). Our proposal does not require one
to work in this condition, as the cavity mode is adiabatically
eliminated.

IV. CONCLUSION

In conclusion, we consider a hybrid atom-optomechanical
system with the membrane-in-the-middle setup. An atom is
trapped inside the cavity and dispersively interacts with the
cavity mode, leading to squeezing in the position quadrature
of the mechanical oscillator at a transient time scale. This
squeezing is independent of spontaneous emission of the atom.
We show that for large detuning of the cavity pump field,
the position uncertainty remains almost unaffected even for a
large decay rate κ � ωm. We also discuss how the squeezing
depends upon the initial preparation of the atomic state. The
squeezing can further be enhanced by increasing geff , which
can controlled externally by the classical fields that drive the
atom and the cavity mode. As an example, we show that a
squeezing of SSQL = 4.69 dB of the oscillator with respect to
SQL can be attained for a strong coupling geff = 0.5ωm, that
beats the standard 50% squeezing (= 3 dB) limit. We have also
analytically derived the squeezing spectrum that exhibits two
maxima, the width of which increases by larger decay rate of
the oscillator.
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