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In two recent papers exact Hermite-Gaussian solutions to relativistic wave equations were obtained for both
electromagnetic and particle beams. The solutions for particle beams correspond to those of the Schrödinger
equation in the nonrelativistic limit. Here, it will be shown that each beam particle has additional 4-momentum
resulting from transverse localization compared to a free particle traveling in the same direction as the beam
with the same speed. This will be referred to as the quantum 4-potential term since it will be shown to play
an analogous role in relativistic Hamiltonian quantum mechanics as the Bohm potential in the nonrelativistic
quantum Hamilton-Jacobi equation. Low-order localization effects include orbital angular momentum, Gouy
phase, and beam spreading. Toward a more systematic approach for calculating localization effects at all orders,
it will be shown that both the electromagnetic and quantum 4-potentials couple into the canonical 4-momentum
of a particle in a similar way. This offers the prospect that traditional methods used to calculate the affect of an
electromagnetic field on a particle can now be adapted to take localization effects into account. The prospects
for measuring higher order quantum 4-potential related effects experimentally are also discussed alongside some
questions to challenge the quantum information and quantum field theorists.
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I. INTRODUCTION

Experiment shows that beams of particles still behave
like beams even if only one particle is traveling through the
apparatus at a time [1]. The converse of this argument is that
isolated particles can behave like beams. Specifically, it is
understood that the wave function � for the particle must
take account of a full compliment of wave beam features such
as mode numbers [2], Gouy phase [3,4], and orbital angular
momentum (OAM) [5]. The difference between free and beam
particles is the transverse localization of the beam particles. It
is therefore reasonable to assume that this localization is the
cause of the special features the beam exhibits.

The purpose of this paper is to present a method for
calculating the effects of transverse localization on beam
particles starting from the observation that the 4-momentum
of a beam particle can be split into the sum of constant and
position-dependent parts. The position-dependent part will be
called the quantum 4-potential term since it will be shown later
to play an analogous role in relativistic Hamiltonian quantum
mechanics as the Bohm potential [6–8,10] in the nonrelativistic
quantum Hamilton-Jacobi equation.

Quantum potential is a unique form of potential for two
reasons. One is that particles have quantum potential as a
result of carrying it themselves and not as a result of their
position with respect to an external carrier. The other is that
the quantity of quantum potential a particle carries can be set
using physical devices. It is the concept that quantum potential
can be set that is the key to uniqueness here since other forms
of potential can be carried.

The usefulness of quantum 4-potential in accounting for
the affects of localization stems from the fact that both
quantum and electromagnetic 4-potentials couple into the
canonical (total) 4-momentum of particles in a similar way.
This means that whenever there exists a calculation of the

affect of an electromagnetic field on a particle there is also
the possibility to adapt this calculation to include the effects
of localization. Some areas of quantum physics that have
these kinds of calculations include basic quantum mechanics,
interpretations of quantum mechanics, quantum information
theory, many-body quantum mechanics, and quantum field
theory (QFT). It is of interest therefore to briefly consider
how the concept of quantum 4-potential might intersect each
of them.

In basic quantum mechanics, the fine-structure constant
is used to classify the order of electromagnetic terms such
that lowest order terms are the largest. The analogy between
the electromagnetic and quantum 4-potentials implies the
existence of a counterpart localization constant that will be
identified here and used to assign an order to a range of
localization effects specific to the particle beam application
under development.

Quantum potential is a central concept of the de Broglie–
Bohm interpretation [9] of quantum mechanics that differs
from the standard Copenhagen interpretation. This raises the
question, can the quantum potential energy of a particle be
measured in an experiment? In this paper, a formula for the
energy of isolated particles that includes a contribution from
quantum potential energy will be derived and the details of an
experiment that is, theoretically, sensitive enough to detect it
will be outlined. The experiment would also have relevance to
the field of quantum information theory [11] since the amount
of quantum potential energy in a particle could be regarded
as data. In particular, if the experiment were successful it
would show data could be encoded in a particle through a
confinement device, carried by the particle to a new location,
and then retrieved at the receiving end.

Although the scope of this paper is limited to beams, it is
known that quantum potential is also present in bound systems
such as many-electron atoms. One possible research question
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here is, can quantum 4-potential be coupled into the electrons
as a means of represent the confining effects of cavities on
the atoms? The union of many-body theory and quantum
4-potential also has direct applicability to beams of charged
particles owing to the electromagnetic interactions between
the particles.

Introducing localization into QFT generates a couple of
problems. One is that there are two different approaches to
the second quantization of the beam. In particular there is
the traditional method that would require the beam function
to be Fourier decomposed into plane waves versus a direct
approach [12] that does not utilize the Fourier decomposition.
The other problem is how might a quantum 4-potential based
self-interaction be represented on a Feynman diagram [13]?
More specifically, how is the interaction mediated and what
does its propagator look like?

It is clear from the foregoing paragraphs that quantum
4-potential has the capacity to generate much discussion. This
will be continued in later sections. For now it is necessary to
redirect our attention to developing the mathematical theory
that is an essential foundation for such a discussion.

Quantum 4-potential like the Bohm potential is not an
external potential but a concept extracted from �. This requires
a distinction to be made between the canonical p̂μ(μ =
1,2,3,4) and kinetic P̂μ 4-momentum for the particle. The
canonical 4-momentum is the sum of the kinetic 4-momentum
and the quantum 4-potential term. The signature of a quantum
potential is therefore the appearance of a term in a quantum
mechanical equation that generates localization and has no
association to an external source. It will be shown that
the form of this term depends on the specific formulation
of quantum mechanics under consideration but that all the
variants interrelate and have two distinct common properties:
they vanish in the free particle limit and have null expectation
values.

External devices are responsible for collimating and fo-
cusing the particles in a beam. Once a particle has passed
through these devices, it remains localized but is no longer
subject to external confinement. Our solutions describe the
localized state of the particles but not the passage of the particle
through the devices responsible for confining the beam. It has
been stated that particles are carriers of quantum 4-potential.
From this perspective, the basic function of all confinement
mechanisms is to induce the presence of quantum 4-potential
in the particles that, in turn, generates localization alongside a
host of localization related effects.

The basic structure of a wave beam can be understood
using the Heisenberg uncertainty principle [14] that states
uncertainty in momentum is inversely proportional to un-
certainty in position. In a continuous-wave beam there is
no localization of the particle along the axis of the beam,
meaning that each particle can be assumed to have a precise
axial momentum and therefore a precise axial velocity v3.
The uncertainty in the position of the particle along the
transverse axis is smallest at the beam waist. It is therefore
the size of the waist that determines the uncertainty in the
transverse momentum of the particle. The presence of quantum
4-potential related transverse momentum explains the fact that
beams spread. It also accounts for the existence of OAM in
beams.

Linear wave equations have both plane-wave and localized
solutions [15] often called wave packets [12]. The wave packet
is smallest at the time of an event that localizes the particle
then continuously grows in size afterward. One distinguishing
characteristic of plane-wave and localized wave functions is
the number of 4-position dependencies in them. Plane waves
are local functions that only depend on the position xi(i =
1,2,3) of the particle at time t . By contrast, localized wave
solutions are bilocal functions since they must depend on both
the current 4-position of the particle as well as the 4-position
Xμ = (Xi,cT ) of the preceding confinement event where and
when the size of the wave packet was at a minimum. It is
the bilocal nature of wave packets that permits the probability
density of finding free particles to have spatial extension as
well as a 4-position. It is also the dependence of � on Xμ as
well as xμ that will enable us to define distinct kinetic Pμ and
canonical pμ 4-momentum vectors.

Bateman-Hillion functions [16,17] are exact localized
solutions of relativistic wave equations that trace back to early
work of Bateman on conformal transformations [18]. In two
recent papers, exact Bateman-Hillion solutions were obtained
for the Hermite-Gaussian modes of both electromagnetic
[19] and quantum particle [20] beams. These are detailed
solutions for particle beams that include the Gouy phase
[21–23]. The paraxial wave equation [2] for electromagnetic
beams and the Schrödinger equation for nonrelativistic particle
beams have both been demonstrated as limiting cases of the
Bateman-Hillion method.

It has been remarked that there are alternate approaches
to the second quantization of beam problems. Altaisky and
Kaputkina [12] have specifically addressed the second quan-
tization problem for Bateman-Hillion wave beam solutions.
It is not known if local and bilocal [24] QFT will produce
different results. If it turns out there are differences, then
any experiment to detect those differences would be a test
on a basic assumption of the standard model physics that is
currently characterized as a local theory.

One method of obtaining Bateman-Hillion solutions to a
wave equation is to start from an ansatz. In the case of the
Klein-Gordon equation the ansatz eliminates the second-order
time derivative reducing the wave equation to a parabolic
form. This resolves problems of negative energies and negative
probability densities [25] that afflict the unconstrained Klein-
Gordon equation. It will be further shown in this paper that the
probability density of finding a particle in a Bateman-Hillion
beam is just |�|2 similar to the Schrödinger equation except
that the probability density for Bateman-Hillion solutions is
also form preserving under Lorentz transformations.

In this paper a unitary transformation will be made to the
Bateman-Hillion solutions of the Klein-Gordon equation for
particle beams to account for an earlier finding [20] that the
components of the 4-momentum of the particles must have
a shift in them related to the complex shift in the 4-position
coordinates needed for the accurate description of any wave
beam. This will be shown to facilitate a calculation for the total
energy of each particle in terms of the rest mass of the particle,
the kinetic energy of the propagation of the particle along the
axis of the beam, and the quantum 4-potential related kinetic
energy locked up in the transverse mass flows. Results will be
presented for both Hermite-Gaussian and Laguerre-Gaussian
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beams. Laguerre-Gaussian beams are useful to describe the
orbital angular momentum states of the particle.

After the seminal paper by Bliokh et al. introducing
vortex beams carrying OAM for free quantum electrons [26],
several experimental [27] and theoretical [28,29] results were
obtained. Properties of the interaction of OAM with an electric
field such as OAM Hall effect was studied in the nonrelativistic
context [26]. Further the interaction of OAM with a magnetic
field was also studied in the nonrelativistic context [30]. More
recently the effect of the interaction of relativistic electron
vortex beam with a laser field was studied showing that the
beam center is shifted and that the shift in the paraxial beams
is larger than that in the nonparaxial beams [31,32]. The results
that we are obtaining in this paper could be useful to explore
the relativistic effects in the properties such as OAM Hall and
Zeeman effects resulting, respectively, from the interaction of
a relativistic scalar (without spin) electron vortex beam with
an electric and a magnetic field. Further we can similarly solve
the Dirac equation to include the effects of the interaction of
spin angular momentum (SAM) with a magnetic field.

It will be shown in this paper that the Schrödinger and
Klein-Gordon equations give the same orbital angular mo-
mentum for each scalar mode of a Laguerre-Gaussian beam.
To find relativistic corrections to orbital angular momentum it
is therefore necessary to investigate solutions that mix multiple
modes. For example, in the case of Bessel beam solutions to
the Dirac equation it has been found [29] that the corrective
amplitude coefficients take the form a = √

1 − E0/E) sin θ0

where E denotes the energy of each particle, E0 is the rest
energy, and θ0 is the polar angle indicating the divergence
of the beam. This results in a relativistic correction sa2 to
the total angular momentum of each particle with spin s.
The correction clearly vanishes in both the nonrelativistic
(E → E0) and paraxial (θ0 → 0) limits but can otherwise
affect the energies of beam particles in external electric and
magnetic fields. Another source for relativistic corrections that
may affect OAM is the repulsion between charged particles.
This can be a stronger effect than the spin-orbit interaction
that could be studied using either the Klein-Gordon or Dirac
equations. The repulsion between charged particles is also
known to have a greater affect on the beam for lower energy
particles.

The fact that �(xi,t,Xi,T ) depends on two 4-position
vectors requires the introduction of a constraint condition
[33,34] to eliminate one of the independent time coordinates
in the calculation of the physical properties for the beam.
As in an earlier paper [20] the solution to be applied here
is to use Dirac δ function notation to impose a relationship
ξ3 − v3τ = 0 between the relative position ξi = xi − Xi and
relative time τ = t − T . This relates back to the idea that
particles in continuous-wave beams can be assigned a precise
axial velocity v3.

In Sec. II, we use the Bateman-Hillion ansatz to solve the
Klein-Gordon equation for a particle that passes through a
beam waist. In Sec. III, we determine the Lorentz invariant
probability density of finding a particle in a Bateman-Hillion
beam. In Sec. IV, we calculate the kinetic 4-momentum in
terms of the canonical 4-momentum and the localization terms.
In Sec. V, we calculate the quantum 4-potential. In Sec. VI, we
discuss experimental considerations essential to the detection

of quantum 4-potential related effects. In Sec. VII, we conclude
our results in a summary.

II. BATEMAN-HILLION BEAMS

Consider a beam of particles each having a rest mass m0, a
4-position xμ = (xi,ct), and a 4-momentum pμ = (pi,E/c).
Let us assume each particle passes through a beam waist with
a position Xi at the time T . The Klein-Gordon equation for the
wave function �(xi,t,Xi,T ) representing each of the particles
in Minkowski space can be expressed as

p̂μp̂μ� = 1

c2

(
Ê2 − c2p̂2

i

)
� = m2

0c
2�, (1)

where

p̂i = �

i

∂

∂xi

, Ê = −�

i

∂

∂t
(2)

are the canonical 4-momentum operators, � is Planck’s
constant divided by 2π , and c is the velocity of light.

One approach to solving Eq. (1) for a beam is to use
a Bateman-inspired ansatz. In an earlier paper [20], the
following trial form was taken as the starting point for
the derivation of the positive-energy Hermite-Gaussian beam
solutions:

�O
mn = 	mn(ξ1,ξ2,ξ3 + cτ ) exp[i(k3x3 − k4ct)], (3)

where

ξi = xi − Xi, τ = t − T , (4)

gives the position of each point xμ relative to the 4-position of
the beam waist, kμ = (0,0,k3,k4) is the wave vector, and 	mn

are scalar functions. The positive integers m and n indicate the
mode of the beam.

A curious feature of Eq. (3) derived in [20] is that it leads to
the following expression for the particle current in a Gaussian
beam: 〈

�O
00

∣∣ĵμ

∣∣�O
00

〉 = �

m0

(
kμ − κ00

μ

)
, (5)

where

�∗ĵμ� = 1

2m0
(�∗p̂μ� − �p̂μ�∗), (6)

and κmn
μ = (0,0,κmn,−κmn). Here, the axial parameter κmn

takes the form

κ00 = 1

(k3 + k4)w2
0

, (7)

where w0 is the radius of the beam at the waist.
Equation (5) suggests that kμ is related to the expectation

value of the axial current for a particle in a beam. In seeking
an intuitive definition for kμ we shall now make use of the
unitary transformation

�mn = �O
mn exp[iκmn(x3 + ct)], (8)

where

κmn = Nmn

(k3 + k4)w2
0

, (9)
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and Nmn is a constant. The general form of Nmn is to be
determined but it can be seen from comparison of Eqs. (7) and
(9) that N00 = 1. It is also readily verified that Eq. (8) is form
invariant under the Lorentz transformation equations

x ′
3 = (x3 − v3τ )γ, τ ′ =

(
τ − v3

c2
x3

)
γ, (10)

k′
3 =

(
k3 − v3

c
k4

)
γ, k′

4 =
(

k4 − v3

c
k3

)
γ, (11)

where γ = 1/
√

1 − v2
3/c

2. Applying the transformation (8) to
Eq. (3) gives

�mn = 	mn(ξ1,ξ2,ξ3 + cτ )

× exp[i(k3 + κmn)x3 − ic(k4 − κmn)t], (12)

equivalent to making the replacements k3 → k3 + κmn and
k4 → k4 − κmn. These replacements can be used, in turn, to
reduce Eq. (5) to the simplified to the form

〈�00|ĵμ|�00〉 = �

m0
(0,0,k3,k4), (13)

where it can be seen κ00 has been eliminated. One important
goal of this paper will be to show that there exists Nmn such
that the condition

〈�mn|ĵμ|�mn〉 = �

m0
(0,0,k3,k4) (14)

is satisfied. If this hypothesis is true, it implies �

m0
kμ can be

interpreted as the expectation value for the particle current in
a relativistic beam thus giving a clear physical meaning to kμ.

Inserting Eq. (12) into the Klein-Gordon equation (1) gives

∂2	mn

∂x2
1

+ ∂2	mn

∂x2
2

+ 2i(k3 + κmn)
∂	mn

∂x3

+ 2i

c
(k4 − κmn)

∂	mn

∂t
= 0, (15)

where

k2
4 = k2

3 + 2κmn(k3 + k4) + m2
0c

2

�2
. (16)

It can be seen the unitary transformation (8) has introduced
the term

Kmn
T = 2κmn(k3 + k4) (17)

into this dispersion relationship. The physical interpretation of
Kmn

T will be discussed later once the relativistic energy formula
for each particle in the beam has been derived.

It is instructive to observe that

∂

∂x3
	mn = 1

c

∂

∂t
	mn, (18)

and equivalently

∂

∂x3
|�mn|2 = 1

c

∂

∂t
|�mn|2, (19)

owing to the fact 	mn only depends on ξ3 and τ in the linear
combination ξ3 + τ . Equations (15) and (18) can now be

combined to obtain the operator relationships

p̂3	mn = −p̂4	mn = − p̂2
1 + p̂2

2

2�(k3 + k4)
	mn. (20)

These results will prove useful later.
Equation (15) can be solved analogously to the paraxial

equation [2] to give

	mn = CHG
mn w0

w
Hm

(√
2ξ1

w

)
Hn

(√
2ξ2

w

)

× exp

[
i2b

(
ξ 2

1 + ξ 2
2

)
w2

0(ξ3 + cτ − i2b)
− igmn

]
, (21)

where Hm and Hn are Hermite polynomials,

b = w2
0

4
(k3 + k4), (22)

w(ξ3,τ ) = w0

√
1 +

(
ξ3 + cτ

2b

)2

, (23)

is the beam radius such that w0 = w(0,0), and

gmn(ξ3,τ ) = (1 + m + n) arctan

(
ξ3 + cτ

2b

)
(24)

is the Gouy phase of a relativistic quantum particle.
It is notable that the Klein-Gordon equation (1) can also

be usefully solved in cylindrical coordinates starting from the
expression

�lp = 	lp(ξρ,ξφ,ξ3 + cτ )

× exp[i(k3 + κlp)x3 − ic(k4 − κlp)t] (25)

equivalent to Eq. (12) where ξρ =
√
ξ 2

1 + ξ 2
2 and ξφ =

atan2(ξ2,ξ1). This gives

	lp = CLG
lp w0

w

(√
2ξρ

w

)|l|
L|l|

p

(
2ξ 2

ρ

w2

)

× exp

[
i2bξ 2

ρ

w2
0(ξ3 + cτ − i2b)

+ ilξφ − iglp

]
, (26)

where L
|l|
p are the generalized Laguerre polynomials and

glp(ξ3,τ ) = (1 + |l| + 2p) arctan

(
ξ3 + cτ

2b

)
(27)

is the Gouy phase in terms of the radial Laguerre index p and
the azimuthal index l, which may be positive or negative.

The operator for the axial component of canonical OAM
can be expressed as

L̂3 = ξρ × p̂φ = �

i

∂

∂ξφ

. (28)

The Laguerre-Gaussian beam functions (25) can thus be seen
to give

L̂3�lp = l��lp, (29)

showing L3 = l� are the possible eigenvalues of OAM for a
Laguerre-Gaussian beam.
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III. PROBABILISTIC INTERPRETATION

In this section, the correspondence between the particle
current (6) for Bateman-Hillion beams and that of the
Schrödinger equation for particle beams will be investigated
as means of determining the probability density of finding a
particle in a Bateman-Hillion beam. As a starting point it will
be useful to evaluate each component of the Bateman-Hillion
particle current

jmn
μ = �∗

mnĵμ�mn. (30)

This leads to

jmn
1 = 4b(ξ3 + cτ )ξ1

w2
0[(ξ3 + cτ )2 + 4b2]

�

m0
|�mn|2, (31)

jmn
2 = 4b(ξ3 + cτ )ξ2

w2
0[(ξ3 + cτ )2 + 4b2]

�

m0
|�mn|2, (32)

jmn
3 =

[
k3 + κmn − 2b(1 + m + n)

(ξ3 + cτ )2 + 4b2

]
�

m0
|�mn|2

− 2b
(
ξ 2

1 + ξ 2
2

)
[(ξ3 + cτ )2 − 4b2]

w2
0[(ξ3 + cτ )2 + 4b2]2

�

m0
|�mn|2, (33)

jmn
4 =

[
k4 − κmn + 2b(1 + m + n)

(ξ3 + cτ )2 + 4b2

]
�

m0
|�mn|2

+ 2b
(
ξ 2

1 + ξ 2
2

)
[(ξ3 + cτ )2 − 4b2]

w2
0[(ξ3 + cτ )2 + 4b2]2

�

m0
|�mn|2, (34)

where

|�mn|2 =
(

CHG
mn w0

w

)2

H 2
m

(√
2ξ1

w

)
H 2

n

(√
2ξ2

w

)

× exp

[
− 8b2

(
ξ 2

1 + ξ 2
2

)
w2

0[(ξ3 + cτ )2 + 4b2]

]
. (35)

The continuity equation for the Klein-Gordon equation (1)
is

∂j1

∂x1
+ ∂j2

∂x2
+ ∂j3

∂x3
+ 1

c

∂j4

∂t
= 0. (36)

Equations (33) and (34) enable this expression to be rewritten
in the form

∂j1

∂x1
+ ∂j2

∂x2
+ 1

m0

(
k3

∂

∂x3
+ k4

∂

∂t

)
|�mn|2 = 0, (37)

or equivalently

∂j1

∂x1
+ ∂j2

∂x2
+ 1

m0
(k3 + k4)

∂

∂t
|�mn|2 = 0, (38)

having used Eq. (19). This result reduces to the simplified
expression

∂j1

∂x1
+ ∂j2

∂x2
+ ∂

∂t

∣∣�S
mn

∣∣2 = 0 (39)

in the nonrelativistic limit where k3 � k4 and m0c
2 	 c�k4.

In an earlier paper [20] it was shown that Eqs. (1) and (3)
reduce to the Schrödinger equation

∂2�S
mn

∂x2
1

+ ∂2�S
mn

∂x2
2

+ ∂2�S
mn

∂x2
3

+ 2i
m

�

∂�S
mn

∂t
= 0, (40)

and the nonrelativistic form of the Bateman-Hillion ansatz

�OS
mn = 	S

mn(ξ1,ξ2,τ ) exp

[
i

�
(P3x3 − Est)

]
, (41)

where ES is the nonrelativistic energy of the particle and

	S
mn =

∫
	mnδ(ξ3 − vτ ) dξ3. (42)

For comparison to results in the present context �OS
mn must

be further subjected to the unitary transformation (8) that
simplifies to

�S
mn = �OS

mn exp

(
iNmn

�t

m0w
2
0

)
(43)

in the the nonrelativistic limit c → ∞.
It is readily shown that Eq. (39) is the continuity equation

for the Schrödinger equation (40) since

∂j3

∂x3
= Ps

�

∂

∂x3

∣∣�S
mn

∣∣2 = 0. (44)

It is thus concluded from a direct comparison of Eqs. (38) and
(39) that

PBH = m0
j3 + j4

k3 + k4
= |�mn|2 (45)

is the relativistic probability density for finding a particle in a
Bateman-Hillion beam. This differs from the widely cited [13]
Klein-Gordon probability density

PKG = j4

c
(46)

due to the fact �mn is further constrained under the parabolic
equation (15). It is also of interest to notice that PBH is form
invariant under Lorentz transformations whereas PKG is not as
an isolated component of a 4-vector.

Bateman-Hillion functions can be normalized using the
integral expression∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
|�|2δ(ξ3 − v3τ )dξ1dξ2dτ = 1

L
, (47)

having set the probability of finding the particle in a beam of
length L as 1. This evaluates to

CHG
mn =

√
2

πw2
0L2m+nm!n!

(48)

for Hermite-Gaussian beams; and

CLG
lp =

√
4p!

w2
0L(p + |l|)! (49)

for Laguerre-Gaussian beams.
Expectation values for the measurable properties of each

particle in the beam can be calculated as

〈�|Ô|�〉P
=

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
(�∗Ô�)δ(ξ3 − v3τ ) dξ1 dξ2 dτ,

(50)
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where Ô is the quantum mechanical operator for each
observable quantity. Here, the subscript P has been included
as a reminder that the integration is performed over a planar
cross section perpendicular to the axis of the beam but not
along the axis itself.

IV. CALCULATION OF 4-MOMENTUM

The canonical 4-momentum operator p̂μ is defined in
Eq. (2) in terms of the 4-position vector xμ. We next seek
to use the fact that �mn depends on Xμ as well as xμ to
define a distinct kinetic 4-momentum operator P̂μ to satisfy
the eigenvalue equation

P̂μ�mn = �kμ�mn. (51)

The first step is to write

	mn(ξ1,ξ2,ξ3 + cτ )

= 	mn(x1 − X1,x2 − X2,x3 − X3 + ct − cT ) (52)

having used Eq. (4). This indicates

∂	mn

∂xμ

= −∂	mn

∂Xμ

, (53)

and therefore

i�

(
∂

∂xμ
+ ∂

∂Xμ

)
�mn = �

(
kμ + κmn

μ

)
�mn. (54)

From comparison of this expression to Eq. (51) it can be seen
that

P̂μ�mn =
(

i�
∂

∂xμ
+ i�

∂

∂Xμ
− �κmn

μ

)
�mn = �kμ�mn

(55)

or equivalently

P̂1�mn = P̂2�mn = 0, P̂3�mn = �k3�mn, (56)

P̂4�mn =
√

�2k2
3 + 2κmn(k3 + k4) + m2

0c
2�mn, (57)

having used Eq. (16). These results are the eigenvalue
equations for the kinetic 4-momentum of each particle in
a relativistic Hermite-Gaussian beam. In completing this
argument, it is necessary to find the explicit form of Nmn

from Eq. (14).
Inserting the Bateman-Hillion ansatz (12) into Eq. (14)

gives

〈�mn|m0ĵμ|�mn〉P = �
(
kμ + κmn

μ

) + 〈	mn|m0ĵμ|	mn〉P .

(58)

Here, the term 〈	mn|m0ĵμ|	mn〉P can be evaluated using the
integrals

∫ +∞

−∞
xH 2

m(
√

αx)e−αx2
dx = 0, (59)∫ +∞

−∞
x2H 2

m(
√

αx)e−αx2
dx =

√
π

α3

(
1

2
+ m

)
. (60)

The result is

〈	mn|m0ĵμ|	mn〉P = −�κmn (61)

having set

Nmn = 1 + m + n. (62)

Putting Eq. (61) into (58) gives

〈�mn|m0ĵμ|�mn〉P = �kμ. (63)

It is thus established that the eigenvalues of the kinetic
4-momentum operator P̂μ are equal to the expectations values
for the mass current for all Hermite-Gaussian beam modes.

Equations (57) and (62) enable the total energy Emn
HG for

each particle in a Hermite-Gaussian mode to be written as

Emn
HG = c

√
�2k2

3 + 2�2

w2
0

(1 + m + n) + m2
0c

2. (64)

Comparing this result to the energy of a free particle

EFP = c

√
�2k2

3 + m2
0c

2 (65)

of identical mass m0 and axial wave number k3 shows that the
beam particle picks up an additional energy contribution

�
2Kmn

T = 2�
2

w2
0

(1 + m + n), (66)

where Kmn
T is defined in Eq. (17), as a result of being

localized. The remaining task is therefore to assign a physical
interpretation to this term.

It can be inferred from inspection of Eq. (6) that the
expectation values of canonical 4-momentum and mass current
must be related through the expression

〈�mn|m0ĵμ|�mn〉P = Re〈�mn|p̂μ|�mn〉P , (67)

where the operator Re takes the real part of the argument.
Equations (20), (58), (61), and (67) can therefore be used
together to give

Re〈�mn|p̂2
1 + p̂2

2|�mn〉P = 2�
2

w2
0

(1 + m + n). (68)

This shows that the middle term under the square root sign
in Eq. (64) represents the contribution of the fluctuating
transverse components of momentum to the total energy of
each particle.

V. QUANTUM POTENTIAL

The concept of distinguishing between canonical and
kinetic 4-momentum has familiarity from the description
[13] of a particle of charge e moving in an electromagnetic
4-potential Aμ. The kinetic 4-momentum for this problem is

π̂μ = p̂μ − eAμ. (69)

For the purposes of comparison the relationship between the
kinetic and the canonical 4-momentum of a beam particle
given in Eq. (55) can be written as

P̂μ = p̂μ − m0Ûμ, (70)
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where

Ûμ = �

m0

(
1

i

∂

∂Xμ
+ κmn

μ

)
. (71)

Equations (69) and (70) are similar in form but Aμ is an
external 4-potential whereas Ûμ is an operator. The under-
standing here is that wave equations are constructed using
kinetic 4-momentum to take account of external potentials
and canonical 4-momentum if no external potential is present.
The Hermite-Gaussian function �mn was derived from a wave
equation that contains only canonical 4-momentum operators
but it is still possible to identify a 4-potential-like term Ûμ in
the definition of the kinetic 4-momentum Pμ analogous to the
role of the external 4-potential Aμ in πμ. Equation (71) will
be referred to as the 4-potential operator.

Kinetic 4-momentum was defined in Eq. (51) to be a real
quantity. It follows from Eq. (70) that the particle current can
be written in the form

jμ =
(

�kμ

m0
+ Uμ

)
|�|2, (72)

where

Uμ = �

m0
Re

(
i

�

∂�

∂Xμ
+ κmn

μ

)
(73)

is a real quantum 4-potential field. Comparing Eq. (72) to the
component Eqs. (31)–(34) gives

Umn
1 = �

m0

4b(ξ3 + cτ )ξ1

w2
0[(ξ3 + cτ )2 + 4b2]

, (74)

Umn
2 = �

m0

4b(ξ3 + cτ )ξ2

w2
0[(ξ3 + cτ )2 + 4b2]

, (75)

Umn
3 = �

m0

[
κmn − 2b(1 + m + n)

(ξ3 + cτ )2 + 4b2

]

− �

m0

2b
(
ξ 2

1 + ξ 2
2

)
[(ξ3 + cτ )2 − 4b2]

w2
0[(ξ3 + cτ )2 + 4b2]2

, (76)

Umn
4 = �

m0

[
−κmn + 2b(1 + m + n)

(ξ3 + cτ )2 + 4b2

]

+ �

m0

2b
(
ξ 2

1 + ξ 2
2

)
[(ξ3 + cτ )2 − 4b2]

w2
0[(ξ3 + cτ )2 + 4b2]2

, (77)

to be the explicit form of the quantum 4-potential for a
Hermite-Gaussian beam.

Expression (72) is a quantum mechanical equation describ-
ing a particle in a localized state. In the absence of localization
(w0 → ∞) it reduces to the form

jμ = �kμ

m0
|�|2 (78)

showing that the quantum 4-potential term has vanished.
Squaring Eq. (78) gives

j 2
M − m2

0c
2|�|2 = 0, (79)

where j 2
M = m2

0jμjμ. It is clear that if we now add back the
quantum 4-potential into both Eqs. (78) and (79) then Eq. (79)

must pick up an additional scalar term V 2 such that

j 2
M − m2

0c
2|�|2 + V 2 = 0, (80)

where

V 2 = −|�kμ − m0Uμ|2 − m2
0c

2|�|2. (81)

Expanding this expression gives

V 2 = −m2
0

∣∣Umn
μ

∣∣2 − 2�kμm0U
mn
μ − �

2Kmn
T

= 4�
2

[
1 + m + n

w2
− ξ 2

1 + ξ 2
2

w4

]
(82)

having used

∣∣Umn
μ

∣∣2 = − �
2

m2
0

16b2(ξ3 + cτ )2
(
ξ 2

1 + ξ 2
2

)
w4

0[(ξ3 + cτ )2 + 4b2]2
, (83)

kμUmn
μ = �

m0

[
−Kmn

T

2
+ 8b2(1 + m + n)

w2
0[(ξ3 + cτ )2 + 4b2]

]

+ �

m0

8b2
(
ξ 2

1 + ξ 2
2

)
[(ξ3 + cτ )2 − 4b2]

w4
0[(ξ3 + cτ )2 + 4b2]2

, (84)

alongside Eq. (16). It is concluded from this argument that V 2

is itself a quantum potential appearing in Eq. (81) as the scalar
analog of the quantum 4-potential Uμ in Eq. (72).

The OAM operator (28) can be rewritten in Cartesian
coordinates to give

L̂3 = ξ1p̂2 − ξ2p̂1 (85)

or equivalently

L̂3 = ξ1(P̂2 + m0Û2) − ξ2(P̂1 + m0Û1) (86)

having used Eq. (70). This last result simplifies to

L̂3 = ξ1m0Û2 − ξ2m0Û1, (87)

since Pμ = (0,0,�k3,�k4). It is therefore concluded that
the quantum 4-potential operator Ûμ and not the kinetic
4-momentum operator P̂μ is the source of the mass flow
resulting in OAM.

Calculating the expectation value of each component Ûμ of
the quantum 4-potential and the scalar analog V 2 we obtain

〈�mn|Uμ|�mn〉P = 〈�mn|V 2
μ |�mn〉P = 0. (88)

This result shows that quantum 4-potential is a fluctu-
ating phenomenon. Specifically, the presence of quantum
4-potential can cause the canonical 4-momentum of a localized
particle in a beam to instantaneously deviate from the kinetic
4-momentum, but it has no affect at all on the expected
4-momentum of the particle.

The original concept of a quantum potential was introduced
by Bohm [6] who started from an ansatz to solve the
Schrödinger equation. This takes the form

� = R exp

(
i
S

�

)
, (89)

where the amplitude R and S/� are real valued functions.
On inserting Eq. (89) into the Schrödinger equation (40),

the imaginary part of the equation can be identified as the
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continuity equation (39) and the real part as the Hamilton-
Jacobi equation

−∂Smn

∂t
= |∇Smn|2

2m0
+ Q, (90)

where

Q = − �
2

2m0

∇2Rmn

Rmn

(91)

is the Bohm potential. It is of interest next to investigate how
the quantum 4-potential and the Bohm potential are related to
each other.

The solution to the Schrödinger equation for Hermite-
Gaussian beams is given in Eqs. (41) and (42). On comparing
Eq. (41) and (89) the explicit form of the amplitude Rmn and
phase function Smn can be read off to be

Rmn = CHG
mn w0

wS

Hm

(√
2ξ1

wS

)
Hn

(√
2ξ2

wS

)

× exp

(
−ξ 2

1 + ξ 2
2

w2
S

)
, (92)

and

Smn = P3x3 − Et − (1 + m + n)�ω0t

+ 2
(
ξ 2

1 + ξ 2
2

)
�ω0τ

w2
S

− �(1 + m + n) arctan(2ω0τ ),

(93)

where

wS = w0

√
1 + 4ω0τ 2, ω0 = �

m0w
2
0

. (94)

Inserting Eq. (92) into Eq. (91) shows the Bohm quantum
potential for a nonrelativistic Hermite-Gaussian beam to be

Q = 2�
2

m0

[
1 + m + n

w2
S

+ ξ 2
1 + ξ 2

2

w4
S

]
. (95)

Equation (95) can in turn be inserted into the Hamilton-Jacobi
equation (90) giving Eq. (93) as a solution.

It is clear from Eqs. (82) and (95) that

Q = lim
c→∞

V 2

2m0
. (96)

This result shows that the Bohm potential for a Hermite-
Gaussian beam is the nonrelativistic limit of the scalar
form V 2 of the relativistic quantum potential defined in
Eq. (82).

VI. EXPERIMENTAL CONSIDERATIONS

The range of quantum 4-potential effects treated in this
paper is quite limited. The free-field Klein-Gordan equation
was taken as the starting point to avoid adding additional layers
of complexity to the mathematical sections that already had the
burden of introducing quantum 4-potential and demonstrating
its connection to the Bohm potential. More can be expected
once external electromagnetic fields are incorporated into the
calculations and Bateman-Hillion solutions are fully devel-
oped for the Dirac equation. Regardless of current limitations,

it is still interesting to enumerate and estimate the size of the
few measurable effects that have been identified.

It has been shown earlier that quantum 4-potential
and electromagnetic 4-potential couple into the canonical
4-momentum of particles in a similar way. In estimating
the size of electromagnetic terms it usual to make use of a
dimensionless parameter called the fine-structure constant α

such that any term containing αn is said to be an nth-order
effect. For quantum 4-potential related terms, it has been found
useful to define an analogous constant

aB = λ-

w0
(97)

representing the ratio of the reduced Compton wavelength

λ- = �

m0c
(98)

to the minimum beam radius w0. We shall call aB the beam
particle constant.

Two of the most pronounced (zeroth order) localization
effects are the Gouy phase and OAM. These can be called
localization effects since it is clear that an isolated particle
could exhibit neither of them unless it were localized. In
the case of Gouy phase Eq. (24) is in good nonrelativistic
correspondence to previous theoretical and experimental work
as discussed in [20].

The OAM for a Laguerre-Gauss beam is calculated in
Eq. (29). Equation (87) shows that the OAM of the beam
is completely defined in terms of the quantum 4-potential the
beam carries. It is clear that theory and experiment agree at
the zeroth order. The next step is to consider higher order
corrections to OAM that will result from intrinsic properties
such as charge and spin. It is proposed to address these issues
in a future paper once work on Bateman-Hillion solutions of
the Dirac equation is completed.

Beam spreading provides a good illustration of a first-order
localization effect. It can be seen, in particular, that

∂w

∂x3
	 w0

2b
� 2aB, (99)

providing ξ3 + cτ � 2b. This shows that 2aB is an ap-
proximate upper bound for the constant rate of divergence
of the beam at asymptotically large distances from the
waist.

It is instructive to recall that a lot of early work on beams [2]
was done in the paraxial limit where aB is intentionally kept
very small so that the divergence of the beam is imperceptible
except over very large distances compared to the radius. It
is clear now that the best hope of detecting higher order
localization effects is to move to the other extreme where
aB is made as large as possible.

One higher order localization effect that perhaps could be
measured in an experiment is the quantum potential energy
contribution (66) in the total energy equation (64). It can be
seen that the ratio of the quantum potential term to the rest
energy squared term in Eq. (64) is

�
2Kmn

T

m2
0c

4
= (1 + m + n)a2

B, (100)
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clearly showing that the quantum potential energy is of second-
order importance compared to the rest energy.

The detection of quantum potential energy will require
particles such as electrons to be strongly localized ahead
of insertion into a measuring apparatus that is capable of
determining the absolute energy of the beam. One estimate [35]
for the best accuracy currently possible with such a detector
is 10−4 indicating that aB for a Gaussian (m = n = 0) beam
must be larger than 10−2 for the experiment to be successful.

VII. SUMMARY

A relativistic solution for Hermite-Gaussian particle beams
presented in an earlier paper [20] has been used to calculate
the properties of a particle in the beam. It was found that the
canonical 4-momentum for the particle can be separated into a
constant and position-dependent part. The position-dependent
part has been called the quantum 4-potential term since it
has been shown to be the relativistic Hamiltonian counterpart
of the Bohm potential in the nonrelativistic Hamilton-Jacobi
equation.

A physical interpretation for quantum 4-potential has been
proposed based on two observations. One is that free particles
have no quantum 4-potential but beam particles do. It thus
appears that quantum 4-potential is related to the transverse
localization feature that distinguishes beam particles from
free ones. The other is that quantum and electromagnetic
4-potentials couple into the canonical 4-momentum of par-
ticles in a similar way but quantum 4-potential has no external
source. Quantum 4-potential is therefore proposed to be a field
that isolated particles must carry to appear localized to outside
observers.

Quantum 4-potential has no external source but the amount
of quantum 4-potential a particle carries can be set using
physical devices designed for collimating and focusing beam
particles. The presence of the quantum 4-potential is then ob-

servable through the localization effects it produces including
OAM, Gouy phase, and beam spreading.

In building on the analogy between quantum and elec-
tromagnetic 4-potentials, it has been recognized that the
importance of localization effects can be classified using a
dimensionless constant that has a comparable role to the fine-
structure constant used to classify the order of electromagnetic
effects. For example, OAM and Gouy phase are both zeroth-
order localization effects but beam spreading is a first-order
effect.

The fact that beam spreading is a first-order localization
effect indicates that there may be higher order localization
effects to observe but to do so it will be necessary to devise
sensitive experiments that operate far outside the paraxial
limit conditions that prevail in many beam experiments.
One such second-order localization effect is the quantum
potential energy contribution to the total energy of beam
particles. An experiment to detect this small effect has been
outlined.

In consideration of the next steps, it is recognized that one
of the most significant limitations of the current paper is the
fact it is based on the Klein-Gordon equation instead of the
Dirac equation. One obvious next step is therefore to first
obtain Bateman-Hillion solutions to the Dirac equation, then
use them to catch Hermite-Gauss and Laguerre-Gauss beam
models up to the high standard [29–32] that Bessel-type beam
solutions of the Dirac equation have already reached. This
should lead to the classification and deeper understanding of a
broader range of localization effects than have been treated in
this paper.

The existence of quantum 4-potential also raises some
issues that may be interesting topics for future investigations.
First, does quantum 4-potential have applicability to bound
systems? Second, can the quantum potential energy stored in
particles be used to transmit data? Finally, how might quantum
4-potential be represented in quantum field theory?
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