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Four standard quantum optics models, that is, the Rabi, Dicke, Jaynes-Cummings, and Tavis-Cummings
models, were proposed by physicists many decades ago. Despite their relative simple forms and many previous
theoretical works, their physics at a finite N , especially inside the superradiant regime, remain unknown. In this
work, by using the strong-coupling expansion and exact diagonalization (ED), we study the Z2-U(1) Dicke model
with independent rotating-wave coupling g and counterrotating-wave coupling g′ at a finite N . This model includes
the four standard quantum optics models as its various special limits. We show that in the superradiant phase,
the system’s energy levels are grouped into doublets with even and odd parity. Any anisotropy β = g′/g �= 1
leads to the oscillation of parities in both the ground and excited doublets as the atom-photon coupling strength
increases. The oscillations will be pushed to the infinite coupling strength in the isotropic Z2 limit β = 1. We find
nearly perfect agreement between the strong-coupling expansion and the ED in the superradiant regime when β

is not too small. We also compute the photon correlation functions, squeezing spectrum, and number correlation
functions that can be measured by various standard optical techniques.
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I. INTRODUCTION

There are several well-known quantum optics models to
study atom-photon interactions [1,2]. In the Rabi model [3],
a single-photon mode interacts with a two-level atom with
equal rotating-wave (RW) and counterrotating-wave (CRW)
strengths. When the coupling strength is well below the
transition frequency, the CRW term is effectively much smaller
than the RW term, so it was dropped in the Jaynes-Cummings
(JC) model [4]. The Rabi and JC models were extended,
respectively, to the Dicke model [5] and the Tavis-Cummings
(TC) model [6] with an assembly of N two-level atoms.
Despite their relatively simple forms and many previous the-
oretical works [7–12], their solutions at a finite N , especially
inside the superradiant regime, remain unknown. Here we
address this outstanding problem. It is convenient to classify
the four well-known quantum optics models in terms of simple
symmetry: the TC and Dicke models as the U(1) and Z2 Dicke
models [13–15], respectively, and the JC and Rabi models are
just N = 1 versions of the two.

Due to recent tremendous advances in technologies, ultra-
strong couplings in cavity QED systems were achieved in at
least two experimental systems: (i) Bose-Einstein condensate
atoms inside an ultrahigh-finesse optical cavity [16–20] and
(ii) superconducting qubits inside a microwave circuit cavity
[21–24] or quantum dots inside a semiconductor microcavity
[25]. In general, in such an ultrastrong-coupling regime, the
system is described well by Eq. (1), dubbed the U(1)-Z2 Dicke
model [14,26,27], which includes the four standard quantum
optics models as its various special limits. Despite many
previous theoretical works on various special limits [7–12],
their solutions at a finite N , especially inside the superradiant
regime, remain unknown. Here we address this outstanding

problem. Specifically, we study the U(1)-Z2 Dicke model
(1) at any finite N and any ratio 0 � g′/g = β � 1 between
the RW term g and the CRW term g′ by strong-coupling
expansion [28] and exact diagonalization (ED) [9,14,29]. We
show that in the superradiant phase, the system’s energy
levels are grouped into doublets with even and odd parities,
respectively. Any anisotropy β �= 1 leads to the oscillation
of parities in the ground and excited doublet states in the
superradiant phase as g increases. In the Z2 limit β = 1, all
the oscillations are pushed to g = ∞. We find nearly perfect
agreement between the strong-coupling expansion and the
ED in the superradiant regime when β is not too small. We
compute the photon correlation functions, squeezing spectrum,
and number correlation functions that can be detected by the
fluorescence spectrum, phase-sensitive homodyne detection,
and a Hanbury-Brown-Twiss (HBT) type of experiment,
respectively [1,2,30]. Experimental realizations are discussed
and perspectives are outlined.

II. STRONG-COUPLING EXPANSION

In the strong-coupling limit, it is more convenient to start
from the Z2 limit with β = 1 and then treat 1 − β as a small
parameter. One can rewrite the U(1)-Z2 Dicke model [14] in
its dual Z2-U(1) presentation

HZ2-U(1) = ωaa
†a + ωbJz + g(1 + β)√

N
(a† + a)Jx

− g(1 − β)√
N

(a† − a)iJy, (1)

where ωa and ωb are the cavity photon frequency and the
energy difference of the two atomic levels, respectively, and
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g and g′ = βg (0 � β � 1) are the atom-photon RW and
CRW coupling, respectively. If β = 0, Eq. (1) reduces to the
U(1) Dicke model [13–15] with the U(1) symmetry a → aeiθ

and σ− → σ−eiθ leading to the conserved quantity P =
a†a + Jz. The CRW g′ term breaks the U(1) to Z2 symmetry
a → −a and σ− → −σ− with the conserved-parity operator
� = eiπ(a†a+Jz). If β = 1, it becomes the Z2 Dicke model
[9,10,31].

After performing a rotation around the Jy axis by π/2, one
can write H = H0 + V , where H0 = ωa[a†a + G(a† + a)Jz],
G = g(1+β)

ωa

√
N

, and the perturbation V = −ωb

2 {J+[1 + λ(a† −
a)] + J−[1 − λ(a† − a)]}, where λ = g(1−β)

ωb

√
N

is a dimension-

less parameter of order 1 when 1 − β is small in the large-g
limit. In principle, the strong-coupling expansion is performed
in the large-g limit G � 1, but with a small 1 − β such that
λ is of order 1. In practice, as compared to ED, the method
works well also when g is not too close to gc =

√
ωaωb

1+β
and β

is not too close to the U(1) limit β = 0.
If we define A = a + GJz, then H0 = ωa[A†A − (GJz)2]

[29]. Because [A,Jz] = 0, we denote the simultaneous
eigenstates of A and Jz as |l〉m|jm〉, m = −j, . . . ,j

and l = 0,1, . . .. The eigenstates satisfy Jz|jm〉 = m�|jm〉
and A

†
mAm|l〉m = l|l〉m, where Am = a + Gm and |l〉m =

D†(gm)|l〉 = D(−gm)|l〉, where D(α) = eαa−α∗a†
, gm = mG,

FIG. 1. The ED results for the energy levels at N = 2 and (a) β = 0.1, (b) β = 0.5, (c) β = 0.9, and (d) the Z2 limit β = 1. For simplicity,
we only show the ωa = ωb case. The parity even in red and odd in green are indicated. We only label the atomic modes l = 0,1,2,3, . . . . There
are no, one-, and two-level crossing(s) in the normal regime at l = 0,1,2, respectively. When expanding the doublets at l = 0,1, . . . , as g/gc

increases, there are infinite energy level crossings leading to the oscillations of parities at the ground states at l = 0,1, . . . manifolds shown
in Fig. 3. As β → 1−, all the zeros are pushed to infinity in (d). There are no level crossings anymore between the even and odd parity pairs.
Only the atomic energies at l = 0,1,2, . . . are labeled. As g/gc → ∞, they approach to lωa from below. This behavior was revealed by the
strong-coupling expansion in the text. Note that the energy levels here are not directly experimentally detectable, but the photon correlations
functions in Eqs. (10) and (11) are.
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and |l〉 is just the l-photon Fock state. In particular, the
ground state |0〉m = D(−gm)|0〉 is a photon coherent state. The
zeroth-order eigenenergies are H0|l〉m|jm〉 = E0

l,m|jm〉 and

E0
l,m = ωa(l − g2

m). Using the parity operator � = eiπ(a†a−Jx ),
one can show that �|l〉m|jm〉 = (−1)l|l〉−m|j,−m〉. Because
the parity is a conserved quantity at any finite N , one can group
all the eigenstates into even or odd under the parity operator
� = eiπ(a†a−Jx ):

|e〉 = 1√
2

[|l〉m|j,m〉 + (−1)l|l〉−m|j,−m〉],

|o〉 = 1√
2

[|l〉m|j,m〉 − (−1)l|l〉−m|j,−m〉].
(2)

The ground state is a doublet at |l = 0〉±j |j,±j 〉. In the large-g
limit, the excited states can be grouped into two sectors: (i)
the atomic sector with the eigenstates |l > 0〉±j |j,±j 〉 with
the energies lωa , where the first excited state l = 1 with the
energy ωa is the remanent of the pseudo-Goldstone mode
in the U(1) regime [14], and (ii) the optical sector with
the eigenstates |l〉m|j,m〉, |m| < j . The first excited state
has the energy ωo = E0

l,m=j−1 − E0
l,m=j = ωaG

2(2j − 1) =
g2(1+β)2

ωa
( 2j−1

2j
) and is the remanent of the Higgs mode in the

U(1) regime [14]. So in the strong-coupling limit there is wide
separation between the atomic sector and the optical sector.
This makes the strong-coupling expansion very effective in
the exploration of physical phenomena in the superradiant
regime.

III. GROUND-STATE (l = 0) SPLITTING

The two degenerate ground state are |1〉 = |l = 0〉−j |j,−j 〉
and |2〉 = |l = 0〉j |j,j 〉 with the zeroth-order energy E0 =
−ωa(Gj )2. Then we can determine the matrix elements in
the 2 × 2 matrix, which is the effective Hamiltonian projected
onto the two-dimensional subspace. By a second-order pertur-
bation, one finds a nonzero diagonal matrix element

V11 = V22 = V0(λ) = −ω2
b

ωa

2j

2j − 1

1 + λ2

G2
< 0. (3)

However, one needs to perform an (N = 2j )-order perturba-
tion (see Appendix A) to find the first nonzero contribution to
the off-diagonal matrix element V12 = V21 = 
0(λ):


0(λ) = −N2ωb

2

(
ωb

2ωaG2

)N−1

e−(NG)2/2

×
N∑

l=0

λl

(N − l)!

[l/2]∑
n=0

(−1/2)n(−NG)l−2n

n!(l − 2n)!
, (4)

where [l/2] is the closest integer to l/2 and λ
G

= 1−β

1+β

ωa

ωb
.

Setting λ = 0 in Eq. (4) leads to the splitting in the Z2 Dicke
model at β = 1 [Fig. 1(d)]:


0 = − ωb

(N − 1)!

(
ωb

2ωa

)N−1 2g2

ω2
a

e−N(2/g2ω2
a ) < 0, (5)

which is always a negative quantity, and thus leads to even
and odd parity as the ground state and the excited state in

ω + Δ aa

ω + Δna

Δ1

Δ0

o
e

e

o

ωa+V1

V0

l=1

l=0

FIG. 2. Energy shifts V0 < 0 and V1 < 0 and splittings 
0 and

1 of the ground state l = 0 and the first excited state l = 1. Shown
here is the 
0 < 0 and 
1 > 0 case where the even parity state is the
ground state at l = 0,1. The blue and red dashed transition lines can
be mapped out by photon and photon-number correlation functions
(10) and (11), respectively.

the l = 0 and m = j doublet in Eq. (2) having the energies
Eo,e = E0 + V0 ± |
0| (Fig. 2).

Now we study the dramatic effects of the anisotropy λ > 0
encoded in Eq. (4). If removing the exponential factor e−(G′)2/2,
where G′ = NG, Eq. (4) is a 2N th polynomial of g. We find
that it always has N positive zeros in g beyond the gc (namely,
fall into the superradiant regime). Perturbations higher than the
N th order will lead to other zeros at larger g, shown in Fig. 3(b).
Any changing of sign in 
0(λ) leads to the exchange of parity
in the ground state l = 0 and m = j in Eq. (20) [namely,
Eq. (B1)] with the energies Eo,e = E0 + V0(λ) ± |
0(λ)| in
Fig. 2. So any λ > 0 will lead to an infinite number of level
crossings with alternative parities in the ground state, which is
indeed observed in the ED results in Fig. 1 for the energy levels
at N = 2 and β = 0.1,0.5,0.9. It is the anisotropy that leads
to the parity oscillations in the superradiant regime. However,
at β = 1, the infinite level crossings are pushed to infinity, so
there are no parity oscillations in Fig. 1(d) anymore [31].

IV. DOUBLET SPLITTING AT EXCITED STATES l > 0

Now we look at the energy splitting at l > 0. The diagonal
matric element at l = 0 in Eq. (3) can be easily generalized to
the l > 0 case:

V11 = V22 = Vl(λ) = −ω2
b

ωa

2j

2j − 1

1 + λ2(2l + 1)

G2
< 0. (6)

By performing an (N = 2j )th-order perturbation, we also find
a general (but a little bit complicated) expression for the off-
diagonal matrix element V12 = V21 = 
l(λ). However, in the
G � 1 limit, it can be simplified to


l(λ) ∼ (−1)l

l!
(G′2)l
0(λ), (7)
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FIG. 3. Even-odd splitting 
l for N = 2 at (a) β = 0.1 and l = 0, (b) β = 0.5 and l = 1, and (c) β = 0.9 and l = 2 on a logarithmic scale
ln |
l

ωb
| versus g/gc. The labels e and o are the parity of the ground states. Since 
0 > 0, the ground state between the first two zeros in (a)–(c)

has odd parity. The red and blue lines are from the strong-coupling expansion and the ED, respectively. The numerical sharp dips mean the
zero splittings. They always start with even parity with oscillating parities at l = 0,1,2. There are also no, one-, and two-level crossings in the
normal regime at l = 0,1,2. The ED gives an infinite number of zeros after the first N = 2 zeros, which can only be achieved from higher-order
perturbations in the strong-coupling expansion. In (a) at β = 0.1, the strong-coupling results match well with those from the ED at l = 0, but
not too well at l = 1,2 in the first N = 2 zeros. Even so, they match well the envelope of the splitting at l = 0,1,2 (namely, the maximum
splitting). In both (b) and (c) the strong-coupling results match very well with those from ED in the first N = 2 zeros. The other zeros are far
apart from the first N = 2 zeros and beyond the scope of the figure. In (a) or (b), if one follows the ground state with odd parity, there are some
slight shifts of zero to the right at l = 0,1,2. In (c) the shifts are very small, as dictated by Eq. (7) in the limit G = g

gc

1√
N

� 1. At too strong
couplings, the ED may become (noise) unreliable due to the cutoff introduced in the ED.

where 
0(λ) is given in Eq. (4). It is enhanced due to the
large prefactor G′2l . Note that it is this oscillating sign (−1)l

that leads to the even or odd parity state with an extra (−1)l

in Eq. 2 with m = j [namely, Eq. (B2)]. The lth levels have
the energies Eo,e = E0

l + Vl(λ) ± |
l(λ)| and E0
l = ωa[l −

(Gj )2] with l = 1 shown in Fig. 2. The diagonal part of the

excited energy is[
E0

l + Vl(λ)
] − [

E0
0 + V0(λ)

]
= lωa − (|Vl| − |V0|)

= lωa − ω2
b

ωa

2j

2j − 1

1 + 2λ2

G2
< lωa, (8)
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which approaches lωa from below in the G � 1 limit. This is
indeed confirmed by the ED in Fig. 1.

Equation (7) shows that at the N th-order perturbation, the
number of zeros remains N and the positions of the zeros are
independent of l in the G � 1 limit. This observation is indeed
confirmed in the following ED results in Fig. 3.

V. EXACT DIAGONALIZATION RESULTS

Due to the λ term in Eq. (1), it is no longer convenient
to perform the ED in the coherent basis used in [29], so we
did the ED in the original (Fock) basis [9]. In the Fock space,
the complete basis is |n〉|j,m〉, n = 0,1,2, . . . ,∞, j = N/2,
and m = −j, . . . ,j , where n is the number of photons and
|j,m〉 are the Dicke states. In performing the ED, following
[9], one has to use a truncated basis n = 0,1, . . . ,nc in the
photon sector where nc ∼ 100 is the maximum photon number
in the artificially truncated Hilbert space. As long as the
low-energy levels in Figs. 3 and 1 are well below ncωa , then
the energy levels should be very close to the exact results
without the truncation (namely, sending nc → ∞). However,
the ED may not be precise anymore when g gets too close to
the upper cutoff introduced in the ED calculations as shown
in Fig. 3(c).

VI. COMPARISON BETWEEN THE STRONG-COUPLING
EXPANSION AND ED

In Figs. 3(a)–3(c) we compare Eqs. (4) and (7) with the
ED results on the energy-level splitting between the doublets
with even and odd parity for N = 2 at β = 0.1,0.5,0.9 and
l = 0,1,2. We find that the first N zeros (or parity oscillations)
from the strong-coupling expansion match those from the ED
nearly perfectly at β = 0.5,0.9 in the superradiant regime. Of
course, the ED may not be precise anymore when g gets too
close to the upper cutoff introduced in the ED calculation as
shown in Fig. 3(d). In fact, the first N = 2 zeros of Eq. (4) can
be found exactly as the two positive roots

G∓ =
(√

1 + 8
1 + β

1 − β
∓ 1

)/
4, (9)

which fall in the superradiant regime. The spacing between
the two roots 
( g

gc
) = 1√

2
is independent of β as shown in

Figs. 3(c) and 3(d). As β → 1−, both roots ∼(1 − β)−1/2 are
pushed toward infinity.

Equation (7) is also confirmed by the ED shown in Fig. 3(d)
for N = 2, β = 0.9, and l = 0,1,2 where the positions of the
first N = 2 zeros only depend on l very weakly. So between
the two zeros, at l = 0,1,2, . . ., the energy levels are in the
pattern (e,o),(e,o), . . . when 
0(λ) < 0, as shown in Fig. 2
[or (o,e),(o,e), . . . when 
0(λ) > 0].

VII. PHOTON, SQUEEZING, AND NUMBER
CORRELATION FUNCTIONS

Note that the energy-level structures in Figs. 3(a)–3(c) are
not directly experimentally measurable. So it is very important
to evaluate various photon correlation functions graphically

shown in Fig. 2, which can be directly measured through
leaking cavity photons by various standard quantum optics
detection methods. In order to calculate the photon correlation
functions in the strong-coupling limit, one needs to find not
only the energy levels as done in the previous sections and in
Fig. 2, but also the wave functions given in Appendix B. Using
the Lehmann representations, we find there is no first-order
correction to the normal photon correlation function, but
there is one ∼1/G2 to the anomalous photon correlation
function:

〈a(t)a†(0)〉 = Ae−i|
0|t + e−i(ωa+
a )t ,

〈a(t)a(0)〉 = Ae−i|
0|t − Be−i(ωa+
a )t ,
(10)

where A = (Gj )2 = N
g2(1+β)2

4ω2
a

∼ G2 is the photon number

in the ground state [32] and B = λ2

G2 ( ωb

2ωa
)2 2j

2j−1 ∼ 1/G2 and


a = (V1 − V0) + 1
2 (|
1| + |
0|), as shown in Fig. 2. One

can see that the anomalous spectral weight −B ∼ (λ/G)2 is
negative and completely due to λ (away from the Z2 limit). So
the B term in the anomalous photon correlation function can
reflect precisely the anisotropy β and can be easily detected in
phase-sensitive homodyne measurements [30].

Similarly, we also find the first-order correction ∼1/G2 to
the photon-number correlation function

〈n(t)n(0)〉 − 〈n〉2 = A[1 + B]2e−i(ωa+
n)t , (11)

where 
n = (V1 − V0) − 1
2 (|
1| − |
0|), as shown in Fig. 2,

and 〈n〉 = A is the photon number in the ground state that
does not receive first-order correction. From Eqs. (10) and
(11) one can see that 
0 can be directly extracted from the
very first frequency in Eq. (10), while |
1| = 
a − 
n and
V1 − V0 = (
a + 
n)/2 − |
0|. So all the parameters of the
cavity systems such as the doublet splittings 
0(λ) and 
1(λ)
and energy-level shifts V1 − V0 in Fig. 2 can be extracted
from the photon normal and anomalous Green’s functions (10)
and photon-number correlation functions (11). Their spectral
weights also contain detailed information about the wave
functions of the system’s energy levels. They can be measured
by photoluminescence, phase-sensitive homodyne detection,
and HBT-type experiments [30], respectively.

VIII. EXPERIMENTAL REALIZATIONS
AND DETECTIONS

In order to observe the parity oscillation effects, one has
to move away from the Z2 limit realized in the experiments
[18–20], namely, 0 < β < 1. This has been realized in the
recent experiment [27] with N ∼ 105 cold atoms inside an
optical cavity that can tune β from 0 to 1. In view of recent
experimental advances to manipulate a few atoms inside an
optical cavity [33,34], it should be practical to reduce the
number of atoms to a few in the experiment [27]. In circuit
QED systems, there are various experimental setups such as
charge, flux, phase qubits, or qutrits and the couplings could
be capacitive or inductive through �, V , �, or the 
 shape
[35]. In particular, continuously changing 0 < β < 1 has been
achieved in a recent experiment [24]. As shown in [14],
the repulsive qubit-qubit interaction also reduces the critical
coupling gc.
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From Fig. 3(a1), at N = 2, β = 0.1, and l = 0, one can
estimate the maximum splitting between the first two zeros

0 ∼ 0.1ωa , which is easily experimentally measurable. Here

l increases as l = 1,2 as shown in Figs. 3(a2) and 3(a3).
At β = 0.5 in Fig. 3(b1), 
0 decreases to ∼0.01ωa , which
is still easily measurable. The splittings at β = 0.2,0.3,0.4
falling in the range 0.01ωa < 
0 < 0.1ωa are shown in Fig. 4.
At β = 0.9 in Fig. 3(c1), 
0 decreases to ∼10−11ωa , which
may become difficult to measure. However, in view of recent
advances in the precision measurements in the detection
of elusive gravitational waves [36], it is also possible to
measure such a tiny splitting by phase-sensitive homodyne
detection [20]. So the parity oscillations can be easily measured
experimentally when β is not too close to the Z2 limit
with a finite number N = 2–9 of atoms or qubits inside a
cavity. As stated in the preceding section, the photon normal
and anomalous and photon-number correlation functions in
Eqs. (10) and (11) can be measured by photoluminescence,
phase-sensitive homodyne detection, and HBT-type experi-
ments [30], respectively.

IX. CONCLUSION

Four standard quantum optics models at finite N were
proposed by physicists many decades ago. Their importance in
quantum and nonlinear optics ranks the same as the bosonic or
fermionic Hubbard models and Heisenberg models in strongly
correlated electron systems and the Ising models in statistical
mechanics [37]. Despite their relatively simple forms and
many previous theoretical works, their solutions at finite N ,
especially inside the superradiant regime, remain unknown. In
this work we addressed this outstanding historical problem by
using the strong-coupling expansion and ED. We were able
to analytically calculate remarkably accurately various photon
correlation functions in the superradiant regime except when β

is too small, where nondegenerate or degenerate perturbations
near the U(1) limit(β = 0) work well [14]. The present work

may inspire several new directions. From the wave functions
given in Appendix B, it would be interesting to evaluate the
effects of parity oscillations on atom-photon entanglements at
a given l = 0,1,2, . . . manifold. It is important to incorporate
the effects of the external pumping and cavity photon decays
[30] to evaluate the photon correlations functions in Eqs. (10)
and (11) using the Keldysh nonequilibrium Green’s-function
approach. It would be tempting to study the arrays of cavities
leading to the Z2-(1) Dicke lattice models [38] with general
0 < β < 1.
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APPENDIX A: DERIVATION OF EQ. (4)

In this Appendix we give the derivation of Eq. (4). In
addition, we provide the wave functions up to the first order
in 1/G2 in the strong-coupling expansion that are needed to
evaluate various photon correlation functions. We also provide
some additional ED results that complement those presented
in the main text.

The first nonvanishing contribution to the off-
diagonal matrix element is through (N = 2j )th-order
perturbation V12 = V21 = 
0(λ) = 〈2|HN |1〉, where HN =
P0V

1−P0
E0−H0

V · · · 1−P0
E0−H0

V P0, which contains N interactions V

and N − 1 propagators 1−P0
E0−H0

, E0 is the ground-state energy,
and P0 is the projection onto the ground-state manifold
spanned by the doublets |1〉 and |2〉.

Using the eigenvalues E0
l,m = ωa(l − g2

m) and gm = mG

and inserting the eigenstates |l〉m|j,m〉 of H0 into the expres-
sion leading to


0(λ) = −
(

ωb

2ωa

)N−1
ωb

2

√
N

∑
{l}

j−1∏
m=−j+1

[A(lj+m+1,lj+m)]

√
j (j + 1) − m(m + 1)

lj+m + G2(j 2 − m2)
× [−j+1〈l1|[|0〉−j + λ|1〉−j ], (A1)

where A(lj+m+1,lj+m) = m+1〈lj+m+1|1 + λ(a† − a)|lj+m〉m = m+1〈lj+m+1|[|lj+m〉m + λ
√

lj+m + 1|lj+m + 1〉m − λ
√

lj+m|lj+m −
1〉m], the product is over the N − 1 intermediate states |l〉m|jm〉, m = −j + 1, . . . ,j − 1, connecting |1〉 to |2〉 and {l} =
l1, . . . ,l2j−1,l2j = 0.

In the G � 1 limit, it is justified to drop the lj+m dependence in the denominator; thus Eq. (A1) simplifies to


0(λ) = −
(

ωb

2ωaG2

)N−1
ωb

2

√
N

j−1∏
m=−j+1

√
j (j + 1) − m(m + 1)

j 2 − m2 j 〈0|[1 + λ(a† − a)]N |0〉−j . (A2)

The overlapping matrix element between the two ground states can be evaluated as

j 〈0|[1 + λ(a† − a)]N |0〉−j =
N∑

n=0

λnCn
NEn, (A3)
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FIG. 4. Even-odd splitting 
l for N = 2 at β = 0.2,0.3,0.4 at l = 0,1,2 on a logarithmic scale ln |
l

ωb
| versus g/gc. The notation is the

same as in Fig. 3. The strong-coupling expansion works very well in the ground-state doublet l = 0. There are some small deviations from
the ED at the excited doublets l = 1,2 when β = 0.2, but the deviations decrease when β = 0.3,0.4. As β increases, the other zeros start to
gradually move away from the first two. As shown in the text, all the splittings are easily experimentally measurable.

where En means taking the coefficient of xn/n! in the Tylor
expansion of E(x) = e−(G′+x)2/2, where G′ = NG. Taking the
coefficient leads to

j 〈0|[1 + λ(a† − a)]N |0〉−j

= e−(G′)2/2
N∑

l=0

N !λl

(N − l)!

[l/2]∑
n=0

(−1/2)n(−λG′)l−2n

n!(l − 2n)!
,

(A4)

where [l/2] is the closest integer to l/2. Evaluating the
product

∏j−1
m=−j+1

√
j (j+1)−m(m+1)

j 2−m2 =
√

2j

(2j−1)! in Eq. (A2) leads
to Eq. (4).

APPENDIX B: WAVE FUNCTIONS BY
STRONG-COUPLING EXPANSION

The zeroth-order ground states with even and odd parities
of the system are at the l = 0 and m = j sector in Eq. (2):

|e〉0 = 1√
2

[|l = 0〉j |j,j 〉 + |l = 0〉−j |j,−j 〉],

|o〉0 = 1√
2

[|l = 0〉j |j,j 〉 − |l = 0〉−j |j,−j 〉],
(B1)

with the energies Eo,e = E0 + V0(λ) ± |
0(λ)| shown in
Fig. 2. Using straightforward nondegenerate perturbation
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expansion, we find the first-order correction in 1/G2 to the even-odd ground states at l = 0 in Eq. (B1):

|α〉1 = ωb

2ωa

√
2j

∑
l

j−1〈l|1 − λ(a† − a)|l = 0〉j
l + G2(2j − 1)

1√
2

[|l〉j−1|j,j − 1〉 + α(−1)l|l〉−j+1|j,−j + 1〉]

+
(

ωb

2ωa

)2

2j
∑
l,l′ �=0

j 〈l′|1 + λ(a† − a)|l〉j−1 ·j−1 〈l|1 − λ(a† − a)|l = 0〉j
l′[l + G2(2j − 1)]

1√
2

[|l′〉j |j,j 〉 + α(−1)l
′ |l′〉−j |j,−j 〉], (B2)

where α = ± for α = e,o, respectively. Indeed, it shows that
the even (odd) parity ground state is mixed with only other even
(odd) parity states as dictated by the parity conservation of the
Hamiltonian at any finite N . One can see that the first-order
correction to the ground-state wave function consists of two
parts: the first part (line) is in the high-energy optical sector
and the second part (line) is in the low-energy atomic sector.

The zeroth-order lth level states with even and odd parities
of the system are at l,m = j in Eq. (2):

|e,l〉 = 1√
2

[|l〉j |j,j 〉 + (−1)l|l〉−j |j,−j 〉],

|o,l〉 = 1√
2

[|l〉j |j,j 〉 − (−1)l|l〉−j |j,−j 〉],
(B3)

with the energies Eo,e = E0
l + Vl(λ) ± |
l(λ)| and E0

l =
ωa[l − (Gj )2] in Fig. 2. Similarly, one can find the first-order
correction to the two doublets at l = 1 in Eq. (B3) by making
the following replacements in Eq. (B2): changing |l = 0〉j
to |l = 1〉j , the denominator [l + G2(2j − 1)] to [l − 1 +

G2(2j − 1)], and the sum subscript l′ �= 0 to l′ �= 1. These
wave functions are used to calculate the photon correlation
functions (10) and (11).

APPENDIX C: ADDITIONAL EXACT
DIAGONALIZATION RESULTS

In this Appendix we show the results on even-odd splitting

l for N = 2 at β = 0.2,0.3,0.4 at l = 0,1,2, shown in
Fig. 4. They make up the results between β = 0.1 and β = 0.5
shown in Fig. 3. In particular, they describe how the maxi-
mum splitting between the first two zeros 
0 monotonically
decreases from 
0 ∼ 0.1ωa at β = 0.1 to 
0 ∼ 0.01ωa at
β = 0.5 and also how the other zeros separate from the first
two as β increases.

We also made the comparisons between strong-coupling
expansions and the ED on the doublet splittings for N = 5 at
β = 0.1,0.5,0.9,1 and l = 0,1,2 and found agreement similar
to that at N = 2, shown in Fig. 3.
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