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Phase-sensitive parametric interactions can selectively process the two complex quadratures of the optical
field. We implement phase-sensitive amplification in a large band-gap semiconductor photonic crystal waveguide
in order to avoid two-photon absorption and free-carrier-related effects. Experimentally, an extinction ratio of
15 dB is achieved in a 1.5-mm-long photonic crystal waveguide, at a peak pump power of about 600 mW. We
show that cascaded parametric interaction has a strong impact on squeezing and phase-sensitive extinction ratio
and that this depends on the dispersion profile of the waveguide.
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I. INTRODUCTION

Four-wave mixing (FWM) is a nonlinear optical parametric
process which is ubiquitous in optical signal processing [1].
The opportunity to implement FWM in compact integrated
photonic circuits has appeared with passive semiconductor
waveguides, also owing to the very strong optical confinement,
namely, in GaAs ring resonators [2] and silicon waveg-
uides [3,4]. Here, the nonlinear coupling coefficient is very
large, namely, γ > 100 m−1 W−1, which is about 4 orders of
magnitude larger than in highly nonlinear fibers.

A radically different approach exploits the confinement
properties of photonic crystal (PhC) waveguides, where the
group velocity can be decreased with moderate insertion losses
to about c/40 [5]. Thus, on top of spatial confinement, low
group velocity further enhances the nonlinear interaction. A
very large nonlinear coupling (γ > 6000 m−1 W−1) has been
demonstrated in such waveguides [6].

The coherent nature of FWM implies that the interaction
is maximized when the mutual phase is preserved along
the propagation. This phase-matching condition is fulfilled
by tailoring the dispersion, e.g., using dispersion-flattened
optical fibers [7]. These PhC waveguides can be designed to
provide a flattened dispersion over most of their transmission
bandwidth [5] and, therefore, can be used for efficient FWM.

Another interesting situation is when the dispersion is
shaped such that phase matching occurs when the interacting
waves are set at prescribed wavelengths. This results into a
narrowband parametric amplification, which can be used to
control the propagation delay all optically [8]. Narrowband
FWM has been demonstrated in PhC waveguides owing to
dispersion engineering [9].

A more complicated case is when dispersion affects a
parametric process indirectly, namely, by controlling ancillary
parametric interactions taking place simultaneously. This is the
case when phase-sensitive amplification (PSA) is perturbed
by competing FWM processes. PSA is a parametric process
where FWM provides a parametric gain which depends on
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the relative phase of the interacting waves. When a mode S is
combined with a strong pump P , an idler I is generated and S is
amplified, if P is strong enough [Fig. 1(a)]. If and additional
mode S is input at the place of the idler, then amplification
depends on the mutual phase of these inputs [Fig. 1(b)]. Thus,
the relative phase governs the exchange of energy between the
pump and the other modes. PSA leads to amplification without
additive noise [10–12]. Depending on the implementation, one
or both quadratures of the coherent signal are amplified with
an ideal F = 1 noise figure of merit [13].

If other FWM processes are allowed to compete with PSA,
then the exchange energy is modified, which affects the phase-
sensitive gain. A common situation is when two strong pumps
ω1,2 generate two idlers at 2ω1 − ω2 and 2ω2 − ω1. This has
been analyzed in the context of optical fibers [14]. It is shown
in Ref. [15] that the minimum gain Gmin is lowered by these
additional interactions, which leads to an increased phase-
sensitive extinction ratio (RE = Gmax/Gmin).

In general, the deamplification of the off-phase quadra-
ture of the signal is an essential feature of PSA implying
that both quantum fluctuations and classical noise can be
reduced [16]. This enables the regeneration of phase-encoded
signals [17,18], which has been demonstrated recently [19].
Interestingly, deamplification has been used to enhance the
sensitivity in position detection [20].

In this paper, we investigate PSA in photonic crystal waveg-
uides, which has been first reported in silicon devices [21].
It has been shown that free carriers generated by nonlinear
absorption impact PSA, reducing the RE [22]. Here, a large
electronic band-gap (1.9 eV) semiconductor (GaInP) is used,
which greatly reduces nonlinear absorption (Sec. III). This
allows the study of a PSA process uniquely governed by
dispersion and competing FWM interactions. The measure-
ment is carried out with a scheme which is a combination of
asynchronous sampling and heterodyne detection (Sec. II).

Thus, we consider here the situation where PSA is perturbed
by additional FWM processes, where the signal S itself inter-
acts with each of the pumps to generate idler modes [Fig. 1(d)].
We show that this leads to an increased extinction ratio of the
PSA gain, which no longer follows a sinusoidal dependence
on the phase of the inputs (Sec. V). The main point is that
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FIG. 1. Possible interactions involving four-wave mixing. (a)
When the input idler is missing, parametric amplification does not
depend on the mutual phase relationship between input waves and
flow of energy (arrows) goes to the idler and the signal; (b) pump
degenerate (PD) configuration with two signals, depending on the
mutual phase, flow of energy goes from pump to signal or the
other way round and amplification is phase-sensitive (PSA); (c)
phase-sensitive process in the signal degenerate (SD) configuration;
(d) competing FWM interactions (phase-insensitive) FWM may
disturb the PSA process, resulting into a nonsinusoidal dependence
on the phase.

the ancillary FWM processes can be controlled independently
from the PSA by choosing a suitable dispersion. Depending
on the phase matching of each of these processes, the
amplification and deamplification are enhanced or depressed,
relative to pure, phase-matched PSA (Sec. VI). Finally, in
Sec. VII we show that the pump-degenerate configuration also
reveals a strong dependence on auxiliary FWM interaction.

II. HETERODYNE MEASUREMENT OF THE PSA

The PSA is measured by injecting phase-locked inputs,
obtained by a broad-band coherent source which is spectrally
sliced, rephased, and finally amplified with an Erbium Doped
Fiber Amplifier (EDFA). In order to avoid a phase-sensitive
response in the EDFA, the pump and the signal are separated
in time which, however, requires further retiming. This is done
in Ref. [21] by using two wave shapers (Finisar). The output
spectra are recorded as a function of the relative phase, which
implies a tight control of the phase during the acquisition time
of the optical spectrum analyzer (OSA).

Here, we introduce a different approach, where, instead,
we use standard and low-cost telecom modules: two acousto-
optics modulators (AOM), a telecom arrayed waveguide
grating (AWG), and an optical band-pass filter (BPF) (Fig. 2).
The source is a passively mode-locked (ML) femtosecond
fiber laser (Optisiv) which, after a first stage filtering and
amplifying, generates a 6-nm spectrally wide pulse which is
then split in three different channels (labeled a, b, c, with λa >

λb > λc) by the AWG. The corresponding autocorrelator traces
reveal pulses with almost Gaussian profile and duration close
to 9.5 ps (FWHM). Two of these channels (a, c) go through two
delay lines and acquire a delay τa,c, then they are recombined
and go through AOM 1, while channel b goes through AOM 2,

FIG. 2. Experimental setup for the measurement of the PSA.
The ML fiber laser is spectrally sliced with an AWG demultiplexer.
The three channels are synchronized and a relative frequency shift
is applied using acousto-optic modulators. After combining, and
polarization control, the signal is input to the PhC waveguide using
microscope objectives. A band-pass filter is used to extract the signal
before final amplification and detection.

so that a, c, on one side, and b, on the other, acquire the phases
ϕ1,2(t) = −�1,2t , respectively. Two EDFAs 1 and 2 are used to
amplify channels a, c and channel b separately, which prevents
PSA in the EDFA. The three channels are recombined after
their polarization is independently adjusted to couple to the
TE mode of the PhC waveguide.

In the one-mode configuration, the EDFAs are adjusted
so that channels a, c are between 10 and 20 dB above
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FIG. 3. PSA measurement. Oscilloscope trace (a) and magnified
view of the pulse. The sample sn is obtained after integration of
the pulse st centered at time t . Then, samples are plotted in panel
(b) after applying the mapping �ϕ = 2��t in the interval [0,4π ].
Color code in (a) represents adjacent periods mapped in the same
interval to produce the highly resolved plot in (b). The extinction
ratio, normalized to its maximum, is represented as a function of the
mutual pulse delay in (c) and representative gain vs phase plot are in
the inset associated to the red circles.
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channel b, which plays the role of the signal. According to
the theory of PSA [23], after propagation in the nonlinear
waveguide, the signal will be amplified (and deamplified) with
a sinusoidal dependence on the mutual phase of the interacting
waves, namely, �ϕ = 2ϕb − ϕa − ϕc = 2(�1 − �2)t + ϕ0 =
2��t + ϕ0. The signal (b) is filtered (Fig. 3), amplified
using a low-noise EDFA, detected (1-GHz photodiode), and
displayed at the oscilloscope, which is synchronized with the
repetition rate of the ML laser (36.5 MHz). A 20-μs-long
trace st is recorded, entailing a sequence of pulses whose
height reveals a sinusoidal modulation (Fig. 3) with period
250 ns, corresponding to the expected PSA gain law, where
the gain follows a sinusoidal dependence g = 1 + (1 − RE)/
(1 + RE)sin(2��t + ϕ0) on the phase.

The sequence st is mapped from time to phase (see
Appendix) through �ϕ = 2(�1 − �2)t and folded in the
domain [0,4π ]. This produces a fairly well-resolved curve
s(�ϕ), as shown in Fig. 3. The relative accuracy (standard
deviation) is estimated to about 1%. We point out that using
the AOMs introduces a heterodyne detection, therefore, the
phase noise due to slow fluctuations of the optical path is
ruled out. The measurement technique could be regarded as
asynchronous sampling. Figure 3 also shows the dependence
on the relative delay of the interacting pulses, which is clearly
related to the pulse duration.

III. PHOTONIC CRYSTAL WAVEGUIDE

The device is a 1.5-mm-long single line defect waveguide
made of an air-suspended GaInP membrane. The 180-nm-thick
slab is patterned with a triangular lattice (period a = 471 nm)
of holes. The first row of holes is displaced antisymmetrically
along the waveguide axis by Tx . This induces the coupling
of the odd and even modes which strongly modifies the
dispersion [24]. Choosing Tx = 0.1a results into a flat-band
dispersion. Other small changes (see Appendix) are used for
fine tuning.

Optical coherent tomography (OCT) is used to extract the
dispersion and to estimate the propagation losses, as reported in
Ref. [25]. The group index is approximately constant and equal
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FIG. 4. OCT measurement and FDTD calculation of the waveg-
uide dispersion. Group index (a), second-order dispersion (b), and
transmission (c).

to ng ≈ 15 over a bandwidth of about 15 nm, as shown in Fig. 4.
Importantly, the waveguide dispersion β2 changes sign twice at
the zero dispersion wavelengths (WZD = 1552.3 and 1561 nm)
so that in-between the dispersion is small |β2| < 0.4 ps2/mm.
Coupling losses were reduced significantly with a mode
adapter [26]. The attenuation is estimated to α is >30 dB/cm
in the flat-band region, except for two transmission dips at
1550 and 1558 nm (Fig. 4), which are related to strong
backscattering due to regularly spaced dislocations of the
PhC. This is a known issue with long (e.g., about 1 mm)
PhC waveguides. The nonlinear coupling coefficient γ is
calculated (see Appendix) to be about 2000 W−1 m−1. We
consider an effective length due to linear attenuation α ≈
30 dB/cm in the waveguide with physical length L, namely,
Leff = (1 − e−αL)α−1 = 1 mm.

IV. COMPARISON WITH OTHER
SEMICONDUCTOR DEVICES

In order to avoid the limitations due to nonlinear absorption,
and, more importantly, the ensuing free-carrier dispersion
and absorption, waveguides made of large band-gap ma-
terials (Eg > 2�ω = 1.6 eV at telecom wavelengths) have
been developed. In particular, hydrogenated silicon [27], Al-
GaAs [28,29], GaInP [30], or chalcogenides waveguides [31].

Our device combines the large nonlinear coupling of
PhC waveguides and the large nonlinear absorption threshold
resulting from a large electronic gap. The large power
density tolerated by the waveguide results net parametric gain
(>10 dB), reached with about 0.6-W peak pump power [32].

In the configuration chosen for the PSA experiment,
the maximum extinction ratio RE achieved is 15 dB, at
a maximum peak power of 0.6 W coupled in the device
[see Sec. V and Fig. 6(c)]. Considering the link between the
linearized conversion efficiency in FWM, η = γ 2L2P 2, and
the extinction ratio, this result is in line with expectations.
This is apparent in Table I. Despite their low nonlinearity,
low-loss waveguides with good nonlinear figure of merit
such as chalcogenide [33] can reach high RE by increasing
pump power and device length. Conversely, the very large
nonlinearity of silicon PhC offsets the larger propagation loss
and also results in large RE . Interestingly, the larger RE in
the GaInP PhC corresponds to a nearly identical linearized
conversion efficiency η than in the silicon sample, which could
be in part explained by the lack of free carriers. This point will
be further discussed in Sec. VI. This is also consistent with
the large RE = 20 dB reported in long silicon waveguides,
owing to a PN junction removing the free carriers generated

TABLE I. PSA in integrated waveguides.

γ L Power γ 2L2P 2 Gmax RE

(mm−1 W−1) (mm) (W) dB dB dB Ref.

0.01 65 6.7 13 18 [33]
4.3 0.2 2.3 5.9 3 11 [21]
0.28 40 0.22 8.2 20 [34]
2 1.5 0.65 5.8 3 15 This work
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(a) (b)

FIG. 5. One-mode PSA. (a) Spectral measurements: (gray) input
signal normalized to 0 dB, with idlers I12 and I21 18 dB below and
ASE noise. Red arrows refer to the ITU grid. The red bar represents
the spectral width of the ITU channel. Normalized output spectra
(cyan, blue, and red) at different pump power (0.1, 0.6, and 0.9
W); integrated power in idler IS1,IS2 and signal channels and total
output (black), normalized by the input signal level, as a function of
the nonlinear phase shift ϕNL. Color-coded symbols correspond to
spectra in panel (a).

by nonlinear absorption [34]. Interestingly again, here η is
only marginally larger than in the case of the silicon PhC.

V. SIGNAL DEGENERATE PSA

We first consider the signal degenerate [Fig. 1(c)] config-
uration. The PSA gain g(�ϕ) is measured (see Appendix) as
a function of the input power. For clarity, we rather refer to
the nonlinear phase shift ϕNL = γPP Leff , which represents the
nonlinear coupling, directly related to the (total) coupled peak
input pump power PP .

The input spectrum [Fig. 5(a)] consists of the dual pump
(P1,P2), separated by 6 ITU dense wavelength domain
multiplexing (DWDM) channels (i.e., 600 GHz) and the signal
centered at 193 THz (λ = 1553.3 nm), the signal to (total)
pump ratio is −12 dB. There is no BP filter after the EDFA,
therefore, there are two idlers (I12 and I21) generated in the
amplifier, spectrally spaced by �ω/2π = 600 GHz each from
the closest pump. Their level is 19 dB below the pump, and
because of the waveguide dispersion the parametric interac-
tions with the pumps or the probe are inefficient, we assume
that they do not influence any of the results reported here.

In semiconductor waveguides, specifically silicon at tele-
com wavelengths, free-carrier effects are important, as men-
tioned above. The asymmetric spectral broadening of pulses
is a signature of free-carrier dispersion (FCD). The symmetric
pulse broadening observed here [Fig. 5(a)] indicates that
FCD is negligible even when the nonlinear phase shift
reaches a maximum of 0.6π , corresponding to about 1 W
of total coupled peak pump power. Moreover, Fig. 5(b) shows
that the total transmitted power remains proportional to the
input (see Appendix) within the experimental error, therefore
indicating negligible NL losses. The symmetry of the spectral
broadening, which is therefore due to self- (SPM) and cross-
(XPM) phase modulations, is preserved also because linear

TABLE II. Linear phase mismatch of FWM interactions.

λ(S) − WZD +1 nm +0.15 nm −0.6 nm

�k(P1,P2,S)Leff −0.15 π −0.07 π 0.06 π

�k(P1,S,IS1)Leff 0.33 π 0.8 π 1.2 π

�k(P2,S,IS2)Leff −0.4 π −0.3 π −0.2 π

dispersion is negligible relative to the pulse bandwidth, as the
characteristic lengths associated to second- and third-order
dispersion are both at least 2 orders of magnitude larger
than L.

The FWM process is governed by the phase mismatch
2δ(P1,P2,S)Leff = �k(P1,P2,S)Leff + �NL, entailing a linear
and a nonlinear contribution [7,23]. In this configuration (λs =
WZD + 1 nm), the linear contribution �k(P1,P2,S)Leff =
(2kS − kP1 − kP2 )Leff ≈ −β2�ω2 is estimated to about
−0.15π , implying the efficiency of the parametric interaction
is close to the maximum also when �NL increases.

Phase-sensitive interactions are not expected to show any
specific signature in these spectral measurements since the
integration time is much longer than the period of the phase
modulation 1/��. What these measurements show, instead,
is that strong FWM leads to the generation of two idlers IS1

and IS2, due to the mixing of each pump with the signal. In
Fig. 5(b), the relative power transferred to the two idlers is
shown as a function of the pump power (i.e., the nonlinear
phase shift). While the exact ratio may be overestimated while
normalizing the spectra (see Appendix), it is apparent that the
phase-insensitive FWM process IS2 is competing with the one-
mode PSA. This is because the phase mismatch is small and
negative, �kLeff = −0.4π , therefore offset by �NL as pump
power is increased (Table II). The other idler is generated with
much less efficiency because the phase mismatch is positive
and is further increased by �NL.

From theory [23], it is expected that the phase-sensitive
gain g(�ϕ) should follow a perfectly sinusoidal dependence
on the relative phase �ϕ. Instead, experiment [Fig. 6(b)]
shows that PSA g(�ϕ) is represented by a sinusoid only
at moderate levels of nonlinearity (ϕNL < 0.2π ); then, the
dependence becomes more complicated. Specifically, if we
take the difference �ϕ(G1,G2) = �ϕ|max − �ϕ|min between
�ϕ at maximum and minimum PSA, this decreases from π

to about 0.7π [Fig. 6(a)], whereas theory predicts a strict π

separation (sinusoidal dependence).
We note that a three-wave interaction, e.g., PSA, cannot

explain this nonsinusoidal dependence. Other interactions
must necessarily be involved, which is consistent with the
spectral measurements [Fig. 5(b)].

We now consider the dependence of amplification {G1 =
max[g(�ϕ)]} and deamplification {G2 = min[g(�ϕ)]} on the
level of nonlinear coupling (ϕNL), which is shown in Fig. 6(c).
While G1 increases up to 2.3 dB, the deamplification (G2)
decreases much faster, so that the extinction ratio RE =
G1/G2 reaches 15 dB when ϕNL = 0.4, with the total coupled
peak power P = 0.65 W. Instead of being equal to 1, as in ideal
PSA, the product G1G2 < 1 and decreases as nonlinearity
increases. Since nonlinear absorption here is small, we believe
that in our case this nonideal response is mainly explained by
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FIG. 6. Phase-sensitive gain g measurement on the signal S: (a)
phase shift between minimum and maximum of g; (b) linear scale,
as a function of the relative phase �ϕ and at different pump power
level; (c) maximum and minimum gain G1,2, and extinction ratio RE ,
blue square (resp. red circle) corresponds to blue dotted line (resp.
red line) in panel (b). The last point in panel (c) corresponds to the
green dashed line in panel (b).

the strong self- and cross-phase modulations, broadening the
signal spectra out of the window of the band-pass filter at the
output. Modeling (see Sec. VI and Appendix) predicts G1G2

to be much closer to 1 as the pulse duration is increased by a
factor 5 and to remain so as the NL coupling ϕNL increases.

The maximum of RE is thus related to a minimum of G2,
which was indeed observed in optical fibers [15] and attributed
to competing FWM interactions involving other waves. More
generally, it was expected from theory that higher-order FWM
harmonics may impact the phase-sensitive gain [14].

We believe this is indeed the case here. In particular, the
idlers IS1 and IS2, generated in the nonlinear waveguide, bear
a dependence on the relative phase �ϕ at the input, therefore,
they interact coherently with the signal S. Instead, idlers
generated in the EDFA (I12 and I21) are weak and they are
not coupled to the signal by the strong pump, therefore, they
do not influence the PSA process. All these measurements
pinpoint the role of cascaded FWM in PSA, resulting into a
large RE .

In the next section, we discuss how this interaction
results in drastically different dependence of the RE on the
injected power, when selecting different combinations of phase
matching for each of them.

VI. ROLE OF THE WAVEGUIDE DISPERSION

In this section, we examine the situation where the PSA
interaction is phase matched, thus supposedly maximized.
Then, we repeat the measurement by varying the spectral
position of the pump and the signal, still keeping the same
spacing and relative power. This changes the phase-matching
condition of the competing FWM interactions (S,P1,IS1 and
S,P2,IS2), while the PSA (S,P1,P2) remains phase matched
(|�kLeff| � π ). This is detailed in Table II.

Self- and cross-phase modulations �NL modify the phase
matching. This contribution is positive and smaller than
π/2, which slightly decreases the mismatch in interactions
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FIG. 7. Influence of the dispersion on the PSA dynamics. Mea-
sured (a) and calculated (b) extinction ratio RE and phase-sensitive
gain g as a function of the nonlinear phase shift ϕNL.

(P1,P2,S) and (P2,IS2,S) but increasing (P2,IS1,S). Thus, PSA
remains phase matched, while one of the competing FWM
processes is further mismatched.

When measuring the phase-sensitive gain [Fig. 7(a)], we
observe that the peak of RE is much less pronounced as the
signal is placed at +0.15 nm or −0.6 nm from the WZD . Also,
the slope of RE versus the nonlinear coupling (ϕNL) decreases.
It is apparent that RE depends on the detuning (hence the
dispersion and the mismatch of competing FWM) via G2;
specifically, the maximum of RE is related to a minimum of
G2. Instead, G1 has a weak dependence on the detuning, hence
on competing FWM processes, with maximum ≈ 3 dB when
λ(S) = WZD + 0.15 nm. The much stronger sensitivity of G2

is because it results from a destructive interference, which is
easily modified by any perturbation.

Thus, the phase-sensitive RE dependence on the dispersion
can be explained by competing FWM interactions. In order
to further assess this point, we have modeled the PSA
process using a generalized nonlinear Schrödinger equation
(GNLSE), including the so-called all-orders dispersion. The
model is detailed in the Appendix. We consider only the Kerr
nonlinearity (χ (3)) and all the possible FWM interactions, and
the exact dispersion of the waveguide (Fig. 4). We show that
this is enough to reproduce the results as the detuning, hence,
the phase matching of the processes involved, is changed.
Then, we also add all possible corrections (free carriers,
nonlinear absorption) and show that this is negligible. Thus,
this identifies the dispersion as the sole possible explanation
through the mechanism discussed above.

The calculated RE [Fig. 7(b)] does show a peak which is
particularly marked when λ(S) = WZD + 1 nm, namely, the
same condition where the experiment reveals a peak. The
maximum of RE is less pronounced in the other configuration,
as observed experimentally. The maximum gain reaches a
value of 5 dB when the detuning from the WZD is 0.15 nm, still
G1G2 < 1, as observed experimentally. More importantly, the
minimum of G2 is particularly marked, whereas it is much
shallower as λ(S) is changed. The calculated g(�ϕ) also

023817-5



AUDE MARTIN et al. PHYSICAL REVIEW A 94, 023817 (2016)

reproduces the nonsinusoidal behavior discussed above. Thus,
the model reproduces the features observed experimentally,
although there are some discrepancies hindering a very good
quantitative agreement. Among the possible reasons, we
believe that the uncertainty in the measured dispersion and
the complicated spectral dependence of the waveguide losses
might play a role. We also point out that we have not taken
into account the nonlinear dispersion, which has recently been
suggested to play an important role in photonic crystals [35].

We point out that a detailed analysis of how PSA is
affected by competing FWM processes is extremely complex,
particularly if dynamic effects (spectral broadening) are also
to be considered. In the continuous wave (CW) regime and
in fibers, this has been first considered in Ref. [15] and very
recently analyzed in detail in Ref. [36]. What is shown here,
instead, is that this complex dynamics is indeed controlled
by the dispersion, and that the specific features observed,
particularly the existence of a peak in the RE , is robust to
all the other effects, specifically, the inhomogeneous losses
and spectral broadening.

This has practical implications as it means that very strong
phase squeezing (deamplification) is possible in integrated
photonic circuits owing to the contribution of higher-order
FWM process, provided they are suitably controlled. This
is indeed possible by exploiting dispersion engineering in
PhC waveguides [5,24,37]. Achieving a large RE is related
to application to all-optical quantization of phase-encoded
signals [38,39].

VII. PUMP-DEGENERATE PSA

The pump-degenerate PSA involves two signals. When one
is the phase-conjugate replica of the other and the mutual
phase is set suitably, both quadratures are amplified with a
noise figure approaching 0 dB [13]. In this configuration pump
harmonics are absent, however, there is still the possibility that
pump and signal generate additional idlers, which could then
compete with the PSA process. We note also that the phase
mismatch has opposite sign relative to the signal degenerate
case (i.e., when pump and signal are exchanged).

We have investigated this scenario by reconfiguring the
input signal to consist in a pump wavelength centered at
1553.3 nm and the two signals are each 10 dB below the
pump level. Since the two signals have the same phase (i.e.,
they are not conjugated in this configuration), the amplification
still keeps the sinusoidal dependence on the relative phase.

We have performed the experiment on a nominally iden-
tical waveguide, with almost identical dispersion, but WZD

located at 1553.6 nm. Here, the PSA interaction is virtually
phase matched [�k(P1,P2,S)Leff = −0.14 π ], as well as
the FWM process generating an idler on the low-energy
side [�k(P2,S,IS2)Leff = 0.4 π ]. The other interaction is
instead much less effective because of large phase mismatch
�k(P1,S,IS1)Leff = −1.3 π . The output spectra in Fig. 8
clearly reveal the strong increase of IS2, while IS1 is much less
affected, consistently with the phase-matching condition. The
PSA process is analyzed by filtering this time either S1 or S2.
Interestingly, the phase-sensitive gain g differs substantially
in the two cases, as apparent in Fig. 9(a). When observing
S1, the G1 rises up to 6 dB, while when observing S2,G1

(a) (b)

FIG. 8. Pump-degenerate PSA. Normalized output spectra at
ϕNL = 0.1π,0.3π,0.4π , e.g., pumps 0.1, 0.3, and 0.6 W (a) and
spectral power in the idlers and in the signal (b).

barely reaches 2 dB. Conversely, G2 reaches a lower minimum
when it is extracted from S2. Also, the difference �ϕ between
the maximum and minimum of g is close to π in the case
of S1, but decreases to 0.7π when S2 is analyzed. This is
interesting when considering that S1 and S2 belong to the
same phase-sensitive FWM process. All this is consistent
with the interpretation that the competing FWM processes
have a strong influence in the PSA dynamics. Specifically, the
interaction involving IS2 and S2 is strong and therefore S2 is
strongly modified, which is not the case for S1. The GNLSE
model [Fig. 9(b)] reproduces well this behavior, namely, that
G1(S1) > G1(S2),G2(S1) > G2(S2). While G1 appears to be
in quantitative agreement for both S1 and S2, the minimum gain
G2 is expected to be much lower (stronger deamplification).
We point out, however, that G2 is more prone to error because
it results from destructive interference.

G1

G2

RE

S1

S2

0.6

0.8

1

G1

G2

RE

S2

S1

0.6

0.8

1

0 0.2 0.4 0.6
20

10

0

10

20

Experiment GNLSE Model

FIG. 9. Pump-degenerate PSA measured on S1 (dark red or dark
gray) or S2 (cyan or light gray). The measured (a) and calculated
(b) minimum G2 and the maximum G1 of the phase-sensitive gain g

are plotted (bottom) along with their relative spacing (top) �ϕ. The
measured and calculated extinction ratio (RE) is also plotted.
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VIII. CONCLUSIONS

We have measured phase-sensitive amplification in a
1.5-mm-long GaInP photonic crystal waveguide using a het-
erodyne technique and asynchronous sampling. A maximum
extinction ratio of 15 dB is reached at a coupled peak pump
power of 650 mW. At larger power levels, we observe a
nonsinusoidal dependence of PSA on the mutual phase which
cannot be explained without accounting for the interference
with competing FWM interactions. This also leads to the
existence of a maximum of RE , related to strong squeezing,
as power is increased. We show that the interplay of the
FWM interactions depends on the phase matching of each
of those, which is ultimately related to the dispersion profile
of the waveguide. We speculate that the phase-sensitive
amplification could be optimized by a suitable shaping of
the waveguide dispersion, which photonic crystal waveguides
allow. Conversely, understanding these interactions might be
important in avoiding unwanted distortion of the signal.

It is shown that the experimental results are very well
reproduced by a time-domain model considering instantaneous
Kerr nonlinear response and the very accurate description
of the waveguide dispersion only and that other corrections
are negligible. This is because of the use of a large-gap
semiconductor alloy (GaInP), which minimizes nonlinear ab-
sorption and the ensuing generation of free carriers. Thus, this
1-mm-sized semiconductor waveguide effectively reproduces
the properties of a nonlinear fiber, without however limitations
such as Brillouin scattering. For some applications, the limited
available bandwidth (10 to 20 nm) might be an acceptable price
to pay.

Finally, we point out that experiment have been performed
in the pulsed regime and, therefore, gain is limited by
dynamical effects such as spectral broadening due to cross
and self-phase modulation. A new generation of nonlinear
waveguides with a solid cladding and optimized thermal
conductivity would be able to sustain CW operations, and,
therefore allow a practical implementation of phase-sensitive
optical signal processing.
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APPENDIX

1. Extraction of the phase-sensitive gain

First, an oscilloscope trace st is converted into a discrete
series sn = ∫ t+�t

t−�t
s(t ′)dt ′ by integrating around the peak after

having removed the background noise (the baseline). Then,
the time axis is mapped as t → �ϕ = 2��t in the interval
[0,4π ]. The input power level is controlled by a variable
attenuator just before coupling into the sample, therefore,
the total pump power is P = APmax and the pump to signal
ratio is kept constant. A reference s0(�ϕ) is taken with

pump set to zero and it is normalized with the current
attenuation A0. Thus, the phase-sensitive gain is then estimated
as g(�ϕ,A) = s(�ϕ,A)A0

s0(�ϕ)A . We note that there is an unknown
offset for the mutual phase �ϕ, which is intrinsic to our
heterodyne technique. Thus, we arbitrarily set the zero to the
first maximum of g.

2. Normalization of the output spectra

Output spectra SOSA are measured just at the output of the
sample (resolution is 50 pm) and then renormalized by dividing
it by the experimental transmission T [Fig. 4(c)], then suitably
smoothed, and finally divided by A (which is proportional to
the input power), namely, S = SOSA/T /A.

3. Analytic PSA theory

A general form for the PSA equation is given in
Refs. [13,23]. We summarize the theory here. In the one-mode
PSA, the two signal input fields are identical, namely, A1 =
A2 = A exp(i�ϕ/2), the phase being relative to the pump. The
gain is then

g(�ϕ) = cosh(κL)2 + 2
δγ

κ2
sinh(κL)2cos(�ϕ)

− 2
γ

κ
sinh(κL) cosh(κL)sin(�ϕ). (A1)

Here, κ2 = |γ |2 − δ2, 2δ = β1 + β2 − β3 − β4 + γ (P3 + P4),
and γ = 2γA3A4, being 3 and 4 the two pumps (with
Pj = |Aj |2) and γ the nonlinear coupling coefficient. Note
that |γ |Leff = ϕNL, which coincides with κLeff at phase
matching. In the the pump-degenerate case, γ = γPpump and
2δ = �β + 2γPpump.

4. Generalized nonlinear Schrödinger
equation in PhC waveguides

The propagation of nonlinear pulses in nontranslation-
invariant waveguides such as PhCs is possible in the context
of the the slowly varying envelope approximation (SVEA),
which leads to a nonlinear Schrödinger equation (NLSE) [40].
The field E(r,t) = A(z,t)e(r) exp[i(kz − ωt)] is represented
as a complex envelope modulating the carrier frequency ω and
spatial dependence described by the Bloch normal mode e,h,
normalized as ∫

S

d2r ẑ · (e∗×h + e×h∗) = 4 (A2)

the integral carried over a surface S perpendicular to the
direction of the propagation ẑ. Consequently, the square
module of the field amplitude A equals the instantaneous
power in the mode: |A(z,t)|2 = P (z,t).

We use the generalized NLSE, which contains the all-orders
Taylor expansion [41] of the waveguide dispersion k(ω). Since
the transform t → t − z/vg is used, the expansion starts from
the order two, with k(n) = ∂ωk:

∂zA = −i

N∑
n=2

k(n)

n!
∂n
t A − α

2
A + iγ (1 + iτs∂t )|A|2A + L

(3)
N .

(A3)
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The nonlinear response is described by a nonlinear parameter
γ and the self-steepening coefficient τs = ∂ωγ /γ (Ref. [41]).
The linear attenuation coefficient is α.

This equation describes the nonlinear propagation of pulses,
including also parametric frequency mixing (FWM), provided
that the interacting waves occupy a spectral band narrow
enough to allow the SVEA approximation. In order to account
for higher-order nonlinear effects (multiphoton absorption and
free-carrier-induced dispersion and absorption), specific terms
are added, namely,

L
(3)
N = ik0σnNA + β3PA|A|4. (A4)

The first term accounts for free-carrier dispersion and absorp-
tion, corresponding to the real and imaginary parts of the
coefficient k0, through the density of free carriers N , which is
calculated using an auxiliary rate equation. The second term
accounts for three-photon absorption. The nonlinear equation
is solved using the Fourier-based split-step method [7].
Each time step is solved in two parts. First, the linear part
of the equation is Fourier (anti)transformed [since in our
notation E ∝ exp(−iωt)], multiplied by a prefactor relating
to dispersion and attenuation and then transformed back:

∂zA�z|linear = F {[−i�k(ω) − α(ω)]F−1A}.
Here, the prefactor �k = ∑N

n=2
k(n)

n! = k(ω) − (ω0) − k(1)(ω0)
(ω − ω0) and α(ω) express the dispersion of the linear
attenuation. The nonlinear part is solved as

∂zA�z|NL = iγ |A|2A − iγ τsF {(ω − ω0)F−1(|A|2A)}.

5. Modeling the PSA using the GNLSE

The all-order approximation allows to account for the exact
dispersion [�k(ω)], as reported in Fig. 4 and the linear losses,
which are a smooth function of the group index (this amounts
to 30 dB/cm in the operating range), are input in the model. We
do not take into account the dips observed in the transmission
spectra, at 1550 and 1558 nm.

As initial condition (input) for the calculation, three pulses
with a super-Gaussian shape exp[−(t/t0)2n] are used to match

both the measured input spectra and the autocorrelation trace.
The Kerr nonlinearity is represented by the nonlinear coupling
parameter γ , while the dispersion of the nonlinear response is
neglected, although recently it has been shown that it might
play a role in the propagation of ultrafast pulses [42].

The nonlinear losses and free-carrier effects are included
through the term L

(3)
N with parameters taken from Ref. [43].

Importantly, we have compared the calculation with L
(3)
N set to

zero and concluded that the role of higher-order nonlinearities
is negligible, which is consistent with our experiments. The
calculation is repeated for each power level (hence ϕNL) and
value of the relative phase �ϕ. The phase-sensitive gain is
calculated by following exactly the same procedure described
for the experimental data.

6. Calculation of the nonlinear coupling parameter
in a PhC waveguide

The nonlinear coupling parameter γ is evaluated for Kerr
nonlinearity in isotropic materials [44] using the Lorentz
reciprocity theorem applied to the normal modes of the
waveguide [45], which yields

γSPM = ωn2ε
2
0c0

4L

∫
V

d3r εrχr

2|e|4 + |e · e|2
3

. (A5)

The integral is carried out a volume V entailing one period L

of the PhC waveguide, χr = χ (3)(r)/χ (3), the ratio between the
spatial distribution of the nonlinear tensor χ (3)(r) to a reference
value χ (3) related to the nonlinear index n2 = 3χ (3)

4ε0εr c0
. When the

nonlinear material is homogeneous and it is defined within a
subvolume VNL, then χr = 1 inside it and it vanishes outside.

7. Waveguide design

The complete design entails a waveguide width is W =
0.95

√
3a, while the first row of holes is also displaced

outwards by 0.16a. The radius of the first row is 0.25a, the
second and third is 0.26a, the radius of the other holes is 0.23a.
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