
PHYSICAL REVIEW A 94, 023824 (2016)

Pulse self-compression to single-cycle pulse widths a few decades above the self-focusing threshold
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We identify a physical scenario whereby optical-field waveforms with peak powers several decades above
the critical power of self-focusing can self-compress to subcycle pulse widths. With beam breakup, intense hot
spots, and optical damage of the material avoided within the pulse compression length by keeping this length
shorter than the modulation-instability buildup length, the beam is shown to preserve its continuity at the point
of subcycle pulse generation.
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I. INTRODUCTION

Temporal self-compression is a universal behavior of
ultrashort optical-field waveforms propagating in anomalously
dispersive nonlinear media [1]. This phenomenon is often
observed as a part of solitonic dynamics and is widely used
for pulse compression in optical fibers [2]. With the advent
of efficient and convenient parametric sources of ultrashort
pulses in the midinfrared [3,4], the range where many solid-
state materials exhibit anomalous dispersion, some of these
pulse self-compression scenarios, earlier used primarily in
the fiber-optic format, have been successfully extended to
optical beams freely propagating in the bulk of transparent
solids [5–10]. This regime of nonlinear pulse evolution in
solids enables the generation of temporally compressible
multi-octave midinfrared supercontinua [5,9,10] and opens the
routes toward efficient all-solid-state sources of single-cycle
and even subcycle pulses in the midinfrared [6,9,10].

If scaled to the energy level of tens of millijoules, these
methods of pulse compression would ideally match the
recently developed technology of short-pulse generation in
the midinfrared based on optical parametric chirped-pulse
amplification, which is capable of delivering sub-100-fs pulses
at the subterawatt level of peak powers [11,12]. The solution
of this problem, however, goes well beyond a mere scaling
of the soliton regime of pulse compression. For subterawatt
pulses now available in the midinfrared range [13], the level of
peak powers would be several decades above the self-focusing
threshold, Pcr = Cλ2/(8πn0n2), where C is a numerical factor
(C = 3.79 for a Gaussian beam), λ is the wavelength, n2

is the nonlinear index of refraction, and n0 is the field-free
index of refraction. In this regime, the temporal evolution
of an ultrashort optical waveform cannot be considered
independently of its spatial dynamics, because the beam
becomes intrinsically unstable with respect to spatial mod-
ulation instabilities (MIs) [14], producing hot spots, breaking
up into multiple filaments, eventually losing its continuity,
connectedness, and spatial coherence. Ionization effects add
to the complexity of spatiotemporal field dynamics [15,16],
making the material prone to optical damage. With all these
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factors being a part of the picture, the question arises as to
whether any pulse-compression scenario is possible at all.

We show in this work that the answer to this question is
affirmative. The most striking result of our analysis presented
here is that, in spite of all the complexity of spatiotemporal
field dynamics and the eventual inevitability of MI-induced
beam breakup, physical scenarios whereby ultrashort pulses
with peak powers P orders of magnitude higher than Pcr can
be compressed to subcycle pulse widths can still be identified.
Our (3 + 1)-dimensional supercomputer simulations show that
optical damage and excessive ionization effects can be avoided
in this regime if the self-compression length is kept shorter than
the spatial scale needed for the buildup of spatial MIs.

II. BASIC IDEAS AND QUALITATIVE CONSIDERATION

In their one-dimensional (1D) dynamics, observed in
optical fibers, optical solitons propagating in media with an
instantaneous cubic nonlinearity with no high-order dispersion
are known to display well-resolved cycles [2], where the phase
of pulse compression is followed by pulse stretching. The
pulse-compression phase of this oscillatory dynamics is fully
controlled by the soliton number N = (ld/ lnl)1/2, where ld =
(τ/1.665)2/|β2|, ld is the dispersion length, lnl = λ(2πn2I )−1

is the nonlinear length, I is the field intensity, τ is the pulse
full width at half maximum, and β2 is the group-velocity
dispersion coefficient. However, when the soliton pulse width
τ approaches the field cycle and the peak power reaches
the subterawatt level, optical shock waves, spatial self-action,
and ionization make the field waveform dynamics drastically
different from this textbook scenario.

The key physical idea behind our plan for self-compression
in this extreme regime, with P � Pcr , is to avoid the
generation of MI-induced hot spots across the beam as
much as possible, thus preventing excessive photoionization
in the medium. To this end, we keep the length lc of
maximum pulse self-compression in a nonlinear anomalously
dispersive medium shorter than the typical length scale lm
within which spatial MIs tend to build up. In the basic
physical model, solitonic self-compression is treated within the
framework of the nonlinear Schrödinger equation (NSE) [2].
This model neglects all the non-NSE effects, such as inertia and
dispersion of optical nonlinearity, high-order dispersion, and
field-induced ionization. In this approximation, the minimum

2469-9926/2016/94(2)/023824(6) 023824-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.94.023824


A. A. VORONIN AND A. M. ZHELTIKOV PHYSICAL REVIEW A 94, 023824 (2016)

1 2 3 4 5 6

1

10

1

10

1 2 3 4 5 6
0

20

40

1 2 3 4 5 6

1

10

1

10

1.0 1.5 2.0 2.5 3.0
0

5

10

15

(a)

(b)

(c)

(d)
B

C
D

E
FG
H

I

A

B

C

D

E

F

G
H

I

N

c

I0 (TW/cm )
2

l c
(m
m
)

l m
(m
m
) fs
)

I0 (TW/cm )
2 I0 (TW/cm )

2

l c
(m
m
)

l m
(m
m
)

A

FIG. 1. The MI buildup length lm (dashed line) and the optimal
pulse-compression length lc (solid lines) calculated by using (a) the
NSE and (b) the one-dimensional (1D) GNSE as functions of field
intensity. (c) The pulse width τc at the point of maximum compression
as a function of field intensity calculated with the use of the 1D
GNSE. The input pulse width is τ0 = 80 fs (blue), 150 fs (red), and
250 fs (green). Results of (3 + 1)-dimensional simulations are shown
as circles, triangles, and diamonds. (d) The pulse-compression ratio
η = τc/τ0 calculated as a function of soliton number N for τ0 = 80 fs
by using the NSE (dashed line) and the full 1D GNSE (solid line), 1D
GNSE without ionization terms (dash–dotted line), 1D GNSE without
HOKE terms (dotted line), and 1D GNSE with both ionization and
HOKE terms disabled (filled circles connected by a solid line).

pulse width of a breathing soliton is achieved at the length
lc ≈ (πld/2)(0.32/N + 1.1/N2) [2].

To estimate a typical scale lm, we use the Bespalov–Talanov
treatment of spatial MIs [14], which gives the following
expression for the MI gain: G = exp(z/lnl). With the MI-
induced multifilamentary structure across the beam building
up from the level of noise, whose intensity is typically many
orders of magnitude lower than the on-axis field intensity, we
set lm = 5lnl for a quantitative lower-bound estimate of the
MI length in the lc < lm criterion. Figure 1(a) compares the
MI length scale lm (the dashed line) with the NSE optimal

pulse-compression length lc (solid lines), both calculated as a
function of the field intensity. An important conclusion to be
made from this comparison is that, for shorter pulses, the lc <

lm condition can be satisfied for higher field intensities and
higher peak powers, allowing more powerful field waveforms
to be compressed through this scenario while still avoiding
dramatic MI buildup.

The solid lines in Figs. 1(b) and 1(c) present the optimal
pulse-compression length lc and the pulse width τc at z = lc
as functions of field intensity for three values of the input
pulse width τ0 calculated by using the one-dimensional
(1D) generalized nonlinear Schrödinger equation (GNSE) [2],
including high-order dispersion, self-steepening, higher-order
optical nonlinearities, and ionization effects. Along each curve
in these plots, the input pulse width τ0 is kept fixed, while
the field intensity varies, leading to changes in the soliton
number N . As can be seen from the comparison of Figs. 1(a)
and 1(b), the soliton number N continues to be a meaningful
parameter, controlling pulse self-compression even when all
the relevant non-NSE effects are included in the model. Quan-
titatively, however, the key parameters of the self-compression
scenario change. Most significantly, as GNSE calculations
with ionization and high-order nonlinearities turned on and
off show [Fig. 1(d)], the non-NSE effects tend to lower the
compression ratio at the point of maximum pulse compression.
At high field intensities, the electron density ρ, which builds
up toward the back of the pulse, may also lead to optical
damage when it approaches the critical electron density ρcr

for radiation of given wavelength. In our analysis, we use the
criterion ρ = 0.1ρcr [15,16] to define the cutoff for the GNSE
lc curves in Figs. 1(a) and 1(b), setting a borderline for the
considered pulse compression scenario in the region of high
field intensities.

III. THE MODEL

We now address the central question of whether any
scenario of pulse compression is physically feasible for peak
powers many orders of magnitude above Pcr without the
beam completely losing its connectedness and eventually the
spatial coherence. To confront this problem, we resort to
the three-dimensional time-dependent generalized nonlinear
Schrödinger equation [15,16] for the amplitude of the field,
which is referred to hereinafter as the (3 + 1)-dimensional
GNSE model:

∂

∂z
A(ω,x,y,z) =

[
ic

2ωn0

⊥ + iD̃(ω)

]
A(ω,x,y,z)

+ F̃

{
i
ω0T̃

c
[n2I (t,x,y,z) + n4I

2(t,x,y,z)]A(t,x,y,z) − UiW

2I
A(t,x,y,z)

}

−
(

iω2
0ω

2cn0ρc(ω2 + τ−2
c )

+ σ (ω)

2

)
F̃ [ρ(t)A(t,x,y,z)].

Here, A(t,x,y,z) is the field envelope, A(ω,x,y,z) is its Fourier
transform, I (t,x,y,z) = |A(t,x,y,z)|2 is the field intensity, x,
y are the transverse coordinates, z is the coordinate along
the propagation axis, t is the retarded time, ω = 2πc/λ is

the radiation frequency, λ is the wavelength, F̃ is the Fourier
transform operator, 
⊥ = ∂2/∂x2 + ∂2/∂y2 is the diffraction
operator, D̃ = k(ω) − k(ω0) − ∂k/∂ω|ω0 (ω − ω0), ω0 is the
central frequency, k(ω) = ωn(ω)/c, n(ω) is the refractive
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index, n0 = n(ω0), n2 and n4 are the Kerr nonlinearity coef-
ficients, T̃ = 1 + iω−1

0 ∂/∂t , ρ is the time-dependent electron
density, ρc = ω2

0meε0/e
2 is the critical electron density, Ui =

U0 + Uosc, Ui is the ionization potential, Uosc is the energy of
field-induced electron oscillations, W is the photoionization
rate, σ is the impact-ionization cross section, and e and me are
the electron charge and mass, respectively.

This generalization of the NSE includes all the key physical
phenomena that have been identified as significant factors
behind the spatiotemporal evolution of ultrashort optical
pulses in nonlinear media, such as dispersion and absorption
of the medium, beam diffraction, Kerr nonlinearities, pulse
self-steepening, spatial self-action phenomena, as well as
ionization-induced loss, dispersion, and optical nonlinearities.
In this model, the field evolution equation is solved jointly
with the rate equation for the electron density ρ(t),

∂ρ/∂t = W + σ (ω0)U−1
i ρI,

which includes photoionization with the photoionization rate
calculated by using the Keldysh formalism [17] and impact
ionization with the impact-ionization cross section calculated
with the use of the Drude formula σ (ω) = e2τc[meε0n0c(1 +
ω2τ 2

c )]−1, where τc is the collision time.
Simulations are performed for typical parameters of a

YAG crystal—a band gap of 6.4 eV, the Kerr-effect nonlinear
refractive index n2 = 4 × 10−16 cm2/W, and the higher-order
Kerr effect (HOKE) coefficient n4 = −1 × 10−29 cm4/W2.
Dispersion of YAG crystal was included in the model through
a Sellmeier relation [18]. The zero group-velocity dispersion
wavelength for YAG is λz ≈ 1610 nm. Similar to many other
suitable materials, YAG exhibits anomalous dispersion in the
long-wavelength part of the near-IR and in the mid-IR range.

We therefore choose to work with an input field at a central
wavelength λ0 = 3.9 μm. Sub-100-fs pulses with peak powers
orders of magnitude higher than the self-focusing threshold for
YAG (Pcr = 30 MW at λ0 = 4 μm) can be delivered at this
central wavelength by midinfrared sources based on optical
parametric chirped-pulse amplification. Spatial modulation
instabilities leading to the formation of multiple filaments
are seeded in our model by superimposing a Gaussian-noise
modulation with a standard deviation of 3% on the input
Gaussian beam profile [19]. Simulations were performed using
an MPI parallel programming interface and the CUDA graph-
ical architecture on the Lomonosov supercomputer cluster of
Moscow State University.

IV. RESULTS AND DISCUSSION

A. Pulse self-compression

Results of (3 + 1)-dimensional GNSE simulations pre-
sented in Figs. 2–4 illustrate the key tendencies in pulse-
envelope evolution and beam dynamics of an optical field
in an anomalously dispersive nonlinear solid. As can be seen
Figs. 2(a), 2(b), and 3(a), the pulse undergoes self-compression
in the time domain at the first stage of its spatiotemporal
dynamics (z � lc), followed by a phase where the pulse
experiences postcompression stretching in the time domain,
while the beam breaks up into multiple filaments [to the right
of the vertical dashed lines in Figs. 2(c) and 2(d)]. While
the 1D treatment generally fails to describe this extreme
scenario of pulse self-compression, within a limited area of
parameter space, 1D GNSE calculations can still serve as a
helpful guide for the (3 + 1)-dimensional analysis of pulse
compression within a short propagation length z ∼ lc as long
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FIG. 2. Self-compression of laser pulses with the central wavelength λ0 = 3.9 μm and the input peak power P0 = 250Pcr in the regimes
represented by points C and F in Figs. 1(b) and 1(c): (a), (b) spatiotemporal evolution, (c), (d) beam dynamics, (e)–(h) transverse beam profiles
and (i)–(l) the angular spectra at the point of maximum pulse compression, (e), (i) z = 3.7 mm and (f), (j) 2.1 mm, and in the far field at (g),
(k) z = 7.4 mm and (h), (l) 4.2 mm. The input pulse width and beam diameter are (a), (c), (e), (g), (i), (k) τ0 = 80 fs, w0 = 0.4 mm and (b),
(d), (f), (h), (j), (l) τ0 = 150 fs, w0 = 0.6 mm.
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FIG. 3. Subcycle pulse generation by self-compression of laser pulses with λ0 = 3.9 μm, initial pulse width τ0 = 80 fs, beam diameter
w0 = 0.4 mm, and input peak power P0 = 250Pcr in the regime represented by point I in Figs. 1(b) and 1(c): (a) spatiotemporal evolution,
(b) transverse beam profile, (c) the angular spectra at the point of maximum pulse compression, z = 0.75 mm, (d) temporal envelopes of the
input pulse (dashed line) and the pulse at the point of maximum pulse compression (solid line), (e) two-dimensional map of beam dynamics and
(f) one-dimensional profile of the field intensity in a vacuum behind a YAG plate with a thickness set exactly equal to lc with a 2-cm-focal-length
lens or mirror placed at a distance lf = 7 cm from the exit surface (shown by the vertical dashed line).

as the diffraction length ldf is kept much longer than both lc
and lm by an appropriate choice of the initial beam radius w0,
input pulse width τ0, and input peak power P . In this regime,
both diffraction-induced divergence and nonlinear dynamics
are suppressed within lc [Figs. 2(c) and 2(d)] and the minimum
pulse width in (3 + 1)-dimensional simulations is achieved at
z ≈ lc, i.e., almost exactly at the point predicted by 1D GNSE.
Moreover, in this regime, the 1D GNSE model provides a
remarkably high accuracy in its predictions of the pulse width
τc at the point of maximum pulse compression [Fig. 1(c)]. This
close agreement between the one- and (3 + 1)-dimensional
models is demonstrated in Figs. 1(b) and 1(c), where the
points of maximum pulse compression in (3 + 1)-dimensional
simulations (circles, triangles, and diamonds) are shown
against the results of 1D modeling (solid lines). As can be seen
from these plots, predictions of one- and (3 + 1)-dimensional
simulations for lc agree very well within a broad range of
parameters as long as the conditions lc � ldf and lc < lm are
satisfied and ionization does not lead to a dramatic scattering
of the optical beam within lc.

With the length lc chosen very close to lm in our modeling,
to provide the largest MI-free propagation length and, thus,
the highest efficiencies of pulse compression, modulation
instabilities lead to a rapid breakup of the beam into multiple
filaments beyond the z = lc point [Figs. 2(c), 2(d), and 4(f)–
4(h)]. At z ≈ 2lc, the laser beam, as can be seen from Figs. 2(g)
and 2(h), has already lost its connectedness and exhibits a
random array of hot spots across its cross section.

B. Multiple filamentation

To examine the influence of growing MIs on the quality of
the laser beam at the point of maximum pulse compression,
we use our (3 + 1)-dimensional model to calculate the beam
profiles and the angular spectra of the laser field at z = lc

for nine sets of input field parameters represented by points
A to I in Figs. 1(b) and 1(c). All these points correspond to
the input peak power P0 = 250Pcr . They all fall within the
lc < lm domain, but lie close to the lc = lm borderline, beyond
which the laser beam tends to break up before the field reaches
the point of maximum pulse compression. Thus, although all
these sets of input parameters enable pulse self-compression to
subcycle pulse widths [Figs. 2(a), 2(b), 3(a), and 3(d)] without
dramatic beam degradation [Figs. 2(e), 2(f), 2(i), 2(j), 3(b),
and 3(c)], well-resolved MI signatures tend to gradually build
up in the transverse beam profiles and the angular spectra of
the laser field as the optimal pulse compression length lc for a
given set of input parameters approaches lm. These signatures
are clearly seen in the transverse beam profiles at the point
of maximum pulse compression for the regimes represented
by points C and F [Figs. 2(e) and 2(f)] and especially in the
angular spectra of these beams [Figs. 2(i) and 2(j)], which
give the beam patterns in the far field if plotted in the νx =
x/(λ0D) and νy = y/(λ0D) coordinates, D being the distance
to the observation point in the far field and x and y being the
transverse coordinates.

The optimal pulse-compression point I, however, lies
further away from the lc = lm borderline in Fig. 1(b) than
the C and F points. Moreover, among all nine points in
Figs. 1(b) and 1(c), the I point (P0 = 250Pcr , τ0 = 80 fs,
w0 ≈ 0.21 mm, ldf ≈ 130 mm, lnl ≈ 0.27 mm, ld ≈ 2.4 mm)
represents the case of the shortest optimal pulse-compression
length, lc ≈ 0.75 mm, which helps avoid MI-induced beam
perturbation to a maximum extent.

C. Subcycle field waveforms

Both 1D calculations and (3 + 1)-dimensional simulations
predict that an extremely short, subcycle field waveforms
can be generated through the pulse self-compression scenario

023824-4



PULSE SELF-COMPRESSION TO SINGLE-CYCLE PULSE . . . PHYSICAL REVIEW A 94, 023824 (2016)

8Pcr 60Pcr 125Pcr 500Pcr

z = 4.0 mm

z = 4.0 mm

z = 3.4 mm

z = 3.4 mm

z = 3.5 mm

z = 3.5 mm

z = 3.6 mm

z = 3.6 mm

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Ti
m
e
(p
s)

0

0.2

-0.2
4 620

0

0.2

-0.2
4 620

0

0.2

-0.2
4 620

0

0.2

-0.2
4 620

4
z (mm)

620

1

0

0.1

-0.1

x
(m
m
)

0

4
z (mm)

620

0.2

-0.2

0

4
z (mm)

620 4
z (mm)

620

0.4

-0.4

0

0.5

-0.5

0

1

0

0.1

-0.1

y
(m
m
)

0

0 0.1-0.1
x (mm)

40

-40
0

ν y
(m
m
)

-1

40-40

0

νx (mm )-1

0.2

-0.2

0

0 0.2-0.2
x (mm)

20

-20
0 20-20

0

νx (mm )-1

0.4

-0.4

0

0 0.4-0.4
x (mm)

10

-10

0 10-10

0

νx (mm )-1

0.5

-0.5

0

0 0.5-0.5
x (mm)

5

-5

0 5-5

0

νx (mm )-1

1

0

0

-50

z (mm) z (mm) z (mm) z (mm)

FIG. 4. Subcycle pulse generation by self-compression of laser pulses with λ0 = 3.9 μm and the initial pulse width τ0 = 250 fs in an
anomalously dispersive nonlinear medium: (a)–(d) spatiotemporal evolution, (e)–(h) beam dynamics, (i)–(l) transverse beam profiles, and
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represented by this point [Figs. 3(a) and 3(d)]. The (3 +
1)-dimensional simulations also show that, because lc is so
short in this case, such extremely short pulses can be produced
without a dramatic beam degradation. Neither the transverse
beam profile [Fig. 3(b)] nor the angular spectrum [Fig. 3(c)]
displays any significant signatures of MI-induced hot spots at
this point.

The temporal envelope of the pulse produced at this point
[solid line in Fig. 3(d)] features a central peak with a pulse
width τ ≈ 12 fs, which corresponds to 0.9 field cycles at the
carrier wavelength λ0 = 3.9 μm. This main peak in the pulse
envelope is preceded by a pedestal, which contains 23% of the
total energy of the compressed pulse and whose peak intensity
as approximately 14 times lower than the intensity at the center
of the 12 fs main peak. The peak power achieved within this
peak is 20 GW, i.e., 2.5 times higher than the input peak
power. With the thickness of the nonlinear medium set exactly
equal to lc, a 2-cm-focal-length lens or mirror placed at a
distance of 7 cm from the exit surface will focus this beam
into a spot with a diameter of about 85 μm [Fig. 3(e)], giving
rise to a field intensity of 165 TW/cm2 at the focal plane
[Fig. 3(f)].

Figure 4 presents (3 + 1)-dimensional simulations demon-
strating that subcycle field waveforms with a pulse width of

12 to 13 fs can be generated [see also Fig. 1(c)] through the
above-identified regime of pulse self-compression within a
sufficiently broad range of parameters for input peak powers
up to 500Pcr . In these simulations, we fix the input pulse width
at τ0 = 250 fs and adjust the input beam diameter in such a
way as to achieve the generation of subcycle pulses at the
point of maximum pulse self-compression within the broadest
possible range of input peak powers P0. Simulations presented
in Fig. 4 verify the key tendencies in the spatiotemporal
dynamics of ultrashort pulses revealed by the analysis above.
Most importantly, the beam preserves its continuity up to
the point of maximum pulse compression [Figs. 4(e)–4(h)],
which varies from 3.5 to 4.0 mm in calculations presented in
Fig. 4, depending on the input parameters. The beam, however,
tends to break up into multiple filaments due to MIs, losing its
continuity and, eventually, coherence beyond the z = lc point
[Figs. 4(f)–4(h)].

V. CONCLUSION

To summarize, we demonstrated through a numerical
analysis of the (3 + 1)-dimensional generalized nonlinear
Schrödinger equation that ultrashort pulses with peak powers
P orders of magnitude higher than Pcr can be compressed
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to subcycle pulse widths as a part of their spatiotemporal
evolution in an anomalously dispersive nonlinear medium,
While MI-induced beam breakup into multiple filaments is
eventually inevitable at this level of peak powers, optical
damage and excessive ionization effects can be avoided in this
regime, as our (3 + 1)-dimensional supercomputer simulations
show, by keeping the self-compression length shorter than
the spatial scale needed for the buildup of spatial modulation
instabilities.
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