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Generation of an optical Schrödinger-cat-like state in a nonideal cavity
by injecting opposite-phase atomic dipoles

Daeho Yang,1 Junki Kim,1 Moonjoo Lee,2 Young-Tak Chough,3 and Kyungwon An1,*

1Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
2Institut für Experimentalphysik, Universtität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria

3Department of Medical Technology, Gwangju University, Gwangju 61743, Korea
(Received 27 March 2016; published 15 August 2016)

We propose a method for generating an optical Schrödinger-cat-like state in a cavity in a substantial decoherence
regime. Even when the cavity decay rate is considerably large, a cat-like state can be generated in a laser-like setting
if the gain for the field is larger than the loss. Under the condition that opposite-phase atomic dipoles repeatedly
traverse the cavity, the cavity field converges to a squeezed vacuum state in a steady state. A Schrödinger-cat-like
state is then generated when a single photon decay occurs. The phase-space distribution of the cat state can be
revealed in homodyne detection by using the decaying photon as a herald event. Quantum trajectory simulation
was used to identify the conditions for the Schrödinger-cat-like state formation as well as to analyze the properties
of those states. Based on these simulations, possible experiments are proposed within the reach of the current
technology.
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I. INTRODUCTION

Quantum mechanics allows the simultaneous existence
of two or more states at once as a superposition state. Its
physical meaning was one of the key issues in the early
days of quantum mechanics. Especially, the Schrödinger’s
cat—a superposition state of macroscopic states—has drawn
much attention due to its counterintuitive aspects. Diverse
theoretical and experimental studies were performed to realize
Schrödinger-cat-like states in various physical systems. As
a result, superposition states of atomic external and internal
states [1–3], microwave photons [4–7], and optical photons
[8–11] have been realized experimentally.

In an optical system, a large coherent state can be regarded
as a classical state due to its well-defined phase and intensity.
In this manner, a superposition of coherent states (SpCS) is
often referred to as a Schrödinger’s cat state: one coherent
state represents a live cat and the other coherent state with an
opposite phase represents a dead cat. SpCSs are known to be
useful in quantum information processing [12–14] as well as
in quantum metrology [15–17]. SpCSs investigated so far can
be classified as free-propagating or bounded SpCS. Generation
of free-propagating SpCSs has been analyzed by subtracting
photon(s) from a squeezed vacuum at once [8,11,18] as well as
in a time-separated way [9,19], adding photons to a squeezed
vacuum [20] and performing homodyne detection on a photon
number state [10]. Bounded SpCSs have been generated by
inducing a phase shift on a cavity field by dispersive atom-field
interaction [4,5] and by utilizing conditional qubit rotation as
well as conditional cavity displacement [7].

It is noteworthy that generation of SpCSs in cavities
has been achieved only in ultralow-loss systems such as
superconducting cavities. It is because a SpCS in a cavity
experiences decoherence at a rate proportional to ∼κ〈n〉,
where κ is the cavity decay rate and 〈n〉 is the mean photon
number. Moreover, to realize a SpCS in a cavity the previous
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studies utilized well-controlled atom or qubit operations,
which should be completed well before the system undergoes
significant decoherence. Therefore, ultralow cavity loss was
essential in those previous studies.

In this paper, we propose a method for generating an
optical cat-like state in a cavity even in the presence of
substantial cavity decay. Our proposal is based on the cavity-
QED microlaser system [21–24] with opposite-phase atomic
dipoles repeatedly traversing the cavity. Here atomic dipoles
are referred to as two-level atoms in a superposition state of the
ground and excited states. Under the condition that the gain for
the field is larger than the loss, the cavity field converges to a
squeezed vacuum state (SqVS) due to the interference caused
by the opposite-phase atomic dipoles. Once a SqVS is formed
in a steady state, it collapses to a Schrödinger-cat-like state
when a single photon decay occurs. Note that the cavity decay
is even essential in this scheme. Further interaction between
the atoms and the field then restores the SqVS in the cavity
again in a characteristic time, inversely proportional to the
gain, and the whole process can be repeated. Because the
formation of the SqVS depends mainly on the ratio of gain
and loss, a Schrödinger-cat-like state can be generated even
under substantial cavity decay as long as the gain exceeds
the loss just like a laser. Our scheme is advantageous in speed
compared to the other previous methods of generating bounded
cat-like states, and therefore it can be useful when a high
repetition rate is preferred. In contrast to free-propagating
SpCSs of broad bandwidths, out scheme provides a narrow
bandwidth, which would enable interactions between cat-like
states and two-level systems. Moreover, as an intracavity
cat-generation scheme, it also allows systematic investigation
of decoherence as well as quantum feedback for cat-state
stabilization.

This paper is organized as follows. In Sec. II, we briefly
introduce our physical system and explain how a SqVS is
formed. In Sec. III, we assume an infinitesimally small cavity
decay and then show a photon decay induces a quantum jump
from a SqVS to a cat-like state. In Sec. IV, we consider a
case with substantial cavity decay by using quantum trajectory

2469-9926/2016/94(2)/023826(9) 023826-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.94.023826


YANG, KIM, LEE, CHOUGH, AND AN PHYSICAL REVIEW A 94, 023826 (2016)

simulation (QTS). We then show in Sec. V that the SqVS
is restored in a certain characteristic time and the process
can be repeated. In Sec. VI, we suggest possible experiments
with parameters confirmed by QTS to be in the reach of the
current technology. We then summarize our study and draw a
conclusion in Sec. VII. Analytic approaches were employed
in Secs. II and III to find the characteristic time and to show
the formation of a cat-like state. Numerical approaches were
used in Secs. III–VI to analyze the effect of cavity decay as
well as the properties of the formed cat-like state.

II. GENERATING A SQUEEZED VACUUM STATE
IN A LOSSLESS CAVITY WITH OPPOSITE-PHASE

ATOMIC DIPOLES

For simplicity, we neglect the cavity decay in this section.
We also assume that two atoms prepared in superposition
states traverse a cavity simultaneously for now, although
this simultaneous traverse condition is not mandatory as to
be discussed below. We assume that one atom is prepared
in a superposition state of the ground and excited states
with a certain phase. The other atom is prepared in another
superposition state with the same ground and excited-state
probability but with an opposite phase to that of the first atom.
The state of these atoms can be written as

(α|↓〉 + β|↑〉)(α|↓〉 − β|↑〉), (1)

where |↓〉 and |↑〉 are the ground and excited states of the atom,
respectively, and |α|2 and |β|2 are the probabilities of the atom
being in the ground and excited states, respectively. The atoms
interact with the cavity field with the same atom-field coupling
constant g for a time duration of tint. As soon as they leave the
cavity, a pair of newly prepared atoms enter the cavity and
interact with the cavity field for another tint. This process is
repeated until a stationary field state is reached.

In this case, the atom-field interaction is described by the
following Tavis-Cummings Hamiltonian:

Hint = −ig[a(σ †
1 + σ

†
2 ) + a†(σ1 + σ2)], (2)

where a(a†) is the photon annihilation (creation) operator and
σi (σ †

i ) is the lowering (raising) operator of the ith atom.
The cavity frequency is assumed to be on resonance with the
atomic transition. We also assume that the coupling constant is
much larger than the atomic spontaneous emission rate, so the
atomic spontaneous emission to the environment is neglected
in our analysis throughout this paper. By using a short-hand
notation |↑↑〉 ≡ |↑〉|↑〉, |↑↓〉 ≡ |↑〉|↓〉, etc., the state of two
opposite-phase atoms can be expressed as

α2|↓↓〉 − β2|↑↑〉 + αβ[|↑↓〉 − |↓↑〉]. (3)

Under the Tavis-Cummings Hamiltonian, the term enclosed
within the square brackets, a singlet (subradiant) state, does
not interact with the cavity field. Only the first two terms
interact with the cavity field.

To find the steady state under the condition that atom pairs
repeatedly traverse the cavity, let us consider the change of the
cavity field with time under the Tavis-Cummings Hamiltonian.
By writing the atom-field combined state as |ψ〉 and the
field state as �∞

n=0Cn|n〉, the rate of change of the atom-field

combined state at the moment of atomic injection can be
described as

d|ψ〉
dt

= −ig[a(σ †
1 + σ

†
2 ) + a†(σ1 + σ2)]

× [α2|↓↓〉 − β2|↑↑〉]
∞∑

n=0

Cn|n〉,

which is simplified to

d|ψ〉
dt

= −ig(|↑↓〉 + |↓↑〉)
[

(α2a − β2a†)
∞∑

n=0

Cn|n〉
]
. (4)

For the field state satisfying [· · · ] = 0, the cavity field
remains unchanged afterward. Interestingly, the state satis-
fying [· · · ] = 0 is an ideal SqVS with a squeezing parameter
r = tanh−1(β2/α2). Note we obtain a stationary cavity field
state even though we do not include the cavity decay here. The
formation of a stationary state without cavity decay is due to the
equilibrium between the excited and ground states of atoms:
the excited state emits a photon and the ground state absorbs
a photon simultaneously so there is no net change. Explicit
derivation of the steady state formation under the assumption
gtint 	 1 is presented in Appendix A.

If we consider the interacting parts only, the initial atomic
state can be understood as a two-atom squeezed state [25].
A multiatom (spin) squeezed state in a spinor notation can be
understood as a state having reduced spin noise in one direction
at the cost of increased spin noise in the other direction. The
squeezed state transfer from an atomic squeezed state to a field
squeezed state was studied before [25–27]. Most of the studies
focused on the trapped atom cases, yielding a time-dependent
squeezing parameter and requiring a large atomic squeezed
state in order to achieve a substantial field squeezed state. In our
case, however, repeatedly injecting a two-atom squeezed state
with a low atomic squeezing parameter yields a large stationary
squeezing parameter for the field. Interestingly, while the usual
optical parametric oscillation often used to generate intracavity
field squeezing is limited to 3 dB quadrature squeezing [28],
there is no such limitation in our scheme based on opposite-
phase atomic dipoles.

In this section, we have assumed that two opposite-phase
atoms are traversing the cavity at once. As to be shown in
Secs. III–VI, however, a simultaneous traverse condition is
not mandatory in fact. Generalization to a nonsimultaneous
traverse case is analytically done in Appendix B.

III. INCLUSION OF INFINITESIMALLY SMALL
CAVITY DECAY

In this section, we consider the collapse of the cavity field
due to a photon decay. To simplify the argument, we assume
that the cavity decay rate is small enough not to disturb
the formation of the SqVS. Because of the cavity decay, a
photon leaks out of the cavity and a photon click occurs on
a photodetector outside. Upon a photon click, a photon must
then be subtracted from the cavity field and the wave function
for the cavity field collapses. A single-photon-subtracted state
from a SqVS |ξ 〉, or a single-photon-subtracted squeezed
vacuum state (SPSb-SqVS) in short, in the cavity can be
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FIG. 1. (a) Wigner distribution of the cavity field before a photon
click. The SqVS shows 5.7 dB squeezing in the X2 direction. Here, X1

and X2 are the quadratures (a + a†)/2 and (a − a†)/2i, respectively.
(b) Wigner distribution of the cavity field after a photon click.
The SPSb-SqVS shows negative quasiprobability, a signature of a
nonclassical state. The state also shows 3.3 dB squeezing in the X2

direction. The average photon number 〈n〉 is 3.0 in (a) and 10.0 in
(b). The plots are obtained from QTS results with the simulation
conditions β2 = 0.46 and κ 
 0. Detailed information on our QTS is
given in Sec. IV.

described by [29]

|ξ 〉 −→ a|ξ 〉. (5)

It has been known that the state obtained by subtracting
a single photon (or multiple photons) from a SqVS is a
Schrödinger-cat-like state in the studies of free-propagating
SpCSs [9,18,20]. Likewise, we observe a cat-like state in the
cavity when a photon click occurs. The Wigner distribution
of the cavity field before and after a photon click is shown in
Fig. 1.

FIG. 2. SPSb-SqVS average photon number 〈n〉 (solid lines or
dotted lines) and fidelity FSpCS (dash-dot lines) with respect to a SpCS
as a function of excited-state probability β2 of atoms. As denoted in
the legend, different colors (gray scales) and line styles represent
different cavity decay rate κ times the characteristic time τc, which
is defined in Eq. (6). For a small cavity decay (κτc 	 0.01), 〈n〉 and
FSpCS only depend on the pumping parameter β2. As the cavity decay
rate increases, 〈n〉 decreases under the same pumping parameter. Plots
are obtained from the QTS results under the condition gtint = 0.1.

As studied in a previous paper [20], a SPSb-SqVS is
more similar to a squeezed superposition of coherent states
(Sq-SpCS) than a SpCS. As a result, the fidelity FSpCS =
|〈ψ |ψSpCS〉|2 between a SPSb-SqVS of wave function |ψ〉 and
a SpCS of wave function |ψSpCS〉 is less than unity. Moreover,
the present SPSb-SqVSs have maximum fidelities with respect
to odd-cat states. Every fidelity shown below is computed
with respect to odd SpCS or odd Sq-SpCS. Figure 2 shows
the average photon number of the SPSb-SqVS and its fidelity
FSpCS as a function of the excited-state probability β2 of atoms
under the condition of an infinitesimally small cavity decay
(κ 
 0 with κ the cavity decay rate). For fair comparison, the
fidelity FSpCS is calculated between the SPSb-SqVS and the
SpCS having the same average photon number as the SPSb-
SqVS. The fidelity decreases as the excited-state probability
increases due to the increase in the squeezing parameter of the
SPSb-SqVS state.

If we compare the SPSb-SqVS state with a Sq-SpCS, we
obtain the squeezing parameter and its fidelity FSq-SpCS with
respect to the Sq-SpCS as shown in Fig. 3. The Sq-SpCS used
for comparison is the one that maximizes the fidelity with
the given SPSb-SqVS. Particularly, for infinitesimally small
cavity decay, FSq-SpCS is very close to unity. If the excited-state
probability is larger than 0.5, there is no steady state because
the emission of excited-state atoms is always stronger than
the absorption of ground-state atoms regardless of the average
photon number of the cavity field.

IV. EFFECTS OF SUBSTANTIAL CAVITY DECAY

To consider a substantial cavity decay rate and dynamics
of the system, we adopt QTS analysis (Secs. IV and V). In
QTS, time evolution of the total atom-field wave function is
calculated under the Tavis-Cummings Hamiltonian while the
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FIG. 3. Squeezing parameter r (solid or dotted lines) and fidelity
FSq-SpCS (dash-dot lines) with respect to a Sq-SpCS as a function
of excited-state probability β2 of atoms. As denoted in the legend,
different colors (gray scales) and line styles represent different cavity
decay rate κ times the characteristic time τc. The fidelity FSq-SpCS is
always higher than FSpCS in Fig. 2 for the same condition. The main
obstacle for high fidelity is the cavity decay rate.

wave function is made to collapse upon cavity decay and exit
of atoms. Additional assumptions for the simulation are as
follows:

(i) Atomic interaction with environment, i.e., atomic free-
space spontaneous emission, is negligible compared to both
atom-cavity interaction and cavity decay.

(ii) Atom injection time for each atom is random.
(iii) The superposition-state phase of a newly prepared atom

is opposite to that of the atom injected just before.
(iv) The velocity as well as the atom-field coupling are the

same for all atoms.
(v) The cavity field profile along the atomic motion is a

top-hat shape.
In contrast to the analytic calculation in the preceding

sections, here we inject each atom into the cavity randomly in
time in order to simulate experimental situations. As a result,
both the numbers N1 and N2 of atoms in the cavity with
opposite phases fluctuate in time as shown in Fig. 4, which
depicts one of the time sequences of QTS results. Analytic
calculations considering the nonsimultaneous atomic injection
are presented in Appendix B.

The formation of a SqVS in the cavity is found to be
robust against imperfect detection efficiency of the photons
decaying out of the cavity: missed detection events act as weak
perturbations, not affecting the rapid formation of a SqVS in
the cavity. For simplicity in the analysis below, we can thus
assume that the overall photon-detection efficiency is nearly
zero. The results would be worse than, but not much different
from, an ideal case of 100% photon-detection efficiency.
In practice, imperfect photon detection happens because of
mirror scattering and absorption losses, low detector quantum
efficiency, and loss along the optical path. Under substantial
cavity decay, the SqVS would undergo significant decoherence
and the SPSb-SqVS shows a lower photon number and a worse
fidelity than the ideal case of the infinitesimally small cavity
decay.

FIG. 4. Number of atoms in the cavity in our QTS calculations.
The symbol N is the total number of atoms in the cavity and N1 (N2)
represents 0 (π ) phase atoms in the cavity. Time is rescaled to tint.
Because atomic injection time for each atom is random, the numbers
of atoms N,N1, and N2 fluctuate around their mean values. The time
sequences are taken from the QTS results corresponding to 〈N〉 = 2,
β2 = 0.41, and thus κτc = 0.0025 in Fig. 2.

In the limit of gtint 	 1, the rate of SqVS formation can be
expressed as the inverse of a characteristic time τc, which is
given by (see Appendixes A and B)

1/τc = e−2r〈N〉g2tint, (6)

where 〈N〉 is the average number of atoms in the cavity and
it can be much larger than unity. It should be noted that
the expression for 1/τc is like the laser gain except for the
squeezing factor e−2r . The degree of SqVS decoherence can
then be expressed as a ratio between cavity decay rate κ (loss)
and the SqVS formation rate 1/τc (gain), or κτc.

Average photon numbers decreased due to substantial
cavity decay are shown in Fig. 2 as a function of κτc. Likewise,
the fidelity with respect to a SpCS (Fig. 2) as well as the
maximal fidelity with respect to the Sq-SpCS (Fig. 3) decrease
as κτc increases due to the decoherence in the formation of
the SqVS. As mentioned above, a SPSb-SqVS is similar to
a Sq-SpCS. Therefore, the fidelity with respect to a SpCS
decreases much more than that to a Sq-SpCS as the pumping
parameter increases in the case of substantial cavity decay.
Nevertheless, a mean photon number larger than unity as well
as the fidelity FSq-SpCS larger than 0.9 can be obtained with a
substantial cavity decay rate of κτc = 0.025, where τc can be
made fairly small by increasing the average number 〈N〉 of
atoms.

V. DYNAMICS

After a cat-like state is obtained by a photon click, the cavity
field will be restored to the SqVS by the atom-field interaction
in time. Restoration rate for the SqVS is proportional to 1/τc

in the limit of gtint 	 1. To see the restoration process, we
calculated the time evolution of FSqVS after a photon click
occurs. Time evolution of the fidelities and the average photon
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FIG. 5. Time evolution and decoherence of the cavity field with
various excited-state probability β2 of atoms. We assume gtint = 0.1
and κτc = 0.025. The values of β2 are set to generate the following
average photon number of SqVSs: 〈nSqVS〉 = 1.0 (black line), 2.0
[green (thin gray) line], and 3.0 [blue (thick gray) line]. (a) The
fidelity FSqVS is obtained with respect to the SqVS having the same
average photon number as the state before a photon click occurs.
When t = 0, a photon click occurs and the SqVS jumps to a cat-like
state. Regardless of 〈nSqVS〉, the SqVSs is restored within the time τc.
(b) Decoherence of the cavity field with (dashed lines) and without
(solid lines) the atom-field interaction. The fidelity FSpCS is obtained
with respect to the usual SpCS having the same average photon
number as the state right after a photon click. The fidelity FSq-SpCS

is calculated with respect to the one that maximizes the fidelity for
a given SPSb-SqVS. Because 1/τc is much larger than κ in our
example, the decoherence rate of the cat-like state in the presence
of the atom-field interaction is much faster than the case without the
atom-field interaction.

number for representative β2 values are plotted in Fig. 5(a),
showing that a SqVS is indeed recovered in a characteristic
time τc.

However, the restoration of the SqVS by the atom-field
interaction can be an obstacle for observing a cat-like state for a
long time. In general, the cat-like state can be destroyed by both
cavity decay and atom-field interaction. The decoherence rate
of the cat-like state by the atom-field interaction is proportional
to 1/τc, so is the restoration rate of the SqVS. The decoherence
rate by the cavity decay is proportional to κ , like a usual
Schrödinger cat in a cavity. Figure 5(b) shows the decoherence
of the cat-like state for two cases: one with and the other
without the atom-field interaction. Since our scheme is limited
to the case where the squeezed-state formation rate (the gain)
for the field is much larger than the cavity decay rate (the loss)
just like a laser, the atom-field interaction is the main source of
decoherence for the cat-like state. This decoherence, however,
can be eliminated by disabling the atom-field interaction,
for example, by stopping atom injection, transferring the
injected atoms to a dark state, or Stark-shifting the atomic
transition line.

VI. SUGGESTED EXPERIMENTS

By using QTS, we have confirmed that cat-like states are
formed under the experimental conditions which are within the
reach of the present experimental capacity. Table I summarizes
some numerical simulation results done for 174Yb. Even
though a larger intracavity atom number 〈N〉 is expected to
increase the size and fidelity of the cat-like state, exponential
increase in computation time, proportional to ∼2〈N〉, limits
the largest 〈N〉 that can be explored in Table I. Instead of
increasing 〈N〉, we increased the mirror finesse F in the
simulation in order to obtain large cat-like states. This practice
is allowed since the formation of a SqVS is mainly determined
by κτc, which is inversely proportional to F〈N〉. For example,
parameter set 5 is equivalent to a set with F = 106 and 〈N〉 =
128 with the other parameters the same. These parameters
are experimentally achievable with the present technology
and the resulting cat-like state would have high fidelity and
a large size. Figure 6 graphically shows the average photon
number and the fidelity of the cat-like state under various
excited-state probability and F〈N〉 values. We can see that
cat-like states with the average photon number 〈n〉 larger than
10 can be achieved under certain conditions. In the previous
free-propagating cat-like-state experiments, on the other hand,
the size of cat-like states made by single-photon subtraction
was limited to 〈n〉 ∼ 2 [32] due to technical reasons associated
with nonlinear crystals [33,34]. Our method is free from such
nonlinear crystal issues and is thus expected to produce larger
cat-like states.

Injecting atomic dipoles with opposite phases can be
achieved by using a nanohole array [24] with a λ/2 period
as an atomic beam aperture (Fig. 7). Such a nanohole array
can localize the atomic position with a λ/2 period, tuned to
the cavity antinodes. Atoms separated by a distance λ/2 in the
direction of a pump laser beam experience a phase difference
of π for the transverse pump laser and are prepared in
opposite-phase atomic dipoles. As 〈N〉 increases, the relative
number difference between opposite-phase atomic dipoles
would decrease as ∼1/

√〈N〉 approaching an ideal situation
discussed in Secs. V and VI.
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TABLE I. Suggested experimental parameters for 1S0 -3P1
3 transition of 174Yb at λ = 555.6 nm with an excited-state decay rate of 183

kHz. The radius of mirror curvature is assumed to be 10 mm. Overall photon-detection efficiency is denoted as η. Finesse of mirrors in an
optical regime can reach a few million (106) with the current super-mirror technology [30]. Narrow velocity distribution of atoms can be
realized by resonantly deflecting an atomic beam with a laser [31]. Moreover, it is not technically difficult to achieve the listed or even larger
〈N〉. Excited-state probability can be controlled by optical pumping.

Parameter Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Remark

Mirror finesse (106) 1.0 2.0 4.0 8.0 16.0 64.0
〈N〉 8 8 8 8 8 8
Cavity length (mm) 5.0 5.0 5.0 5.0 5.0 5.0 Assumed
Velocity of atoms 400 400 400 400 400 400 parameters
Excited-state probability 0.34 0.37 0.39 0.40 0.41 0.47

gtint 0.25 0.25 0.25 0.25 0.25 0.25 Derived
κτc 0.15 0.096 0.056 0.033 0.018 0.012 parameters

Expected size of cat (〈n〉) 1.73 2.31 2.83 3.47 3.86 10.79
Fidelity (FSpCS) 0.84 0.84 0.85 0.84 0.84 0.59 η=0.5
Fidelity (FSq-SpCS) 0.85 0.87 0.89 0.91 0.93 0.86

Expected size of cat (〈n〉) 1.72 2.25 2.74 3.38 3.79 10.27
Fidelity (FSpCS) 0.93 0.92 0.91 0.89 0.87 0.64 η=1.0
Fidelity (FSq-SpCS) 0.94 0.95 0.96 0.96 0.96 0.92

Measurement of the nonclassical cavity field state can
be achieved by using dispersive atom-field interaction
[4,5], usual homodyne measurement [35,36] or unbalanced
homodyne measurement [37]. In particular, the photon-
counting-based unbalanced homodyne technique would al-
low detection of both a herald event and the consequent
homodyne counting measurements in a simple detector
configuration.

VII. CONCLUSION

We have proposed and analyzed a way of generating an
optical Schrödinger’s cat-like state in a cavity by injecting
opposite-phase atomic dipoles even in the presence of a
substantial cavity decay. Despite the significant cavity decay,
formation of Schrödinger’s cat-like state is confirmed with
QTS if the condition κτc 	 1 is satisfied. Under this condition,
the cavity field converges to a SqVS in a characteristic time τc.

FIG. 6. (a) Average photon number 〈n〉, (b) fidelity FSpCS, and (c) fidelity FSq-SpCS of the cat-like state as a function of excited-state probability
β2 and F〈N〉. The tendency is similar to that in Fig. 2. The other parameters are the same as set 1 in Table I. Overall photon-detection efficiency
is assumed to be 0.5.

023826-6



GENERATION OF AN OPTICAL SCHRÖDINGER-CAT-LIKE . . . PHYSICAL REVIEW A 94, 023826 (2016)

FIG. 7. Experimental scheme for injecting opposite-phase atomic
dipoles using a nanohole array. (a) Randomly distributed atoms (blue
spheres) are filtered by the nanohole square array with a λ/2 period.
Equiphase planes of the pump beam (translucent green) are denoted
in solid green. Antinodes of the cavity field are denoted in red.
(b) A square-lattice nanohole array can prepare atoms in two groups:
one group with 0 phase (e.g., black holes) and the other group with
π phase (yellow holes). Solid green horizontal (red vertical) lines
indicate the equiphase planes of the pump beam (cavity field) with
phase 0 while the dashed green horizontal (red vertical) lines indicate
the equiphase planes of the pump beam (cavity field) with phase π .
Atoms separated by λ/2 in the pump-beam direction experience a
phase difference π of the pump field while the atoms separated by
λ/2 in the cavity axis direction experience an identical amplitude but
opposite phases in the atom-field coupling. With these two effects
combined, atoms can effectively interact with the cavity field as in
the superposition states with opposite phases.

The squeezed vacuum state then collapses to a Schrödinger’s
cat-like state by a single cavity photon decay, which acts
as single-photon subtraction operation on the SqVS. After
the cat state is generated, atom-field interaction restores the
same SqVS as formed before in a characteristic time τc

while the Schrödinger’s cat-like formation is heralded again
by observing a single photon click outside the cavity. We
propose possible experiments within the reach of the current
technology based on our QTS analysis on ytterbium atoms. In
our approach, a Schrödinger-cat-like state is rapidly formed in
a laser-like setting without complicated operations in a cavity,
and its size is relatively large in the optical region. Such a
cat-like state is known to be useful in quantum information
processing [12–14] and in quantum metrology [15–17].
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APPENDIX A: DERIVATION OF STEADY-STATE
FORMATION OF THE SQUEEZED VACUUM STATE

To show the squeezed vacuum state formation, let us
consider a time evolution operator of Tavis-Cummings Hamil-
tonian without cavity decay terms. The time evolution operator
is given by

U (t) = exp[−igt(aJ+ + a†J−)], (A1)

where J+ = σ
†
1 + σ

†
2 and J− = σ1 + σ2, and σi = |↓〉〈↑| is

the lowering operator of ith atom. We can generalize the time
evolution operator for N pairs of atoms present at the same
time as

U (t) = exp

[
−igt

N∑
i

(aJi+ + a†Ji−)

]
. (A2)

When gtint 	 1 is satisfied, the state vector is transformed
after the specific time tint to

|ψ(tint)〉 =
⎧⎨
⎩1 − igtint

N∑
i

(aJi+ + a†Ji−) − 1

2
g2t2

int

[
N∑
i

(aJi+ + a†Ji−)

]2

+ O
(
g3t3

int

)⎫⎬⎭|ψ(0)〉. (A3)

Tracing over atomic states would result in a density matrix for
the field as

ρfield(tint) = Tratom[|ψ(tint)〉〈ψ(tint)|]. (A4)

Some calculation yields

[ρfield(tint) − ρfield(0)]/tint

= 2g2tintN (α2a − β2a†)ρfield(0)(α2a − β2a†)†

− g2tintN (α2a† − β2a)(α2a − β2a†)ρfield(0)

− g2tintNρfield(0)[(α2a† − β2a)(α2a − β2a†)]†

+ O
(
g4t3

int

)
. (A5)

Because we are assuming the case of gtint 	 1, we can replace
[ρfield(tint) − ρfield(0)]/tint with ρ̇field(tint). To cast the result
in a more intuitive way, let us express the time evolution
of the state in a squeezed vacuum state basis, ρfield(t) =
Ŝ(ξ )ρ ′(t)Ŝ†(ξ ). Here, the squeezing operator is defined
as Ŝ(ξ ) ≡ exp ( 1

2ξ ∗a2 − 1
2ξa†2) with a squeezing parameter

r = |ξ | = tanh−1(β2/α2). By using the following properties,

(α2a − β2a†)Ŝ(ξ ) = Ŝ(ξ )a,

(α2a† − β2a)Ŝ(ξ ) = Ŝ(ξ )a†,

the equation can be rewritten as

Ŝ(ξ )ρ̇ ′(t)Ŝ†(ξ ) = Ŝ(ξ )
1

2τc

[2aρ ′(t)a† − a†aρ ′(t)

− ρ ′(t)a†a]Ŝ†(ξ ), (A6)

where 1/τc ≡ 2e−2|ξ |Ng2tint. By dividing both sides by Ŝ(ξ )
and Ŝ†(ξ ), the equation is the cavity field decay equation at
zero temperature with a decay rate 1/τc. So the density matrix
evolves to

ρfield(t) = Ŝ(ξ )ρ ′(t)Ŝ†(ξ ) → Ŝ(ξ )|0〉〈0|Ŝ†(ξ ). (A7)

As a result, the density matrix goes to the SqVS in a
characteristic time τc.
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APPENDIX B: GENERALIZATION TO NONSIMULTANEOUS INJECTION OF ATOMS

In the main text and in Appendix A, we assume that two opposite-phase atoms are simultaneously injected. For a
nonsimultaneous injection case, let us now consider a time difference �t between two opposite-phase atoms. The time evolution
operator of the nonsimultaneous injection case can be expressed as

U (t) = exp[−ig�t(aσ
†
2 + a†σ2)] exp[−ig(tint − �t)(a(σ †

2 + σ
†
1 ) + a†(σ2 + σ1))] exp[−ig�t(aσ

†
1 + a†σ1)], (B1)

where σ1 (σ2) is a lowering operator of first (second) injected atom and �t is less than or equal to tint. As in Appendix A, the
state vector is transformed after the specific time tint to

|ψ(tint + �t)〉 ={
1 − igtint(aJi+ + a†Ji−) − 1

2g2t2
int(aJi+ + a†Ji−)2

− 1
2g2(2tint�t − �t2)(σ †

2 σ1 − σ2σ
†
1 ) + O

(
g3t3

int

)}|ψ(0)〉. (B2)

Tracing over atomic states yields the same result as in Appendix A because the fourth term in the curly brackets does not have
field annihilation or creation operators. So we can generalize the result as

1/τc ≈ 2e−2|ξ |Ng2tint = e−2|ξ |〈N〉g2tint, (B3)

where N is the number of pairs of opposite-phase atoms and 〈N〉 is the average number of atoms in the cavity.
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