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Ground-state cooling of a dispersively coupled optomechanical system in the unresolved sideband
regime via a dissipatively coupled oscillator
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In the optomechanical cooling of a dispersively coupled oscillator, it is only possible to reach the oscillator
ground state in the resolved sideband regime, where the cavity-mode linewidth is smaller than the resonant
frequency of the mechanical oscillator being cooled. In this paper, we show that the dispersively coupled system
can be cooled to the ground state in the unresolved sideband regime using an ancillary oscillator, which has a
high quality factor and is coupled to the same optical mode via dissipative interaction. The ancillary oscillator
has a resonant frequency close to that of the target oscillator; thus, the ancillary oscillator is also in the unresolved
sideband regime. We require only a single blue-detuned laser mode to drive the cavity.
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I. INTRODUCTION

Quantum optomechanics studies the interactions between
photons and mechanical oscillators. To facilitate applications
yielding precise measurements and control features [1–6], cer-
tain quantum information processing techniques [7–11], quan-
tum foundations [12–14], etc., it is necessary to prepare an os-
cillator in an almost pure state close to the zero-point vibration.
Therefore, techniques for ground-state cooling that remedy
the effects of stochastic driving from the thermal environment
[15–23] are fundamentally important [24–28]. However, as
regards attempts to realize the ground state of such an oscil-
lator, even the 3He -4He dilution refrigerator is insufficient,
unless the oscillator has very high resonant frequency (GHz)
[18,29]. Thus, it is necessary to exploit laser cooling schemes
(or microwave techniques, etc., depending on the system).

Lasers are employed in optomechanical cooling in two ways
[26]. One application is to measure the instant position of the
oscillator. Then, an appropriate friction force is exerted in
order to reduce the oscillation amplitude; this is known as
cold damping quantum feedback [19–23], and the efficacy of
this method depends on the measurement precision and the
feedback loop quality [30]. However, the second application
is more interesting to us. It is based on that fact that,
in some parameter regimes, the optomechanical interaction
drives the cooling process automatically. The most extensively
investigated interaction to generate this passive (or self-)
cooling phenomenon is dispersive coupling, which is named
for the feature in which the mechanical oscillator displacement
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changes the resonant frequency of the optical mode. Ground-
state cooling involving such scenarios is valid only in the
resolved sideband regime [30–32], where the mechanical
resonant frequency is larger than the linewidth (or the damping
rate) of the optical mode. Thus, this phenomenon is also
referred to as sideband cooling.

From a practical perspective, an unresolved sideband
regime allows one to use small drive detuning and, thus,
small input power. Almost all the realized optomechanical
systems with heavier oscillator functionality operate in the
unresolved sideband regime [26], and a well-known example is
the suspended mirrors of the laser interferometer gravitational
wave detector [33]. Therefore, eliminating the considerable
limitation imposed by the requirement for a resolved sideband
for ground-state cooling would enrich the optomechanical
toolbox in a meaningful way.

Note that sideband resolution is not a stringent requirement
in optomechanical systems with dissipative interaction, where
the oscillator displacement changes the damping rate (or
linewidth) of the optical mode [34–42]. Although works on that
topic are relatively rare, the predicted cooling has been verified
experimentally [38] in an optomechanical system based on the
Michelson-Sagnac interferometer [37]. Thus, the dissipative
system is promising and merits further development. Here, we
show that this system also sheds light on the dispersive system
problem, i.e., ground-state cooling in the unresolved sideband
regime.

In this study, we demonstrate that the dissipatively coupled
oscillator in a hybrid optomechanical system comprised of
both dispersively and dissipatively coupled oscillators cools
not only itself, but also the dispersively coupled oscillator,
which is coupled to the same cavity mode. Importantly, both
oscillators are in the unresolved sideband regime. Thus, a
solution to the difficult problem of cooling the dispersively
coupled oscillator is provided. Note that this approach is not
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FIG. 1. Hybrid optomechanical system of dispersively and dissi-
patively coupled oscillators. The oscillators are coupled to the same
cavity mode, with linewidth κ . This mode is driven by one laser mode
only, with blue detuning � > 0.

the first reported technique of this kind; however, the existing
schemes for ground-state cooling in the unresolved sideband,
such as cooling with optomechanically induced transparency
(OMIT) [43,44], coupled-cavity configurations [45,46], atom-
optomechanical hybrid systems [47–54], and the recently
proposed scheme using quantum nondemolition interactions
[55], require multiple driving lasers, multiple optical modes,
high-quality cavities, and ground-state atom ensembles. Com-
pared with those methods, our proposal offers a simpler option
for cases in which dissipative coupling is accessible, and the
dissipatively coupled oscillator has a high quality factor.

The remainder of this paper is organized as follows. In
Sec. II, we briefly introduce the two kinds of optomechanical
coupling and the quantum noise approach to the cooling limit.
In Sec. III, we use the quantum noise approach to analyze
the possibility of ground-state cooling in our system, which
requires only one cavity mode and one laser driving mode. In
Sec. IV, we use the exact solutions to the equations of motion
to confirm the achievement of ground-state cooling in the unre-
solved sideband regime. In Sec. V, we discuss and compare the
existing schemes and, in Sec. VI, we present the conclusion.
Note that the natural unit � = 1 is used throughout this paper.

II. BRIEF OVERVIEW OF PASSIVE COOLING INDUCED
BY QUANTUM OPTICAL NOISE

Passive (or self-) cooling utilizes the optomechanical
interaction to diminish the oscillation amplitude. The system
investigated in this paper is illustrated in Fig. 1. It consists of
two oscillators, with one being dispersively coupled and the
other being dissipatively coupled to the same cavity mode.
In this section, we introduce these two kinds of optome-
chanical coupling separately. The quantum noise approach
to optomechanical cooling is emphasized and exploited in the
next section in order to evidence the validity of our scheme.

A. Cooling with dispersive coupling

We first specify the definition of dispersive coupling. In
a typical cavity optomechanics setup, the cavity end mirror
plays the role of the oscillator. Displacement of this mirror
alters the cavity length and, thus, the resonant frequency of the
cavity mode; this leads to dispersive coupling, which can be

described by the Hamiltonian

Hint,0 = −g0(b̂0 + b̂
†
0)(â†â − 〈â†â〉), (1)

where â annihilates the cavity-mode photons, g0 is the coupling
strength, and b̂0 annihilates oscillator mode of resonant
frequency ω0. Hereafter, the suffix “0” will be reserved for
this dispersively coupled oscillator.

In the expression for Hint,0, we have subtracted the steady-
state photon number 〈â†â〉 = α2

s , following the formulas of
Ref. [31]. It is assumed that αs is a real number for convenience.
This subtraction frees us from redefining parameters such as
the cavity length and � (as in Ref. [32]), which are altered
slightly because of the radiation pressure.

Suppose the cavity is driven by a single laser mode. The
photons in the cavity strive to reach a frequency close to
resonance. Therefore, if the input laser (with frequency ωd ) is
red detuned to the cavity mode (ωc), which corresponds to the
detuning � = ωd − ωc < 0, the input photons preferentially
extract energy from the oscillator via the interaction described
by Eq. (1). This mechanism constitutes a simple explanation
of dispersive cooling, from which we can further infer that the
optimal detuning is � = −ω0 (the resonant frequency of the
oscillator) in the weak-coupling regime.

It is convention to refer to the energy quanta of the
mechanical oscillator as phonon. Then, the Fermi golden rule
indicates that, for the oscillator, the optics-induced emission
or absorption of phonons occurs at a rate that depends on
the photon-number fluctuation spectrum at ω = ±ω0. This
spectrum is given by

S0
nn[ω] =

∫ ∞

−∞
dτ eiωτ 〈δn̂(τ )δn̂(0)〉

= κα2
s

κ2/4 + (ω + �)2
, (2)

where δn̂ = â†â − 〈â†â〉 and κ is the linewidth of the cavity
mode in question. The damping rate induced by the optics is
then

γopt,0 = g2
0

(
S0

nn[ω0] − S0
nn[−ω0]

)
. (3)

The balance between the optics-induced emission and absorp-
tion leads to a steady-state phonon occupation (when � < 0)

nopt,0 = S0
nn[−ω0]

S0
nn[ω0] − S0

nn[−ω0]

= − (ω0 + �)2 + κ2/4

4ω0�
. (4)

Incorporating the influence of the thermal environment, the
full expression of the phonon number is

ñ0 = γopt,0nopt,0 + γ0nth,0

γopt,0 + γ0
, (5)

where γ0 and nth,0 represent the damping rate and the phonon
occupation in the absence of the optical system, respectively.

Equation (5) implies that ground-state cooling occurs if
γopt,0 � γ0 and nopt,0 � 1. In the resolved sideband regime,
where ω0 > κ , nopt,0 reaches its minimum ( κ

4ω0
)2 when � =

−ω0. Ground-state cooling is, therefore, possible in this
regime. In contrast, in the unresolved sideband regime, where
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κ � ω0, the minimum of nopt,0 is κ
4ω0

, for which the detuning
should be � = −κ/2. Obviously, it is difficult for nopt to be
close to zero, and this leads to problematic cooling of the
dispersive optomechanical system in the unresolved sideband
regime.

B. Cooling with dissipative coupling

If the displacement of the oscillator modifies κ , the induced
coupling is called dissipative. Dissipative coupling was first
proposed in Ref. [34] and then experimentally implemented in
a nanomechanical system [35,36]. Reference [37] gave another
experimental construction involving the Michelson-Sagnac
interferometer, which was implemented in experiment very
recently [38]. The strong-coupling effects [39], cooling limit
[40], anomalous dynamic backactions [41], and bistability
[42] associated with dissipative cooling have also been studied
recently. However, research on this topic is rare in comparison
with the literature on dispersive optomechanics.

Throughout this paper, terms related to the dissipatively
coupled oscillator are marked by the subscript “1.” The
dissipative coupling is described by the Hamiltonian

Hint,1 = −ig1

√
κ

2πρ

∑
q

(â†êq − ê†q â)(b̂†1 + b̂1), (6)

where the summation is taken over the environment modes
annihilated by êq , the density of states of which is assumed to
be a constant ρ; b̂1 annihilates the oscillator mode of resonant
frequency ω1.

The cooling mechanism is less transparent than that in the
dispersive case. Following the quantum noise approach, the
force spectrum responsible for the optomechanical cooling is

SFF [ω] = κg2
1α

2
s

(ω + 2�)2

κ2/4 + (ω + �)2
. (7)

The rate of phonon generation is SFF [−ω1] and that of
phonon loss is SFF [ω1]. The optically induced damping rate
is, therefore, given by their difference

γopt,1 = SFF [ω1] − SFF [−ω1]. (8)

The further formulas for nopt,1 and the final phonon number ñ1

are in the same forms as Eqs. (4) and (5).
Despite the sideband resolution, both SFF [−ω1] and nopt,1

vanish if the driving laser is blue detuned at � = ω1/2. The
conclusion can then be drawn that ground-state cooling is
robust, provided a high mechanical quality factor and proper
precooling is supplied. This point is verified by the numerical
calculations given in [34,39], which show that ñ1 can be
reduced to the level of 10−2 from the initial occupation
nth,1 = 100.

III. GROUND-STATE COOLING: EVIDENCE FROM
QUANTUM NOISE APPROACH

In this section, we use the quantum noise approach to show
that the dispersively coupled oscillator can be cooled to the
ground state with the assistance of a dissipative oscillator. Both
of these oscillators are in the unresolved sideband regime. As
previously, the quantities of the target dispersive oscillator

are marked with subscript “0,” and those of the ancillary
dissipative oscillator are indicated by subscript “1.”

A. Model and equations

In the frame of the driving laser, the Hamiltonian of the
entire system is

H =−�(â†â − 〈â†â〉) + ω0b̂
†
0b̂0 + ω1b̂

†
1b̂1

+ Hint,0 + Hint,1 + Hκ + Hγ0 + Hγ1 ,
(9)

where Hγ0 and Hγ1 are the thermal damping terms of the two
oscillators. Further,

Hκ = −i

√
κ

2πρ

∑
q

(â†êq − ê†q â) (10)

describes the damping of the cavity mode induced by the en-
vironment, including the driving mode. The free Hamiltonian
of the environment modes is not presented explicitly.

To derive the equations of motion, the input-output formal-
ism [56] is considered, which yields√

κ

2πρ

∑
q

êq = √
κâin + κ

2
â + g1

κ

2
(b̂1 + b̂

†
1)â. (11)

This formula can be used to obtain the quantum Langevin
equations and, also, to further linearize them by separating
the operators associated with optics into steady-state and
quantum-fluctuation components. That is, we assume that αs

is sufficiently significant that âin = āin + d̂ in and â = αs + d̂ .
The two steady-state average amplitudes are correlated by
(i� − κ/2)αs = √

κāin.
After the linearizion, the quantum Langevin equations of

the cavity mode and the mechanical oscillators are expressed
as

˙̂d =
(
i� − κ

2

)
d̂ − √

κd̂ in + ig0αs(b̂0 + b̂
†
0)

− g1αs

(
i� + κ

2

)
(b̂1 + b̂

†
1), (12)

˙̂b0 = −
(
iω0 + γ0

2

)
b̂0 − √

γ0b̂in,0 + ig0αs(d̂ + d̂†), (13)

˙̂b1 = −
(
iω1 + γ1

2

)
b̂1 − √

γ1b̂in,1 − g1αs

√
κ(d̂ in − d̂†

in)

− ig1αs�(d̂ + d̂†) − g1αs

κ

2
(d̂ − d̂†). (14)

In those equations, the noise terms with subscript “in” satisfy
the correlations

〈d̂ in(t)d̂†
in(t ′)〉 = δ(t − t ′),

〈b̂in,k(t)b̂†in,k(t ′)〉 = (nth,k + 1)δ(t − t ′),

〈b̂†in,k(t)b̂in,k(t ′)〉 = nth,kδ(t − t ′),

(15)

where nth,k is the thermal equilibrium phonon number of os-
cillator k (where k = 0,1). All other two-operator correlation
functions vanish.

We can include the conjugate equations and write the
complete set of equations in the form d

dt
	V = M · 	V + 	Vin,

where 	V = (d̂,d̂†,b̂0,b̂
†
0,b̂1,b̂

†
1) and 	Vin has a similar definition.

The system is dynamically stable if the eigenvalues of the
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matrix M have no negative real parts, which can be easily
checked after the parameters are fixed. We find that the issue of
stability forbids � = −ω1 in the unresolved sideband regime
when κ � ω1, while this detuning allows ground-state cooling
when κ and ω1 are comparable or in the resolved sideband
regime [34,39].

B. Photon-number fluctuation spectrum

In Sec. II A, it was shown that the photon-number fluc-
tuation spectrum is responsible for the cooling of oscillator
0. To calculate this spectrum, we follow the strategy used in
Ref. [43], i.e., we ignore the backaction of oscillator 0 to the
optical field but consider that of oscillator 1. Note that the
validity of this strategy is examined in Sec. IV via a numerical
calculation of the cooling limit from the linearized Langevin
equations.

Applying Fourier transformations to Eqs. (12) and (14)
with g0 = 0, we obtain a series of algebraic equations that are
exactly solvable. The Fourier transformation is conducted with
the conventions

f̂ω =
∫ ∞

−∞
dt eiωt f̂ (t), (16)

and f̂ †
ω ≡ (f̂ †)ω = (f̂−ω)†. The photon-number fluctuation

annihilation operator d̂(t) is transformed to

d̂ω = −√
κχc,ωd̂in,ω − g1αs

(
i� + κ

2

)
χc,ωx̂1,ω, (17)

where x̂1,ω = b̂1,ω + b̂
†
1,ω and

b̂1,ω = −
√

γ1

N [ω]

{
χ∗−1

1,−ωb̂in,1,ω − i�[ω](b̂in,1,ω + b̂
†
in,1,ω)

}

− g1αs

√
κ

N [ω]
χ∗−1

1,−ω[α(ω)d̂ in,ω − α∗(−ω)d̂†
in,ω].

(18)
In the above equations, the susceptibilities of the optical mode
χc and oscillator 1 χ1 are defined as

χ−1
c,ω = κ

2
− i(ω + �), (19)

χ−1
1,ω = γ1

2
− i(ω − ω1), (20)

and the other quantities are

α(ω) = 1 − χc,ω

(
i� + κ

2

)
, (21)

N [ω] = χ−1
1,ωχ∗−1

1,−ω + 2ω1�[ω], (22)

with the “self-energy” term

�[ω] = ig2
1α

2
s

{
χc,ω

(
i� + κ

2

)2
− χ∗

c,−ω

(
i� − κ

2

)2
}
. (23)

Next, we proceed to examine the photon-number fluctuation
spectrum. As δn̂ = αs(d̂ + d̂†) and

d̂ω + d̂†
ω = −√

κ(χc,ωd̂ in,ω + χ∗
c,−ωd̂†

in,ω)

− g1αsA(ω)x̂1,ω, (24)

where A(ω) = χc,ω(i� + κ/2) + χ∗
c,−ω(−i� + κ/2), the

fluctuation spectrum can be expressed as

Snn[ω] = S0
nn[ω] + g2

1α
4
s |A(ω)|2S1

xx[ω]

+ √
κg1α

3
s {A(−ω)Scx[ω] + A(ω)Sxc[ω]}. (25)

Therein, S0
nn is the bare spectrum given in Eq. (2) and S1

xx[ω]
is the spectrum of the position of oscillator 1,

S1
xx[ω] =

∫ ∞

−∞

dω′

2π
〈x̂1,ωx̂1,ω′ 〉. (26)

Scx[ω] is the correlation between oscillator 1 and the X

quadrature of the optical mode in the absence of oscillator
1, such that

Scx[ω] =
∫ ∞

−∞

dω′

2π
〈M̂c[ω]x̂1,ω′ 〉, (27)

where M̂c[ω] = χc,ωd̂ in,ω + χ∗
c,−ωd̂

†
in,ω. Sxc[ω] is defined sim-

ilarly.

C. Ground-state cooling

We know that, in the unresolved sideband regime, the
gap between S0

nn[±ω0] is too narrow to support ground-state
cooling. Now, the photon-number fluctuation spectrum (25)
contains two more terms than the bare S0

nn. Thus, we examine
the manner in which these additional terms unbalance the
spectrum. For this purpose, the exact expressions presented
in the previous section are not sufficiently transparent for the
result to be observed. Therefore, we further simplify them by
assuming weak coupling.

1. Snn[ω] shape

When oscillator 1 is decoupled to the optical field, its
position-position correlation spectrum is expressed in terms of
the “bare” damping rate γ1, resonant frequency (incorporated
in the susceptibility χ1,ω), and thermal equilibrium phonon
occupation nth,1:

γ1{|χ1,ω|2(nth,1 + 1) + |χ1,−ω|2nth,1}.
When the optomechanical coupling is weak, the effective
damping rate γ̃1, resonant frequency ω̃1, and phonon occu-
pation ñ1 can be well defined. By replacing the bare terms
with the effective terms, χ1,ω is modified to

χ̃1,ω = 1

γ̃1/2 − i(ω − ω̃1)
, (28)

where γ̃1 = γ1 + γopt,1. Further,

ω̃1 = ω1 + Re(�[ω1]) ≈ ω1 − 6g2
1α

2
s �, (29)

γ̃1 = γ1 − 2 Im(�[ω1]) ≈ γ1 + 16g2
1α

2
s

�2

κ
, (30)

where Re and Im represent the real and imaginary parts, respec-
tively; Eq. (30) is expanded according to the order of κ−1. The
approximations on the right-hand side are conducted in the
unresolved sideband regime, with the additional assumption
that � has the same scale as ω0/1. Additionally, for Eq. (29), a
superior approximation is

ω̃1 =
√

ω2
1 + 2ω1Re(�[ω1]). (31)
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Finally, the position spectrum is expressed as

S1
xx[ω] = γ̃1{|χ̃1,ω|2(ñ1 + 1) + |χ̃1,−ω|2ñ1}, (32)

where ñ1 is the phonon occupation after the optomechanical
cooling. As explained in Sec. II B, ñ1 approaches zero if
� is properly adjusted. The interference terms between the
displacement of oscillator 1 and the optics field are expressed
as

Scx[ω] = −i2ω1g1αs

√
κ

N [−ω]
χc,ωα∗(ω),

Sxc[ω] = i2ω1g1αs

√
κ

N [ω]
χ∗

c,ωα(ω). (33)

Note that the two interference terms are complex conjugate, as
N [ω] = N∗[−ω]. In particular, we can approximate N [ω] ≈
χ̃−1

1,ωχ̃∗−1
1,−ω.

Next, let us examine the shape of S1
xx[ω]. Equation (32)

indicates that there are two peaks at ω = ±ω̃1. The ratio of
their heights is 1 + 1/ñ1, which implies an extreme asymmetry
in the limit ñ1 → 0. We wish to investigate whether or not
this asymmetry can meet our requirements for ground-state
cooling.

2. Cooling: Near the limit ω0 = ω̃1

If |ω0 − ω̃1| < γ̃1, ±ω0 is located in the peak range. We
focus on the limit case at resonance in what follows, i.e., where
ω0 = ω̃1 or, more loosely, |ω0 − ω̃1| � γ̃1. Other possibilities
are studied in the next section.

In the unresolved sideband regime and the considered case
when ω is close to ±ω0, we have the approximations

α(ω) ≈ ω + 2�

iκ/2
, A(ω) ≈ 2 − i

4ω

κ
,

χ1,ω0 = 2

γ̃1
, χc,ω ≈ 2

κ

{
1 + 2i(ω + �)

κ

}
. (34)

We also assume that the mechanical oscillators have high
quality factors and that γ̃1 � ω̃1. For convenience in what
follows, we introduce a factor β such that ω0 + ω̃1 = β−1ω1.
In fact, β should be slightly larger than 1/2. Then, in Scx and
Sxc, we have

ω1

N [ω]
=

{
iβχ̃1,ω, ω ∼ ω0,

−iβχ̃∗
1,−ω, ω ∼ −ω0.

(35)
(36)

Following these preparations, the fluctuation spectrum at ±ω0

can be expressed approximately as

Snn[ω0] = S0
nn[ω0] + 4g2

1α
4
s γ̃1

[
4

γ̃ 2
1

(ñ1 + 1) + β2

ω2
1

ñ1

]

+ 128g2
1α

4
s β

(� + 2ω0)(ω0 + 2�)

κ2γ̃1
, (37)

Snn[−ω0] = S0
nn[−ω0] + 4g2

1α
4
s γ̃1

[
4

γ̃ 2
1

ñ1 + β2

ω2
1

(ñ1 + 1)

]

−128g2
1α

4
s β

(� − 2ω0)(2� − ω0)

κ2γ̃1
, (38)

Here, the conditions κ � ω0 � γ̃1 � γ1 and γ̃1κ ∼ ω2
1, which

is supported by Eq. (30), are adopted. Then, the steady-state
phonon number nopt,0 is

nopt,0 ≈ ñ1 + O

(
ω2

0

κ2

)
+ O

(
γ̃ 2

1

4ω2
1

)
. (39)

In the above equation, we have neglected terms of O(ñ1/κ
2)

or higher. Therefore, roughly speaking, nopt,0 equates to ñ1.
As the ancillary oscillator can be cooled to near the ground
state when � = ω1/2, ground-state cooling of the dispersively
coupled oscillator 1 is indicated.

Figure 2 clearly illustrates the asymmetrical feature of
Snn[ω]. The parameters are listed in the caption. With those
parameters, the standard sideband cooling with the optimal
setting � = −κ/2 yields nopt,0 ≈ 110.6 > nth,0 = 100. Be-
ginning at this limit, the ancillary oscillator helps to unbalance
the Snn[ω] peaks and implies a new limit at nopt,0 = 0.061.

3. Cooling: Off the peaks

In this section, we release the restriction that |ω0 − ω̃1| <

γ̃1. However, the preliminary requirement that the ±ω0 are not
far from the peaks is retained. (Otherwise, the incorporation
of oscillator 1 becomes meaningless.)

Now, the imbalance is no longer manifest from the shape
of Snn[ω] and a detailed calculation is necessary. To specify
the conditions of this discussion, we assume that γ̃1 �
|ω0 − ω̃1| � ω0 + ω̃1 and � is on the scale of ω0/1. Hence,
the approximations in Eq. (34) remain valid, apart from the
effective susceptibility of oscillator 1, which should be altered
to

χ̃1,±ω0 ≈ i

±ω0 − ω̃1
. (40)

We do not give the expressions of the phonon-number
fluctuation spectrum at ±ω0 explicitly here. In fact, all the
terms exactly or approximately have a factor 1/κ . However,
among them, the dominant terms of O[( ω0

ω0−ω̃1
)2] are

Snn[ω0] ≈ 4g2
1α

4
s γ̃1

ñ1 + 1

(ω0 − ω̃1)2
,

Snn[−ω0] ≈ 4g2
1α

4
s γ̃1

ñ1

(ω0 − ω̃1)2
. (41)

Besides the considerable value of g1αs and the condition that
ω0/1

|ω0−ω̃1| � 1, the validity of the above approximations also

relies on the preliminary that ñ1
(ω0−ω̃1)2 covers 1

(ω0+ω̃1)2 . Then,
we have

γopt,0 = 4g2
0g

2
1α

4
s

γ̃1

(ω0 − ω̃1)2
, nopt,0 ≈ ñ1. (42)

Therefore, building on the conditions that support Eq. (42),
the dispersively coupled oscillator can be cooled to the ground
state. In Fig. 2, the roots of the left and right peaks are zoomed
in and their height imbalance is shown. A cooling limit at
nopt,0 = 0.042 is predicted.

D. Fixing the experimental parameters

From the above analysis, it seems that the optimal detuning
is ω1/2, because this value yields the minimal ñ1. However, this
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FIG. 2. g2
0Snn[ω] and n0,opt from the quantum noise approach.

ω1 is set as the unit, which means ω1 = 1. The other parameters
are κ = 300, γ1 = 10−6, g0αs = 0.1, g1αs = 0.3, n1,th = 100, and
� = ω1/2. (a) Photon-number fluctuation spectrum g2

0Snn[ω]; the
two peaks are located at ±ω̃1 ≈ ±0.678. The left peak is significantly
shorter than the right. (b) Zoom in on the left −ω̃1 ≈ −0.678 peak.
(c) Zoom in on the right peak (blue), and n0,opt as a function of ω0

(purple).

intuition is not exactly correct. Here, we inspect the cooling
mechanism more closely and study the parameters of the
experimental variables that most strongly benefit cooling via
this quantum noise approach.

1. Sources contributing to Snn[±ω0]

The photon-number fluctuation spectrum is calculated from
the X quadrature dω + d†

ω, which can be rewritten according

to the independent contributing sources as

dω + d†
ω = −√

κ

{
χc,ω + i

2ω1g
2
1α

2
s α(ω)A(ω)

N [ω]

}
d̂ in,ω

+ g1αs

√
γ1

A(ω)

N [ω]
χ∗−1

1,−ωb̂1,in,ω + H.c., (43)

where H.c. represents the Hermitian conjugate, followed by
the transformation ω → −ω. We remind readers that A(ω) =
A∗(−ω) and N [ω] = N∗[−ω]. With the quadrature given by
Eq. (43), the photon-number fluctuation spectrum Snn[ω] can
be written into two terms

Snn[ω] = �[ω] + E1[ω], (44)

where �[·] labels the contribution from the fluctuation of
the cavity mode dω and E1[·] denotes that from the thermal
environment of oscillator 1. That is,

�[ω] ∼ C1

∫
dω′〈din,ωd

†
in,ω′ 〉,

E1[ω] ∼ C2

∫
dω′〈b1,in,ωb

†
1,in,ω′ 〉 + C3

∫
dω′〈b†1,in,ωb1,in,ω′ 〉

(45)

with the implicit coefficients C1, C2, and C3.
Using Eq. (15), it is apparent that, when n1,th � 1, the term

E1[ω] is symmetric with respect to ±ω (see the blue dashed
lines in Fig. 3);

E1[±ω] ≈ g2
0g

2
1α

4
s γ1

∣∣∣∣ A(ω)

N [ω]

∣∣∣∣
2(∣∣χ−1

1,ω

∣∣2 + ∣∣χ−1
1,−ω

∣∣2)
n1,th. (46)

This implies that the imbalance in Snn[ω] should be attributed
to the terms in the first line of Eq. (43), i.e., those from the
optical field.

The optical contribution component is the interference
between that filtered by the cavity (represented by χc,ω) and
that introduced by oscillator 1 (represented by the g1 factor).
Note that, for the former in the unresolved sideband regime,
we have χc,ω ≈ 2/κ , which is a small constant that affects
both peaks equally. Thus, the prospect of cooling is dependent
on the latter. This contribution must outweigh Eq. (46) by a
large extent at ω = ω0, and take advantage of the destructive
interference at ω = −ω0. Otherwise, the Snn[ω] imbalance
necessary for ground-state cooling cannot be established.

2. Mechanical quality factor

Since E1[ω] ≈ E1[−ω], to achieve ground-state cooling,
�[ω0] must dominate E1[ω0]. Their ratio is

�[ω]

E1[ω]
= ω1/γ1

κ/ω1

16g2
1α

2
s (ω + 2�)2

nth,1
(∣∣χ−1

1,ω

∣∣2 + ∣∣χ−1
1,−ω

∣∣) , (47)

where we have approximated α(ω) according to Eq. (34). As
� is chosen to be of the same scale as ω0/1, the value of
the ratio depends on the first factor, i.e., the quality factor of
oscillator 1, ω1/γ1, vs the sideband parameter κ/ω1. Because
of our unresolved sideband regime preliminary, Eq. (47)
demonstrates the requirement for a high mechanical quality
factor, which is selected as 106 in Fig. 3. Otherwise, we
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FIG. 3. Photon-number fluctuation spectrum g2
0Snn[ω] when � =

ω0/2. We set ω1 as the unit, which means ω1 = 1. The other
experimental parameters are κ = 300 and γ1 = 10−6 (such that
the quality factor of oscillator 1 is 106), g0αs = 0.1, g1αs = 0.3,
n1,th = 100, ω0 = 0.76, and � = 0.38. (a) Photon-number fluctuation
spectrum; the peaks are located at ±ω̃1 ≈ ±0.768. (b) Zoom in on
the left peak. (c) Zoom in on the right peak. In (b) and (c), the red
and blue dashed lines indicate the contributions of the optical field
noise � and the thermal environment of oscillator 1 E1, respectively.
Snn[ω0] = 0.2814 and Snn[−ω0] = 0.0076, such that n0,opt ≈ 0.0277.

cannot obtain a small value for n0,opt, which is necessary for
ground-state cooling.

Actually, although having not been explicitly pointed out
before, this requirement is general in dissipative-coupling
optomechanical systems. For example, in [40] it is calculated
that the cooling limit of a purely dissipatively coupled

oscillator is

n1 =
√

γ1nth,1

4κ

(
κ2

ω2
1

+ 9

)
− γ1

16κ

(
κ2

ω2
1

+ 9

)
, (48)

and the cooling limit of the oscillator which is coupled both
dispersively and dissipatively is

n1 =
√

γ1nth,1κ

4ω2
1

− γ1κ

16ω2
1

. (49)

It is transparent that a high value of ω1/γ1 is also necessary to
make the value of n1 sufficiently small, especially when κ/ω1

is large.
When κ/ω1 and ω1/γ1 are fixed, Eq. (47) also provides indi-

cations of the requirements for precooling (which determines
n1,th) and the effective coupling strength g1αs . Meanwhile, the
value of ω0 + 2� in the Eq. (47) denominator cannot be too
small.

3. Selection of optimal detuning

The factor 1/N [ω] is absent from Eq. (47) but must be taken
into account when comparing the scales of the two terms in
the first line of Eq. (43). N [ω0] of small magnitude could
significantly enhance the value of Snn[ω0], and also result in
a large γopt,0. The remaining term χc,ω is sufficiently small in
magnitude to be neglected. From Eq. (34), it is apparent that

|N [ω]| = ∣∣ω2
0 − ω̃2

1

∣∣, (50)

near ω = ±ω0. Thus, the condition |ω0 − ω̃1| � ω0/1 pro-
posed in the previous section is satisfied. According to Eq. (29),
ω1 − ω̃1 ≈ 6g2

1α
2
s �. Therefore, in the optimal cooling region,

g1αs and � exhibit an inverse relationship. That is, to reach
the best cooling, if the detuning is higher, the value of g1αs

should be made smaller, and vice versa. We will verify this
point via numerical calculation in the next section.

The small magnitude of N [ω] also amplifies its potential
contribution to Snn[−ω0]. Fortunately, this contribution van-
ishes if

α(−ω0) = 0 ⇒ � ≈ ω0

2
.

This kind of destructive interference is inherited from the
dissipative optomechanical system (see Sec. II B).

The statements made in this section are verified in Fig. 3.
This image shows that, when � = ω0/2, the primary contri-
bution to the left peak is from the thermal environment (blue
dashed line), whereas the right peak is primarily due to the
photon-number fluctuation.

IV. GROUND-STATE COOLING: EXACT
PHONON-NUMBER SOLUTIONS

In the previous section, we determined the possibility of
ground-state cooling using quantum noise analysis. In this
section, we shall examine this further by solving the linearized
quantum Langevin equations exactly, i.e., Eqs. (12)–(14). It is
noted that the expression for b̂0,ω is presented in the Appendix,
as it is very complex. The exact result of the cooling limit n0
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FIG. 4. Cooling limit n0 for oscillator 0. ω1 is set as the unit, with γ0 = γ1 = 10−6, g1αs = 0.336, n0,th = n1,th = 100, and ω0 = 0.7.
(a) κ = 300, such that κ/ω0 ≈ 430. In the region enclosed by the two white dashed circles, n0 < 0.1 and 0.05, as indicated in the figure.
(b) κ = 7000, such that κ/ω0 = 104, and n0 < 1.1 in the region enclosed by the dashed line. In the uncolored regions, n0 is too high to show.

is obtained from the integration

n0 =
∫ ∞

−∞

dω

2π

dω′

2π
〈b̂†0,ωb̂0,ω′ 〉. (51)

A. Cooling in the unresolved sideband regime

First, we examine the prediction of ground-state cooling
in the unresolved sideband regime. The dependence of n0 on
g0αs and � is illustrated in Fig. 4. This figure shows that the
phonon number of the target oscillator ñ0 can be reduced to less
than 0.05 when the sideband parameter κ/ω0 is approximately
430. Moreover, when κ/ω0 is increased to 104, n0 ≈ 1 can
still be decreased to approximately 1. (In comparison, the
standard sideband cooling at � = −κ/2 yields the optimal
nopt,0 = 2500.)

B. Precision of quantum noise approach

The quantum noise approach is based on the Fermi golden
rule, which is valid only for the weak limit. Figure 4 also shows
the region that is invisible to the quantum noise approach.
This figure indicates that, when g1 is fixed, optimal cooling is
realized with proper g0. However, the quantum noise approach
naively suggests larger g0.

To visualize the breakdown of the quantum noise approach,
we note that n0 is determined independently in terms of the
laser-driving fluctuation noise, the local thermal environment
noise, and the thermal environment of the ancillary oscillator.
In Fig. 5, these contributions are illustrated separately. We find
that the laser-driving fluctuation dominates the phonon source
after n0 has been obtained, as shown by the red line in Fig. 5.
As the source of this contribution is independent of the thermal
environment of the oscillators, it provides an intrinsic limit for
the optically induced cooling.

The red line in Fig. 5, or the term for the photon-number
fluctuation noise, is ascribed to a term in the exact solution of

b̂0,ω [Eq. (A1) in the Appendix];

−ig0αs

√
κχ−1∗

0,−ω

N [ω]

{
χ−1

c,ωχ−1
1,ωχ−1∗

1,−ω

+ i2ω1g
2
1α

2
s (2�2 − i�κ − iωκ)

}
d̂†

in,ω. (52)

Here, N [ω] is given as

N [ω] = χ−1
c,ωχ−1∗

c,−ωχ−1
0,ωχ−1∗

0,−ωN [ω]

− 4ω0ω1κ
2g2

0g
2
1α

4
s + 4�ω0g

2
0α

2
s χ

−1
1,ωχ−1∗

1,−ω. (53)

FIG. 5. n0 as a function of g0 (and magnified for weak couplings).
ω1 is set as the unit, � = 0.377, and the other parameters are identical
to those in Fig. 3. The black dashed line is the phonon occupation
given by the quantum noise approach; the black solid line is the exact
result for n0, which is the sum of the three contributions from the
laser driving fluctuation d̂ in (red), the local thermal environment b̂0,in

(orange), and the thermal environment of the ancillary oscillator b̂1,in

(purple).
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FIG. 6. Mean phonon number n0 as a function of g1αs and the
detuning �. ω1 is set as the unit, with γ0 = γ1 = 10−6, g0αs = 0.1,
n0,th = n1,th = 100, and ω0 = 0.7. κ = 300, such that κ/ω0 ≈ 430.
In the region enclosed by the white dashed lines, n0 < 0.1 and 0.05,
as indicated in the figure. The position of � = ω0/2 is indicated by a
short dashed line.

Further, N [ω] has already been given in Eq. (22). 1/N [ω] is
actually the common factor of all the other terms involving d̂ in,
b̂0,in, and so on, and its poles determine the eigenfrequencies
and damping rates of all the eigenmodes of the hybrid system.

The quantum noise approach functions well in the weak
regime. In our derivation of Snn[ω], we treat the optical mode
and oscillator 1 as the steady background; this approach is valid
if their dynamics are significantly faster than that of oscillator
0. Because we have κ � γ̃1 � γ0, the quantum noise approach
is effective, as verified by the magnified chart shown in Fig. 5.

It is emphasized that, in Fig. 5, there is a coincidence
between the quantum noise predictions and the n0 component
contributed by the local environment, i.e., the orange lines
obtained from the 〈b̂in,0,ωb̂

†
in,0,ω′ 〉 and 〈b̂†0,in,ωb̂0,in,ω′ 〉 terms in

Eq. (51). This is reasonable, because only the n0 contributions
from the local noise decrease with increased g0 (at least in the
plotted region).

C. Inverse relationship between g1αs and optimal detuning

In Sec. III D 3, we have shown that the quantum noise ap-
proach suggests � ≈ ω0/2, along with an inverse relationship
between g1αs and �. Here, we examine the quantum noise
approach using the exact solution of n0 and illustrate the result
in Fig. 6. The numerical result supports this statement very
well. Additionally, it can be seen from Fig. 4 that the optimal
detuning exhibits independence of the sideband parameter
when g0αs is very close to zero. This feature also agrees with
the theory presented in Sec. III D 3.

V. DISCUSSION

A remarkable proposal has demonstrated that strong and
tunable dissipative coupling can be established by inserting
a movable membrane in a Michelson-Sagnac interferometer

[37]. Hence, a hybrid system of dispersively and dissipatively
coupled oscillators can be constructed by replacing one fixed
mirror within the interferometer with a movable one. Our
scheme requires only a single optical mode with one driving
mode. Therefore, in cases where more dissipatively coupled
oscillators are accessible, our approach is significantly simpler
than schemes involving ground-state cold atom ensembles or
correlated multicavities. It is also simpler than those based
on OMIT effects [43,44], where two driving modes and
an additional oscillator in the resolved sideband regime are
required. From a practical perspective, the most important
concern is successfully embedding a dissipative oscillator into
other dispersive optomechanical systems to obtain ground-
state cooling. We do not elaborate on this topic here, because
only a small number of experimental demonstrations of
dissipative optomechanical systems have been reported. It
is noticeable that some systems naturally hybridize both
dispersive and dissipative couplings (see Refs. [37,57,58]).

In the following, we discuss commonalities and conduct
a comparison between the approach presented in this paper
and the existing unresolved sideband cooling schemes. First,
there are similarities between the Hamiltonians used in the
various cooling schemes and that proposed here, characterized
by Hint,1 [Eq. (6)]. In the OMIT scheme, the Hamiltonian [43,
Eq. (49)] is

Hint = �g2(b̂†2 + b̂2)(â†
0â1 + â

†
1â0), (54)

where â0/1 are the two required cavity modes. In the atom-
optomechanical hybrid system, the Hamiltonian [54, Eq. (3)]
is

Hint = G0(â†ĉ + ĉ†â), (55)

where â and ĉ correspond to the optical mode and collective
operators of the atom ensemble, respectively. Finally, in the
coupled-cavity scheme, the Hamiltonian [46, Eq. (A2)] is

Hint = J â
†
1â2 + J ∗â†

2â1, (56)

where â1 is the optical mode coupled with the mechanical
oscillator and â2 is the mode of the ancillary cavity, the
linewidth of which must be significantly smaller than the
resonant frequency of the target oscillator. It is quite interesting
to note the similarities between these dampinglike interactions.
From this perspective, the ancillary oscillator serves as a
medium in our scheme, and it is the input-environment
mode that is essential for ground-state cooling. The ancillary
oscillator plays a role similar to those of the ancillary cavities
or ground-state atoms in the alternative schemes.

Next, we compare our scheme more closely with the OMIT
scheme [43,44], which is analogous to electromagnetically
induced transparency. The OMIT scheme uses an ancillary
oscillator that is dispersively coupled to the cavity mode. Its
position spectrum is also embedded in the photon-number fluc-
tuation spectrum. In addition, a significant imbalance between
the two peaks of the position spectrum is necessary. Therefore,
the ancillary dispersive oscillator must also be cooled to
the ground state. However, as this oscillator is coupled
dispersively, cooling is only possible if the resonant frequency
is larger than the cavity linewidth. This leads to an extremely
large gap between the frequencies of the two oscillators. In our

023823-9



ZHANG, WU, CHEN, AND SHIKANO PHYSICAL REVIEW A 94, 023823 (2016)

notation, this large frequency gap means that the requirement
ω0 ≈ ω̃1 cannot be satisfied. Thus, another largely detuned
driving laser would be required in order to introduce the driving
laser beat note, and unexpected and harmful excitation of some
modes of the real mechanical system could be induced (see
[43, Sec. III G.]). The method using the dissipative oscillator
presented in this study avoids this problem.

VI. CONCLUSION AND OUTLOOK

In this paper, we have proposed a scheme for optome-
chanical cooling in the unresolved sideband regime, and
we have verified this technique using both the quantum
noise approach and exact solutions to the quantum Langevin
equations. The proposed scheme uses a dispersively coupled
oscillator which has a high quality factor, and is also in the
unresolved sideband regime. This ancillary oscillator signifi-
cantly modifies the photon-number fluctuation spectrum and,
thus, realizes ground-state cooling in the unresolved sideband
regime. Therefore, the dissipatively coupled oscillator can
cool not only itself, but also other mechanical oscillators
coupled with the same optical mode. This scheme will enrich
the optomechanical toolbox. Further, as dissipatively coupled
systems have not been investigated widely, this result will
stimulate further interest and related research questions.

As optomechanics facilitates the realization of controllable
macroscopic quantum systems, it is feasible that this subject
will play an increasingly important role in quantum metrology,
quantum information processing. The very recent confirmation
of gravitational waves using optomechanical technology [59]
has strongly endorsed this confidence. The scheme developed
in this paper will enrich the optomechanical cooling toolbox. In
addition, the use of dissipative coupling in cooling constitutes
an example of beneficial exploitation of the noisy environment
modes.
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APPENDIX: EXACT SOLUTION OF PHONON
ANNIHILATION OPERATOR

The phonon annihilation operator b̂0,ω is expressed exactly
as

b̂0,ω = −ig0αs

√
κχ−1∗

0,−ω

N [ω]

{
χ−1∗

c,−ωχ−1
1,ωχ−1∗

1,−ω

+ 4iω1g
2
1α

2
s �(iκ − �)

}
d̂ in,ω

+ −ig0αs

√
κχ−1∗

0,−ω

N [ω]

{
χ−1

c,ωχ−1
1,ωχ−1∗

1,−ω

+ i2ω1g
2
1α

2
s (2�2 − i�κ − iωκ)

}
d̂†

in,ω

−
√

γ0

N [ω]

{
2ig2

0α
2
s (κ2ω1g

2
1α

2
s − �χ−1

1,ωχ−1∗
1,−ω)

+ χ−1
c,ωχ−1∗

c,−ωχ−1∗
0,−ωN [ω]

}
b̂in,0,ω

+ 2i
√

γ0g
2
0α

2
s

N [ω]

(
�χ−1

1,ωχ−1∗
1,−ω − ω1κ

2g2
1α

2
s

)
b̂
†
in,0,ω

+ g2
0g

2
1α

4
s χ

−1∗
0,−ω

√
γ1

2N [ω]
(iκ2 + 2κω − 4i�2)

× (
χ−1∗

1,−ωb̂in,1,ω + χ−1
1,ωb̂

†
in,1,ω

)
. (A1)

[1] M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, Science
304, 74 (2004).

[2] J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow,
and K. W. Lehnert, Nat. Nanotechnol. 4, 820 (2009).

[3] A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter,
Nat. Photonics 6, 768 (2012).

[4] Y.-W. Hu, Y.-F. Xiao, Y.-C. Liu, and Q. Gong, Front. Phys. 8,
475 (2013).

[5] L. F. Buchmann, H. Jing, C. Raman, and P. Meystre, Phys. Rev.
A 87, 031601(R) (2013).

[6] T. P. Purdy, R. W. Peterson, and C. A. Regal, Science 339, 801
(2013).

[7] V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H.
Wang, Phys. Rev. Lett. 107, 133601 (2011).

[8] Y.-D. Wang and A. A. Clerk, Phys. Rev. Lett. 108, 153603
(2012).

[9] C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, Science 338,
1609 (2012).

[10] M. Schmidt, M. Ludwig, and F. Marquardt, New. J. Phys. 14,
125005 (2012).

[11] K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett,
M. D. Lukin, P. Zoller, and P. Rabl, Phys. Rev. Lett. 109, 013603
(2012).

[12] O. Romero-Isart, A. C. Pflanzer, F. Blaser, R. Kaltenbaek, N.
Kiesel, M. Aspelmeyer, and J. I. Cirac, Phys. Rev. Lett. 107,
020405 (2011).

[13] B. Pepper, R. Ghobadi, E. Jeffrey, C. Simon, and D.
Bouwmeester, Phys. Rev. Lett. 109, 023601 (2012).

[14] P. Sekatski, M. Aspelmeyer, and N. Sangouard, Phys. Rev. Lett.
112, 080502 (2014).

[15] T. Rocheleau, T. Ndukum, C. Macklin, J. B. Hertzberg, A. A.
Clerk, and K. C. Schwab, Nature (London) 463, 72 (2010).

023823-10

http://dx.doi.org/10.1126/science.1094419
http://dx.doi.org/10.1126/science.1094419
http://dx.doi.org/10.1126/science.1094419
http://dx.doi.org/10.1126/science.1094419
http://dx.doi.org/10.1038/nnano.2009.343
http://dx.doi.org/10.1038/nnano.2009.343
http://dx.doi.org/10.1038/nnano.2009.343
http://dx.doi.org/10.1038/nnano.2009.343
http://dx.doi.org/10.1038/nphoton.2012.245
http://dx.doi.org/10.1038/nphoton.2012.245
http://dx.doi.org/10.1038/nphoton.2012.245
http://dx.doi.org/10.1038/nphoton.2012.245
http://dx.doi.org/10.1007/s11467-013-0384-y
http://dx.doi.org/10.1007/s11467-013-0384-y
http://dx.doi.org/10.1007/s11467-013-0384-y
http://dx.doi.org/10.1007/s11467-013-0384-y
http://dx.doi.org/10.1103/PhysRevA.87.031601
http://dx.doi.org/10.1103/PhysRevA.87.031601
http://dx.doi.org/10.1103/PhysRevA.87.031601
http://dx.doi.org/10.1103/PhysRevA.87.031601
http://dx.doi.org/10.1126/science.1231282
http://dx.doi.org/10.1126/science.1231282
http://dx.doi.org/10.1126/science.1231282
http://dx.doi.org/10.1126/science.1231282
http://dx.doi.org/10.1103/PhysRevLett.107.133601
http://dx.doi.org/10.1103/PhysRevLett.107.133601
http://dx.doi.org/10.1103/PhysRevLett.107.133601
http://dx.doi.org/10.1103/PhysRevLett.107.133601
http://dx.doi.org/10.1103/PhysRevLett.108.153603
http://dx.doi.org/10.1103/PhysRevLett.108.153603
http://dx.doi.org/10.1103/PhysRevLett.108.153603
http://dx.doi.org/10.1103/PhysRevLett.108.153603
http://dx.doi.org/10.1126/science.1228370
http://dx.doi.org/10.1126/science.1228370
http://dx.doi.org/10.1126/science.1228370
http://dx.doi.org/10.1126/science.1228370
http://dx.doi.org/10.1088/1367-2630/14/12/125005
http://dx.doi.org/10.1088/1367-2630/14/12/125005
http://dx.doi.org/10.1088/1367-2630/14/12/125005
http://dx.doi.org/10.1088/1367-2630/14/12/125005
http://dx.doi.org/10.1103/PhysRevLett.109.013603
http://dx.doi.org/10.1103/PhysRevLett.109.013603
http://dx.doi.org/10.1103/PhysRevLett.109.013603
http://dx.doi.org/10.1103/PhysRevLett.109.013603
http://dx.doi.org/10.1103/PhysRevLett.107.020405
http://dx.doi.org/10.1103/PhysRevLett.107.020405
http://dx.doi.org/10.1103/PhysRevLett.107.020405
http://dx.doi.org/10.1103/PhysRevLett.107.020405
http://dx.doi.org/10.1103/PhysRevLett.109.023601
http://dx.doi.org/10.1103/PhysRevLett.109.023601
http://dx.doi.org/10.1103/PhysRevLett.109.023601
http://dx.doi.org/10.1103/PhysRevLett.109.023601
http://dx.doi.org/10.1103/PhysRevLett.112.080502
http://dx.doi.org/10.1103/PhysRevLett.112.080502
http://dx.doi.org/10.1103/PhysRevLett.112.080502
http://dx.doi.org/10.1103/PhysRevLett.112.080502
http://dx.doi.org/10.1038/nature08681
http://dx.doi.org/10.1038/nature08681
http://dx.doi.org/10.1038/nature08681
http://dx.doi.org/10.1038/nature08681


GROUND-STATE COOLING OF A DISPERSIVELY . . . PHYSICAL REVIEW A 94, 023823 (2016)

[16] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman,
K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W.
Simmonds, Nature (London) 475, 359 (2011).
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Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, Nature
(London) 478, 89 (2011).

[19] S. Mancini, D. Vitali, and P. Tombesi, Phys. Rev. Lett. 80, 688
(1998).

[20] P.-F. Cohadon, A. Heidmann, and M. Pinard, Phys. Rev. Lett.
83, 3174 (1999).

[21] D. Kleckner and D. Bouwmeester, Nature (London) 444, 75
(2006).

[22] T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith,
S. Whitcomb, and N. Mavalvala, Phys. Rev. Lett. 99, 160801
(2007).

[23] M. Poggio, C. L. Degen, H. J. Mamin, and D. Rugar, Phys. Rev.
Lett. 99, 017201 (2007).

[24] T. J. Kippenberg and K. J. Vahala, Science 321, 1172
(2008).

[25] F. Marquardt and S. M. Girvin, Physics 2, 40 (2009).
[26] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod.

Phys. 86, 1391 (2014).
[27] Y. Chen, J. Phys. B: At., Mol. Opt. Phys. 46, 104001 (2013).
[28] Y.-C. Liu, Y.-W. Hu, C. W. Wong, and Y.-F. Xiao, Chin. Phys.

B 22, 114213 (2013).
[29] M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O.

Painter, Nature (London) 462, 78 (2009).
[30] C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer,

Phys. Rev. A 77, 033804 (2008).
[31] F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin,

Phys. Rev. Lett. 99, 093902 (2007).
[32] I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg,

Phys. Rev. Lett. 99, 093901 (2007).
[33] J. Aasi et al. (The LIGO Scientific Collaboration), Class.

Quantum Grav. 32, 115012 (2015).
[34] F. Elste, S. M. Girvin, and A. A. Clerk, Phys. Rev. Lett. 102,

207209 (2009).
[35] M. Li, W. H. P. Pernice, and H. X. Tang, Phys. Rev. Lett. 103,

223901 (2009).
[36] M. Wu, A. C. Hryciw, C. Healey, D. P. Lake, H. Jayakumar,

M. R. Freeman, J. P. Davis, and P. E. Barclay, Phys. Rev. X 4,
021052 (2014).

[37] A. Xuereb, R. Schnabel, and K. Hammerer, Phys. Rev. Lett.
107, 213604 (2011).

[38] A. Sawadsky, H. Kaufer, R. M. Nia, S. P. Tarabrin, F. Ya. Khalili,
K. Hammerer, and R. Schnabel, Phys. Rev. Lett. 114, 043601
(2015).

[39] T. Weiss, C. Bruder, and A. Nunnenkamp, New J. Phys. 15,
045017 (2013).

[40] T. Weiss and A. Nunnenkamp, Phys. Rev. A 88, 023850 (2013).
[41] S. P. Tarabrin, H. Kaufer, F. Ya. Khalili, R. Schnabel, and K.

Hammerer, Phys. Rev. A 88, 023809 (2013).
[42] N. Vostrosablin and S. P. Vyatchanin, Phys. Rev. D 89, 062005

(2014).
[43] T. Ojanen and K. Børkje, Phys. Rev. A 90, 013824 (2014).
[44] Y.-C. Liu, Y.-F. Xiao, X. S. Luan, and C. W. Wong, Sci. China:

Phys. Mech. Astron. 58, 050305 (2015).
[45] Y. Guo, K. Li, W. Nie, and Y. Li, Phys. Rev. A 90, 053841

(2014).
[46] Y.-C. Liu, Y.-F. Xiao, X. Luan, Q. Gong, and C. W. Wong,

Phys. Rev. A 91, 033818 (2015).
[47] C. Genes, H. Ritsch, and D. Vitali, Phys. Rev. A 80, 061803(R)

(2009).
[48] K. Hammerer, K. Stannigel, C. Genes, P. Zoller, P. Treutlein,

S. Camerer, D. Hunger, and T. W. Hänsch, Phys. Rev. A 82,
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