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Two-photon vibrational excitation of air by long-wave infrared laser pulses
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Ultrashort long-wave infrared (LWIR) laser pulses can resonantly excite vibrations in N2 and O2 through a two-
photon transition. The absorptive vibrational component of the ultrafast optical nonlinearity grows in time, starting
smaller than but quickly surpassing the electronic, rotational, and vibrational refractive components. The growth
of the vibrational component results in a novel mechanism of third-harmonic generation, providing an additional
two-photon excitation channel, fundamental + third harmonic. The original and emergent two-photon excitations
drive the resonance exactly out of phase, causing spatial decay of the absorptive vibrational nonlinearity. This
nearly eliminates two-photon vibrational absorption. Here we present simulations and analytical calculations
demonstrating how these processes modify the ultrafast optical nonlinearity in air. The results reveal nonlinear
optical phenomena unique to the LWIR regime of ultrashort pulse propagation in the atmosphere.
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I. INTRODUCTION

Ultrashort laser pulses propagating through the atmosphere
drive an ultrafast dielectric response by nonlinearly polar-
izing the constituent atoms and molecules [1–3]. For the
primary constituents, the diatomic molecules N2 and O2,
the response consists of three motions: electronic, rotational,
and vibrational. The time scale for each of these varies
substantially and, when compared with the pulse duration
or frequency, determines their dynamic contribution to the
dielectric response.

Bound-electron dynamics occur on attosecond time scales
τe ∼ �U−1

I where UI is the ionization potential. The electrons,
as a result, respond nearly instantaneously to ultrashort
(approximately femtosecond to picosecond) laser pulses with
near-ultraviolet or longer periods (greater than femtoseconds).
In contrast, the rotational and vibrational dynamics involve
motion of the nuclei and occur on much longer time scales. The
rotational motion has a characteristic time scale of picoseconds
τr ∼ �

−1IM where IM is the moment of inertia [4–7]. Pulses
with durations exceeding this adiabatically align the molecules
and experience a near-instantaneous rotational response [4–7].
Much shorter pulses, on the other hand, impulsively align the
molecules and experience a delayed rotational response [4–7].
A similar transition from an instantaneous to a delayed
response occurs during vibrational excitations but at much
shorter pulse durations [8–12]. The vibrational motion occurs
on the few femtosecond time scale τv ∼ �−1

v where �v is the
vibrational frequency, and thus, near-infrared pulses must be
close to the single cycle for impulsive excitation [8–12].

Although a nonadiabatic vibrational excitation can be
achieved with few-cycle pulses, there is another option: using
a longer wavelength pulse. Neither N2 nor O2 possess a
permanent dipole moment; the laser-pulse-driven rotation and
vibration are mediated, instead, by an induced dipole. At the
quantum level, the induced dipole interaction corresponds to a
two-photon process by which the laser pulse excites coherence
between two (selection rule allowed) rotational or vibrational
states. For pulses with frequencies incommensurate with the

states’ transition frequency, the pulse duration determines the
dynamics as described above. However, when the frequency
equals half the transition frequency, the pulse resonantly
excites coherence between the states. Specifically, long-wave
infrared (LWIR) pulses with wavelengths near λ = 4πc/�v ,
8.4 or 12.6 μm for N2 or O2, respectively [13] will resonantly
excite vibrational coherence. Even with the recent popularity
of midinfrared (MIR) ultrashort pulse propagation studies [14–
18], the effect of this excitation on propagation, either on- or
off-resonance, has yet to be examined.

Here we consider the ultrafast two-photon vibrational
excitation of N2 and O2 and examine its effect on LWIR pulse
propagation. We find that the absorptive vibrational component
of the ultrafast optical nonlinearity grows in time, starting
smaller than but quickly surpassing the electronic, rotational,
and vibrational refractive components. The growth of the
vibrational component results in a novel mechanism of accel-
erated third-harmonic generation. The resulting third harmonic
provides an additional resonant two-photon excitation channel,
fundamental + third harmonic. The original and emergent
two-photon excitations drive the vibrational resonance exactly
out of phase with each other, causing spatial decay of the
absorptive vibrational nonlinearity. That is: co-propagation
of the fundamental and the resonantly generated third har-
monic nearly eliminates two-photon vibrational absorption.
Both simulations and analytical calculations are presented
demonstrating how these processes modify the ultrafast optical
nonlinearity in air.

II. ULTRAFAST OPTICAL NONLINEARITY OF AIR

The nonlinear polarization density induced by laser pulses
propagating through the atmosphere P = Pe + Pr + Pv in-
cludes contributions from the electronic Pe, rotational Pr ,
and vibrational Pv responses of (predominately) N2 and O2

molecules. Unless otherwise stated, a sum over the N2 and
O2 polarizations, weighted by number density, is implied.
Bound electrons respond near instantaneously to LWIR pulses
such that the electronic polarization can be expressed as

2469-9926/2016/94(2)/023816(7) 023816-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.94.023816


J. P. PALASTRO et al. PHYSICAL REVIEW A 94, 023816 (2016)

TABLE I. Parameters for nonlinear polarization.

Parameter Reference N2 O2

Fraction 0.8 0.2
n2(m2/W) [6,16] 7.3 × 10−24 9.3 × 10−24

�v(s−1) [12] 4.5 × 1014 3.0 × 1014

IM(J s2) [4] 1.46 × 10−46 1.9 × 10−46

�a(m3) [6] 6.7 × 10−31 10.2 × 10−31

μ(kg) 1.2 × 10−26 1.3 × 10−26

∂a/∂Q(m2) [20] 1.75 × 10−20 1.46 × 10−20

Pe = ε0χeE where

χe = 4cε0n2E
2/3 (1)

is the electronic susceptibility, E is the transverse electric
field of a linearly polarized laser pulse, and n2 is the second-
order nonlinear refractive index [19]. The values of n2 and
other parameters required for calculating the polarizations are
summarized in Table I.

The rotational and vibrational polarizations are derived
using density-matrix theory. Here we summarize the derivation
and refer the reader to Refs. [5,12,21,22] for additional
details. The molecules are modeled as spring-bound atom
pairs with an anisotropic polarizability that varies with atomic
separation. This allows a laser pulse to both align and stretch
the molecules. The calculation involves expanding the density
matrix in orders of the field-dependent potential responsible for
the alignment and stretching. To lowest order in the expansion,
alignment or stretching corresponds to excitation of coherence
between two rotational or vibrational states, respectively. At
this order, no change in the state populations occurs.

In the absence of a field, the rovibrational energy is given
by Unj = ��v(n + 1

2 ) + 1
2 �

2I−1
M j (j + 1), where n and j ,

respectively, are the vibrational and total angular momentum
quantum numbers, �v is the vibration frequency, and IM is
the moment of inertia. Assuming thermodynamic equilibrium,
the zeroth-order density matrix is then given by ρ0

njm,jm =
δnjm,njmZ−1

p Dj exp[−Unj/T ], where m is the angular mo-
mentum quantum number along the pulse polarization axis,
T is the temperature, Dj is a degeneracy factor associated
with nuclear spin, and Zp = ∑

nj (2j + 1)Dj exp[−Unj/T ] is
the partition function. A linearly polarized laser pulse drives
coherence between rotational or vibrational states separated by
�j = ±2 or �n = ±1, respectively. The resulting rotational
polarization can be expressed as Pr = ε0

∑
jχr,jE, where(

∂2

∂t2
+ ω2

j,j−2

)
χr,j = −32π2ε0η(�α)2

15IM

j (j − 1)

×
(

ρ0
j,j

2j + 1
− ρ0

j−2,j−2

2j − 3

)
E2, (2)

ωj,j−2 = �I−1
M (2j − 1), η is the number density, �α is the

polarizability anisotropy, and ρ0
j,j = ∑

nmρ0
njm,njm. Similarly,

the vibrational polarization can be expressed as Pv = ε0χvE,
where (

∂2

∂t2
+ �2

v

)
χv = 4π2ε0η

μ

(
∂α

∂Q

)2

E2, (3)

μ is the reduced atomic mass, and ∂α/∂Q is the change in
isotropic polarizability with atomic separation.

The full rovibrational response has been simplified in
Eqs. (2) and (3) by applying the following observations. First,
the molecules largely populate the ground vibrational state at
atmospheric temperatures. Second, contributions proportional
to ∂ �α/∂Q, including simultaneous rotational-vibrational
excitations, contain factors making them an order of magnitude
smaller than terms proportional to ∂α/∂Q. Finally, the time
between geometric cross-section-based collisions far exceeds
the excitation times of interest.

III. TWO-PHOTON VIBRATIONAL RESONANCE

Equations (2) and (3) admit resonant solutions: When the
period of E2 is commensurate with the oscillator period,
the molecular susceptibility undergoes temporal growth. The
rotational resonances reside in the terahertz range, accessible
by beating two laser frequencies together or by appropriately
delaying optical pulses [22]. Of interest here is the two-
photon vibrational resonance accessible by LWIR pulses with
wavelength λL = 4πc/�v: 8.4 or 12.6 μm for N2 or O2,
respectively.

To determine the solution to Eq. (3), we express the
laser pulse electric field as a plane wave modulating an
envelope E = Ê(t) sin(ωLt + φ). Resonant excitation requires
a nonimpulsive drive in which the pulse duration, σ , far
exceeds the vibrational period, σ�v � 1. The solution to
Eq. (3) can then be expressed as χv = χv0 + χv+ + χv−, where

χv0 � γ Ê2(t)

2�2
v

, (4)

χv+ � − γ Ê2(t)

4�v(�v + 2ωL)
cos(2ωLt + 2φ), (5)

χv− = − γ

4�v

∫ t

−∞
sin[�vt − (�v − 2ωL)t ′ + 2φ]Ê2(t ′)dt ′,

(6)

and γ = 4π2ε0ημ−1(∂Qα)2. Equations (4)–(6) contribute to
polarizations that oscillate either in phase or in quadrature
with the laser field. The in phase, or refractive, components
modify the phase of the pulse during propagation, whereas the
quadrature, or absorptive, components modify the amplitude.
Equation (4), for instance, results in the refractive polarization,

Pv0 = γ Ê2(t)

2�2
v

Ê(t) sin(ωLt + φ). (7)

Equation (5) also results in a refractive polarization at ωL,

Pv+ = γ Ê2(t)

8�v(�v + 2ωL)
Ê(t)[sin(ωLt + φ)

− sin(3ωLt + 3φ)], (8)

but includes an additional component oscillating at 3ωL that
contributes to the usual source of third-harmonic generation in
air.

Equation (6) captures the resonant response of the vi-
brational excitation. The resulting polarization exhibits two
behaviors depending on the size of the detuning � = ωL −
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1
2�v relative to the pulse bandwidth σ−1. For large detuning
σ |�| � 1, the polarization is primarily refractive. The refrac-
tive component at ωL is

Pv− � γ Ê2(t)

8�v(�v − 2ωL)
Ê(t)[sin(ωLt + φ)

− sin(3ωLt + 3φ)]. (9)

As with Eq. (8), the 3ωL component contributes to usual
third-harmonic generation. The coefficient γ Ê2(t)/16 ��v,

changes signs across the resonance, which we discuss further
below. For small detuning σ |�| � 1, the laser frequency
is near resonant, and χv− undergoes the temporal growth
characteristic of a resonantly driven harmonic oscillator. In
this limit, the resulting polarization is primarily absorptive,

Pv− = − γ

8�v

(∫ t

−∞
Ê2(t ′)dt ′

)
Ê(t)[cos(ωLt + φ)

− cos(3ωLt + 3φ)], (10)

and scales with the accumulated laser fluence in contrast to
Eqs. (7)–(9) which scale with Ê2(t). The 3ωL component of
Eq. (10) provides a novel source for third-harmonic generation
far more efficient than that provided by Eqs. (8) and (9). As we
will see, this term plays an important role in the self-consistent
evolution of the laser pulse and vibrational response.

The effective complex susceptibilities at ωL can
be extracted from Eqs. (7)–(10). In particular, we
write 〈χj 〉 = 〈χR

j 〉 + i〈χA
j 〉, where j = e,r , or v, 〈χR

j 〉 ≡
[[sin(ωLt + φ)Pj ]]/[[sin(ωLt + φ)E]], 〈χA

i 〉 ≡ −[[cos(ωLt +
φ)Pi]]/[[sin(ωLt + φ)E]], [[]] denotes a cycle average, and
the superscripts R and A refer to refractive and absorptive,
respectively. In the refractive limit σ |�| � 1,

〈χv〉 = γ Ê2(t)

2�2
v

+ γ Ê2(t)

8�v(�v + 2ωL)
+ γ Ê2(t)

8�v(�v − 2ωL)
.

(11)

Equation (11) is the standard vibrational response in the
near-infrared frequency range of ωL � �v. The first term
γ Ê2(t)/2�2

v tracks the pulse intensity and contributes to
the instantaneous Kerr nonlinearity in air. To avoid double
counting this contribution in the total polarization, the n2

values measured in Refs. [7,17], which include both the
electronic and the vibrational contributions, have been adjusted
in Table I to only include the electronic contribution n2 →
n2 − (3π2η/c�2

vμ)(∂α/∂Q)2. The second and third terms in
Eq. (11) contribute minimally for near-infrared frequencies.

At LWIR frequencies, the third term, the resonant vi-
brational response, becomes the dominant refractive con-
tribution. Just above resonance, this term is negative
∼−γ Ê2(t)/16�v�. One might suppose that with a small
enough detuning the second term could negate the nonlinear
rotational and electronic responses. In practice, however, the
minimum is limited to ∼−γ Ê2(t)σ/16�v before the response
becomes largely absorptive. In the absorptive limit σ |�| � 1,

〈χv〉 = γ Ê2(t)

2�2
v

+ γ Ê2(t)

8�v(�v + 2ωL)
+ i

γ

8�v

(∫ t

−∞
Ê2(t ′)dt ′

)
,

(12)

with the last term providing the largest by magnitude contri-
bution; recall σ�v � 1.

IV. NEAR-RESONANT LWIR PROPAGATION

To simulate the resonant two-photon vibrational exci-
tation and its effect on propagation, we use the one-
dimensional (1D) scalar unidirectional pulse propagation
equation (UPPE) [23,24]. The UPPE equation evolves each
frequency component of the pulse independently. This avoids
slowly varying envelope approximations, making it ideal
for situations in which harmonic generation and high-order
dispersion are important. Backwards propagation is, however,
neglected. In a frame co-propagating with the laser pulse
along the Cartesian z axis, the transverse electric field evolves
according to

∂

∂z
Ê(z,ω) = ik(ω)

[
1 − c

n(ω)vf

]
Ê(z,ω)

+ iω

2cε0n(ω)
P̂ (z,ω), (13)

where “ˆ” indicates a frequency domain quantity, ω is the
conjugate variable to the moving frame coordinate τ = t −
z/vf , vf is the frame velocity, k(ω) = n(ω)ω/c, n(ω) is the
linear refractive index, and P is the nonlinear polarization
calculated with Eqs. (1)–(3). We choose the frame velocity
equal to the group velocity at the carrier frequency ωL: vf =
c/[n + ω ∂ωn]|ωL

, where n(ω) is calculated using an empirical
formula for air provided in Ref. [25]. The Appendix details
the validity conditions for the 1D propagation model.

In the simulations, the temporal pulse profile was initialized
as E(0,τ ) = EL sin(ωLτ )e−τ 2/σ 2

, where σ = 850 fs corre-
sponds to a 1-ps intensity FWHM duration. The amplitude
EL was chosen to give a peak intensity I = 1

2cε0E
2
L of

1 × 1012W/cm2. For LWIR wavelengths, this intensity results
in minimal ionization, justifying the absence of a free-electron
current in Eq. (13). Specifically, the fractional ionization is
expected to be less than 10−10 based on the ionization rate
presented in Ref. [26] with parameters from Ref. [27].

Figure 1 displays the effective susceptibilities as a func-
tion of time after 15 cm of propagation. Examples of
below-resonance λL = 8.52-μm, resonant λL = 8.37-μm,
and above-resonance λL = 8.22-μm N2 vibrational excita-
tions are shown from left to right, respectively. For reference,
the pulse intensity profile follows the effective electronic
susceptibility 〈χe〉. At each wavelength, the refractive vi-
brational susceptibility is smaller in magnitude than the
electronic and rotational susceptibilities, and as expected
from Eq. (11), it switches signs across the resonance. On-
resonance, the absorptive vibrational susceptibility undergoes
the rapid temporal growth characteristic of a resonantly driven
harmonic oscillator, surpassing the electronic and rotational
susceptibilities in amplitude. At the quantum level, the laser
pulse has resonantly driven coherence between the ground
and the first excited vibrational states. Nevertheless, the
net population in the first excited vibrational state remains
low, consistent with our approximation to exclude additional
vibrational states in Eq. (3). In particular, one can use the
density-matrix expansion [12] to find the condition for small
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FIG. 1. Amplitude of the effective electronic (blue dashed curve), rotational (green dotted curve), absorptive (red solid curve), and refractive
(purple dashed-dotted curve) vibrational susceptibilities as a function of pulse frame coordinate after 15cm of propagation. From left to right
the plots show examples of below-resonant, resonant, and above-resonant excitations, respectively.

population transfer: (μ��v)−1[πε0(∂Qα)τE2
L]2 � 1, which

for the parameters considered here evaluates to 0.02.
Figure 2(a) shows the resonantly driven absorptive vibra-

tional susceptibility over a 3-m propagation path. As in Fig. 1,
the response grows in time but quickly decays as the pulse
propagates through space. This can be seen clearly in Fig. 2(b),
which displays 〈χA

v 〉 at τ = 4ps on the bottom horizontal axis
as a function of propagation distance [shared vertical axis with
Fig. 2(a)]. Examination of Eq. (3) might lead one to believe that
the spatial decay of 〈χA

v 〉 results from a decrease in the pulse
fluence due to depletion. Surprisingly, however, the fluence re-
mains nearly constant during the spatial decay as demonstrated
by the dashed line, top horizontal axis, in Fig. 2(b).

V. ANALYSIS OF VIBRATIONAL RESPONSE EVOLUTION

The source of the spatial decay and the self-consistent evo-
lution of the resonant vibrational excitation can be illustrated

FIG. 2. (a) Resonant absorptive vibrational susceptibility as
a function of pulse frame coordinate and propagation distance.
(b) Resonant absorptive vibrational susceptibility at τ = 4 ps (black
solid curve and bottom horizontal axis) and total pulse fluence (red
dashed curve and top horizontal axis) as a function of propagation
distance.

using a reduced multiscale analytical model. We limit the
analysis to the evolution of the laser pulse, governed by the
wave equation and the vibrational response:(

∂2

∂z2
− 2

c

∂2

∂τ ∂z

)
E = 1

c2

∂2

∂τ 2
χvE, (14)

(
∂2

∂τ 2
+ �2

v

)
χv = γE2. (15)

The multiscale analysis involves expanding Eqs. (14)
and (15) in time and spatial scales by writing
∂τ = ∂τ0 + ε∂τ1 + · · · , ∂z = ∂z0 + ε∂z1 + · · · , χv(z,τ ) =∑

nε
nχvn(z0,z1,...; τ0,τ1,...), E(z,τ ) = ∑

nε
nEn(z0,

z1,...; τ0,τ1,...), and γ = ε2γ̂ . As we will demonstrate,
the spatial decay results from resonant third-harmonic
generation, motivating our expression for the electric field,

E0 = A sin(ωLτ0 + φ) + B sin(3ωLτ0 + 3φ), (16)

where ωL = 1
2�v and the dependence of A, B, and φ on z1 and

τ1 is implied. Consistent with Eq. (16), we set the lowest-order
vibrational response to zero χv0 = 0.

Upon performing the expansion and keeping only resonant
terms in χv , we find the following:

χv = −2
〈
χA

v

〉
sin(�vτ + 2φ), (17)

∂A

∂z
= − �v

4c

〈
χA

v

〉
(A + B), (18)

∂B

∂z
= 3�v

4c

〈
χA

v

〉
A, (19)

where 〈χA
v 〉 = γF (τ )/4�vcε0, F (τ ) = 1

2cε0 ∫τ
−∞ A(A −

2B)dτ ′, and we have dropped the subscripts on z and τ . The
source of third-harmonic generation, the right-hand side of
Eq. (19), results from the beating of χv with the fundamental
oscillations of the laser pulse ω + �v = 3ω. The second right-
hand side term of Eq. (18) ∝ 〈χA

v 〉B accounts for depletion
of the fundamental during this process, whereas the first term
∝ 〈χA

v 〉A accounts for depletion from vibrational excitation. A
simple scaling for the spatial decay length of 〈χA

v 〉 can be found
by deriving perturbation solutions for Eqs. (18) and (19): A �
A0 + δA, B � B0 + δB, and F = F0 + δF . The pulse starts
with no initial third-harmonic content such that B0 = 0. Setting
A0 = ELe−τ 2/σ 2

, we have δA = −(γ z/16c2ε0)A0F0, δB =
(3γ z/16c2ε0)A0F0, F0(τ ) = (FL/2)[1 + erf(21/2τ/σ )], and
F1(τ ) = −(γ z/4c2ε0)F 2

0 , where FL = 1
2cε0(π/2)1/2σE2

L is
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the initial pulse fluence. Well after the pulse, the amplitude
of the vibrational susceptibility is then

〈
χA

v

〉 =
(

γFL

4�vcε0

)(
1 − z

Zd

)
, (20)

which spatially decays over the length scale Zd = 4c2ε0/γFL.
Equations (17)–(19) and the solutions above capture several

features observed in the simulations. Foremost, the laser pulse
resonantly excites coherence between the ground and first
excited vibrational states through a two-photon transition. This
results in an absorptive vibrational susceptibility Eq. (17)
that oscillates at twice the fundamental laser frequency
with an amplitude 〈χA

v 〉 that grows in time. The growth
of 〈χA

v 〉, in turn, accelerates the third-harmonic generation,
evident in the presence of 〈χA

v 〉 on the right-hand side
of Eq. (19). The presence of the third harmonic opens
an additional two-photon channel for resonant vibrational
excitation 3ωL − ωL = �v . This emergent excitation channel
drives the vibrational resonance exactly out of phase with the
ωL + ωL = �v excitation. Symbolically, the ωL + ωL = �v

and 3ωL − ωL = �v excitation channels correspond to the
first ∝A2 and second ∝−AB terms in 〈χA

v 〉 ∝ F ∝ ∫τA(A −
2B)dτ ′, respectively. As the fundamental amplitude depletes
δA ∝ −z and the third-harmonic amplitude grows δB ∝ z, the
vibrational susceptibility spatially decays, Eq. (20).

In support of this explanation, Fig. 3 displays the nor-
malized fluence of the third harmonic resulting from off-
and on-resonant pulses λL = 8.57 and 8.37μm, respectively.
The fluences are normalized by the total pulse fluence such
that the value represents the fraction contributed by the third
harmonic. Consistent with the analysis above, the resonant
vibrational excitation accelerates third-harmonic generation,
reaching a value >3 times that of the off-resonant pulse after
3m, with a conversion efficiency of ∼30%. We note that for
the parameters considered here, higher-order harmonics, while
present, did not reach amplitudes sufficient to significantly
affect propagation or the vibrational excitation.

Even in light of Fig. 3, the interpretation offered by the
multiscale analysis remains qualitative. For further validation,
we simulated the propagation with Eq. (13) but included

FIG. 3. Normalized fluence of the third harmonic as a function of
propagation distance for resonant (red solid curve) and off-resonant
(blue dashed curve) vibrational excitations. The values are normalized
to the total fluence of the pulse.

FIG. 4. Resonant absorptive vibrational susceptibility as a func-
tion of propagation distance at τ = 4 ps. The solid black, red dashed,
and blue dotted curves show the results from the simulation including
only the N2 vibrational nonlinearity, the multiscale calculation, and
the perturbation solution Eq. (10), respectively. The green dashed-
dotted line displays the result of the simulations when third-harmonic
generation is suppressed.

only the N2 vibrational polarization density: dispersion, O2

nonlinearities, and N2 electronic and rotational nonlinearities
were omitted. The N2 density fraction was increased to 1.0
accordingly. Figure 4 compares the resulting 〈χA

v 〉 at τ = 4 ps
with that calculated from the numerical solutions to Eqs. (18)
and (19) and the perturbation result Eq. (20). The pulse
parameters were identical to those above. The figure clearly
exhibits agreement between the simulation and the analysis,
where as expected, the perturbation result agrees only for short
distances.

Figure 4 also shows 〈χA
v 〉 when third-harmonic generation

is suppressed in the simulations (achieved by only evolving
frequencies satisfying ω � 2ω0). The spatial decay is less
severe in this case and results solely from a decrease in
the pulse fluence due to two-photon vibrational absorption.
Figure 5 displays this decrease. Depletion of the pulse fluence

FIG. 5. Pulse fluence as a function of propagation distance. The
solid black and green dashed-dotted lines show the results with and
without third-harmonic generation in the simulations including only
the N2 vibrational nonlinearity. The resonant third-harmonic gener-
ation contributes to the near elimination of two-photon vibrational
absorption.
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in the presence of third-harmonic generation is also displayed.
The solid and dashed-dotted curves correspond to the same
curves in Fig. 4. With resonant third-harmonic generation,
the two-photon vibrational absorption is nearly eliminated,
and the fluence plateaus. Without third-harmonic generation,
the fluence continues to drop due to vibrational absorption.
Figures 4 and 5 clearly demonstrate that the spatial decay
of 〈χA

v 〉 results from the out-of-phase contribution of the
3ωL − ωL = �v excitation, enabled by the accelerated third-
harmonic generation.

It is worth noting that this cancellation phenomenon occurs,
in part, because of the weak atmospheric dispersion at LWIR
and MIR wavelengths. As a comparison, the distance for phase
walk off between the fundamental and the third-harmonic L =
[n(ωL) − n(3ωL)]−1(λL/6) of a λL = 8.4-μm pulse is ∼8m,
whereas that of a λL = 800-nm pulse is only ∼6 mm [25].
The weak LWIR dispersion allows for the extended nonlinear
interaction of the fundamental and third harmonic.

VI. SUMMARY AND CONCLUSIONS

We have examined the two-photon vibrational excitation
of air molecules by ultrashort LWIR laser pulses. A specific
example of resonant excitation of N2 with a λL = 8.37-μm
pulse was presented. Simulations and analytical calculations
demonstrated that the absorptive vibrational susceptibility
undergoes temporal growth, characteristic of a resonantly
driven harmonic oscillator. Although the vibrational response
typically contributes only a small fraction of the optical
nonlinearity, the absorptive contribution surpassed both the
electronic and the rotational nonlinearities when driven by
a 1-ps 1 × 1012-W/cm2 pulse. The temporal growth of
the susceptibility was shown to accelerate third-harmonic
generation, providing an additional two-photon excitation
channel 3ωL − ωL = �v . This additional channel drives the
vibrational susceptibility exactly out of phase with the original
ωL + ωL = �v channel, resulting in spatial decay of the
absorptive vibrational response. The same effects, although not

presented, occur during the excitation of O2 by λL = 12.6-μm
pulses.
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APPENDIX: CONDITIONS ON 1D PROPAGATION

Validity of the 1D simulation and its correspondence with
potential experiments requires an initial spot size large enough
that the pulse remains collimated during propagation. As a
rough validity condition, we write (Lw−1

0 )|∂zw| � 1, where
w is the e−2 radius of a Gaussian intensity profile with initial
value w0 and L is the propagation distance. Weak dispersion
at LWIR wavelengths and the relatively small bandwidth of
the pulses considered here ω0σ � 1 minimize spatiotemporal
contributions to the spot size evolution. The spot size, there-
fore, evolves primarily through diffraction and self-focusing
and can be approximated by w = w0[1 + (1 − P̃ )L̃2]1/2,
where L̃ = L/ZR and ZR = πw2

0/λL is the Rayleigh length,
P̃ = P/Pcr is the ratio of the pulse power P = 1

2πw2
0I to the

self-focusing critical power Pcr = λ2/2πn2,eff and n2,eff is an
effective nonlinear refractive index. The validity condition then
becomes |1 − P̃ |L̃2 � 1. This condition is clearly satisfied
when P̃ � 1, but this scenario requires equal power at every
temporal slice in the pulse, for instance, a flat top tempo-
ral profile. Instead, we exploit the limit P̃ � 1, providing
the condition n2,effI (L/w0)2 � 1. Setting n2,eff = n2,long, the
adiabatic value presented in Ref. [7], I = 1 × 1012W/cm2,
λL = 8.4μm, L = 3m, w0 = 1cm, we have P̃ = 5.4 and
n2,effI (L/w0)2 = 0.035, satisfying the validity condition.
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